运筹学实验一 线性规划求解、运输问题、整数规划求解 2
运筹学实验报告
运筹学实验报告姓名:学号:班级:指导老师:实验内容1、线性规划问题:⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤++=0,13119241171289..68max 2121212121x x x x x x x x t s x x z (1) 给出原始代码;(2) 计算结果(包括灵敏度分析,求解结果粘贴);(3) 回答下列问题(手写):a ) 最优解及最优目标函数值是多少;b ) 资源的对偶价格各为多少,并说明对偶价格的含义;c ) 为了使目标函数值增加最多,让你选择一个约束条件,将它的常数项增加一个单位,你将选择哪一个约束条件?这时目标函数值将是多少?d ) 对x 2的目标函数系数进行灵敏度分析;e ) 对第2个约束的约束右端项进行灵敏度分析;f ) 结合本题的结果解释“Reduced Cost ”的含义。
解:(1) max =8*x1+6*x2;9*x1+8*x2<=12; 7*x1+11*x2<=24; 9*x1+11*x2<=13;(2)计算结果: Objective value: 10.66667Total solver iterations: 2 Variable Value Reduced Cost X1 1.333333 0.000000 X2 0.000000 1.111111 Row Slack or Surplus Dual Price 1 10.66667 1.000000 2 0.000000 0.8888889 3 14.66667 0.000000 4 1.000000 0.000000灵敏度分析: Objective Coefficient RangesCurrent Allowable Allowable Variable Coefficient Increase Decrease X1 8.000000 INFINITY 1.250000 X2 6.000000 1.111111 INFINITY Righthand Side RangesRow Current Allowable Allowable RHS Increase Decrease 2 12.00000 1.000000 12.00000 3 24.00000 INFINITY 14.66667 4 13.00000 INFINITY 1.000000(3)a)该LP问题的最优解x={x1,x2}={1.333333,0.000000} 目标函数值z=10.66667b)第2行资源的对偶价格为0.8888889,3、4行的对偶价格为0、0.对偶价格的含义:表示当对应约束有微小变动时, 目标函数的变化率。
《运筹学》实验报告
《运筹学》实验报告专业:工商管理专业班级:11-2班姓名:***学号:************指导老师:***前言第十一周、十二周,我们在雷莹老师的指导下,用计算机进行了有关运筹学的一系列实验。
本实验报告即是对这次试验的反馈。
本这次试验是为了帮助我们顺利完成有关《运筹学》课程内容的学习。
在先期,雷老师带领我们进行了《运筹学》理论课程的学习,不仅使我们了解和掌握了运筹学的相关知识,而且让我们认识到运筹学的现实意义,认识到现代社会数学与人们生产、生活之间的紧密联系和对人们生产、生活的巨大促进作用。
然而,与此同时,现代社会同时是一个计算机时代,我们只拥有理论知识还不够,必须把理论知识和计算技术结合起来,这样才能进一步提高生产力。
我相信这也是老师要求我们做这次试验的目的和初衷。
在实验中,我们主要是利用WinQSB软件进行相关试验,根据实验指导书中详细给出的各个实验的基本步骤和内容,独立完成各项实验。
本次实验中共包含4个实验,分别是线性规划实验、运输问题实验、整数规划实验,以及网络优化实验。
每个实验均与理论课中讲解的内容相对应。
部分实验内容用于使我们了解WinQSB软件的基本操作,而其它实验内容要求我们能够根据给出的问题,进行分析、建模和求解。
通过完成各项实验任务,使我们得以巩固已有的理论课程学习内容,为将来进一步的学习和实际应用打下基础。
线性规划实验通过对以下问题的分析,建立线性规划模型,并求解:某工厂要用三种原材料C、P、H混合调配出三种不同规格的产品A、B、D。
已知产品的规格要求,产品单价,每天能供应的原材料数量及原材料单价分别见下表1和2。
该厂应如何安排生产,使利润收入为最大?表1表2实验报告要求(1)写出自己独立完成的实验内容,对需要建模的问题,给出问题的具体模型;(2)给出利用WinQSB软件得出的实验结果;(3)提交对实验结果的初步分析,给出自己的见解;实验过程:一、建立模型设Ac是A产品中用c材料,同理得出Ap、Ah、Bc、Bp、Bh、Dc、Dp、Dh34⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧≤++≤++≤++≤++≥++≤++≥++++++++++++++++=60Dh Bh Ah 100Dp Bp Ap 100Dc Bc Ac 5.0Bh Bp Bc Bp 25.0Bh Bp Bc Bc 25.0Ah Ap Ac Ap 5.0Ah Ap Ac Ac Dh Bh Ah 35-Dp Bp Ap 25-Dc Bc Ac 65-Dh Dp Dc 25Bh Bp Bc 35)(50 max )()()()()(H P C A A A z二、求解过程三、实验分析实验结果表明,在题目的要求下,该工厂只能生产A产品才能盈利,并且在使用c材料100个单位、p材料50个单位、h材料50个单位时,即生产200个单位的A产品时,才能获得最大利润,最大利润为500。
运筹学excel运输问题实验报告(一)
运筹学excel运输问题实验报告(一)运筹学Excel运输问题实验报告实验目的通过运用Excel软件解决运输问题,加深对运输问题的理解和应用。
实验内容本实验以四个工厂向四个销售点的运输为例,运用Excel软件求解运输问题,主要步骤如下:1.构建运输问题表格,包括工厂、销售点、单位运输成本、每个工厂的供应量、每个销售点的需求量等内容。
2.使用Excel软件的线性规划求解工具求解该运输问题,确定每条路径上的运输量和总运输成本。
3.对结果进行分析和解释,得出优化方案。
实验步骤1.构建运输问题表格工厂/销售点 A B C D 供应量1 4元/吨8元/吨10元/吨11元/吨35吨2 3元/吨7元/吨9元/吨10元/吨50吨3 5元/吨6元/吨11元/吨8元/吨25吨4 8元/吨7元/吨6元/吨9元/吨30吨需求量45吨35吨25吨40吨2.使用Excel软件的线性规划求解工具求解该运输问题在Excel软件中选择solver,按照下列步骤完成求解:1.添加目标函数:Total Cost=4AB+8AC+10AD+11AE+3BA+7BC+9BD+10BE+5CA+6CB+11CD+8CE+8DA+7DB+6DC+9DE2.添加约束条件:•A供应量: A1+A2+A3+A4=35•B供应量: B1+B2+B3+B4=50•C供应量: C1+C2+C3+C4=25•D供应量: D1+D2+D3+D4=30•A销售量: A1+B1+C1+D1=45•B销售量: A2+B2+C2+D2=35•C销售量: A3+B3+C3+D3=25•D销售量: A4+B4+C4+D4=403.求解结果工厂/销售点 A B C D 供应量1 10吨25吨0吨0吨35吨2 0吨10吨35吨5吨50吨3 0吨0吨15吨10吨25吨4 35吨0吨0吨0吨30吨需求量45吨35吨25吨40吨单位运输成本4元/吨8元/吨10元/吨11元/吨总运输成本2785元1480元875元550元4.结果分析和解释通过求解结果可知,工厂1最终向A销售10吨、向B销售25吨;工厂2最终向B销售10吨、向C销售35吨、向D销售5吨;工厂3最终向C销售15吨、向D销售10吨;工厂4最终向A销售35吨。
管理运筹学运输问题实验报告
管理运筹学运输问题实验报告一、实验目的通过研究和实践,掌握线性规划求解运输问题的基本模型和求解方法,了解运输问题在生产、物流和经济管理中的应用。
二、实验背景运输问题是管理运筹学中的一个重要问题,其主要目的是确定在不同生产或仓库的产量和销售点的需求之间如何进行运输,使得运输成本最小。
运输问题可以通过线性规划模型来解决。
三、实验内容1. 根据实验数据,建立运输问题的线性规划模型。
2. 使用Excel中的“规划求解器”功能求解模型。
3. 对不同情况进行敏感性分析。
四、实验原理运输问题是一种典型的线性规划问题,其目的是求解一组描述生产和需要之间的运输方案,使得总运输费用最小。
运输问题的一般模型如下:min ∑∑CijXijs.t. ∑Xij = ai i = 1,2,...,m∑Xij = bj j = 1,2,...,nXij ≥ 0其中,Cij表示从i生产地到j销售点的运输成本;ai和bj分别表示第i个生产地和第j个销售点的产量和需求量;Xij表示从第i个生产地向第j个销售点运输的物品数量。
五、实验步骤1. 根据实验数据,建立运输问题的线性规划模型。
根据题目所给数据,我们可以列出线性规划模型:min Z =200X11+300X12+450X13+350X21+325X22+475X23+225X31+275X32+400X 33s.t. X11+X12+X13 = 600X21+X22+X23 = 750X31+X32+X33 = 550X11+X21+X31 = 550X12+X22+X32 = 600X13+X23+X33 = 450Xij ≥ 02. 使用Excel中的“规划求解器”功能求解模型。
在Excel中,选择“数据”选项卡中的“规划求解器”,输入线性规划的目标函数和约束条件,并设置求解参数,包括求解方法、求解精度、最大迭代次数等。
3. 对不同情况进行敏感性分析。
敏感度分析是指在有些条件发生变化时,线性规划模型的最优解会如何变化。
运筹学实验一 线性规划求解、运输问题、整数规划求解 2
西华大学上机实验报告一、实验目的掌握线性规划求解的基本方法,熟悉灵敏度分析的步骤和内容;掌握运输问题的模型,概念,求解方法;掌握整数规划的算法。
在熟悉lingo软件基本功能基础上,能熟练操作,正确完成模型求解过程及分析过程。
二、实验内容或设计思想1.lingo软件或运筹学实验软件的安装及菜单熟悉了解.2.lingo软件或运筹学实验软件应用内容之:任选几种不同类型的LP输入计算程序,运行求解;完成产销平衡的运输问题求解;求解任一整数规划。
三、实验环境与工具计算机、lingo软件四、实验过程或实验数据1用lingo求解线性规划某家具公司制造书桌、餐桌和椅子,所用的资源有三种:木料、木工和漆工。
生产数据如下表所示:用DESKS、TABLES和CHAIRS分别表示三种产品的生产量,建立LP模型。
max=60*desks+30*tables+20*chairs;8*desks+6*tables+chairs<=48;4*desks+2*tables+1.5*chairs<=20;2*desks+1.5*tables+.5*chairs<=8;tables<=5;求解这个模型,并激活灵敏性分析。
这时,查看报告窗口(Reports Window),可以看到如下结果。
Global optimal solution found at iteration: 3Objective value: 280.0000Variable Value Reduced Cost DESKS 2.000000 0.000000 TABLES 0.000000 5.000000 CHAIRS 8.000000 0.000000 Row Slack or Surplus Dual Price1 280.0000 1.0000002 24.00000 0.0000003 0.000000 10.000004 0.000000 10.000005 5.000000 0.0000002 用运筹学软件求解线性规划(例子和过程参照教材)使用LINGO软件计算运输问题和整数规划问题model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));!这里是数据;data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataendGlobal optimal solution found at iteration: 20Objective value: 664.0000Variable Value Reduced Cost CAPACITY( WH1) 60.00000 0.000000 CAPACITY( WH2) 55.00000 0.000000 CAPACITY( WH3) 51.00000 0.000000 CAPACITY( WH4) 43.00000 0.000000 CAPACITY( WH5) 41.00000 0.000000 CAPACITY( WH6) 52.00000 0.000000 DEMAND( V1) 35.00000 0.000000 DEMAND( V2) 37.00000 0.000000 DEMAND( V3) 22.00000 0.000000 DEMAND( V4) 32.00000 0.000000 DEMAND( V5) 41.00000 0.000000 DEMAND( V6) 32.00000 0.000000 DEMAND( V7) 43.00000 0.000000 DEMAND( V8) 38.00000 0.000000 COST( WH1, V1) 6.000000 0.000000 COST( WH1, V2) 2.000000 0.000000 COST( WH1, V3) 6.000000 0.000000 COST( WH1, V4) 7.000000 0.000000 COST( WH1, V5) 4.000000 0.000000 COST( WH1, V6) 2.000000 0.000000 COST( WH1, V7) 9.000000 0.000000 COST( WH1, V8) 5.000000 0.000000 COST( WH2, V1) 4.000000 0.000000 COST( WH2, V2) 9.000000 0.000000 COST( WH2, V3) 5.000000 0.000000 COST( WH2, V4) 3.000000 0.000000 COST( WH2, V5) 8.000000 0.000000 COST( WH2, V6) 5.000000 0.000000 COST( WH2, V7) 8.000000 0.000000 COST( WH2, V8) 2.000000 0.000000 COST( WH3, V1) 5.000000 0.000000 COST( WH3, V2) 2.000000 0.000000 COST( WH3, V3) 1.000000 0.000000 COST( WH3, V4) 9.000000 0.000000 COST( WH3, V5) 7.000000 0.000000 COST( WH3, V6) 4.000000 0.000000 COST( WH3, V7) 3.000000 0.000000 COST( WH3, V8) 3.000000 0.000000 COST( WH4, V1) 7.000000 0.000000 COST( WH4, V2) 6.000000 0.000000 COST( WH4, V3) 7.000000 0.000000 COST( WH4, V4) 3.000000 0.000000 COST( WH4, V5) 9.000000 0.000000 COST( WH4, V6) 2.000000 0.000000 COST( WH4, V7) 7.000000 0.000000 COST( WH4, V8) 1.000000 0.000000 COST( WH5, V1) 2.000000 0.000000 COST( WH5, V2) 3.000000 0.000000 COST( WH5, V3) 9.000000 0.000000COST( WH5, V4) 5.000000 0.000000 COST( WH5, V5) 7.000000 0.000000 COST( WH5, V6) 2.000000 0.000000 COST( WH5, V7) 6.000000 0.000000 COST( WH5, V8) 5.000000 0.000000 COST( WH6, V1) 5.000000 0.000000 COST( WH6, V2) 5.000000 0.000000 COST( WH6, V3) 2.000000 0.000000 COST( WH6, V4) 2.000000 0.000000 COST( WH6, V5) 8.000000 0.000000 COST( WH6, V6) 1.000000 0.000000 COST( WH6, V7) 4.000000 0.000000 COST( WH6, V8) 3.000000 0.000000 VOLUME( WH1, V1) 0.000000 5.000000 VOLUME( WH1, V2) 19.00000 0.000000 VOLUME( WH1, V3) 0.000000 5.000000 VOLUME( WH1, V4) 0.000000 7.000000 VOLUME( WH1, V5) 41.00000 0.000000 VOLUME( WH1, V6) 0.000000 2.000000 VOLUME( WH1, V7) 0.000000 6.000000 VOLUME( WH1, V8) 0.000000 6.000000 VOLUME( WH2, V1) 1.000000 0.000000 VOLUME( WH2, V2) 0.000000 4.000000 VOLUME( WH2, V3) 0.000000 1.000000 VOLUME( WH2, V4) 32.00000 0.000000 VOLUME( WH2, V5) 0.000000 1.000000 VOLUME( WH2, V6) 0.000000 2.000000 VOLUME( WH2, V7) 0.000000 2.000000 VOLUME( WH2, V8) 0.000000 0.000000 VOLUME( WH3, V1) 0.000000 4.000000 VOLUME( WH3, V2) 11.00000 0.000000 VOLUME( WH3, V3) 0.000000 0.000000 VOLUME( WH3, V4) 0.000000 9.000000 VOLUME( WH3, V5) 0.000000 3.000000 VOLUME( WH3, V6) 0.000000 4.000000 VOLUME( WH3, V7) 40.00000 0.000000 VOLUME( WH3, V8) 0.000000 4.000000 VOLUME( WH4, V1) 0.000000 4.000000 VOLUME( WH4, V2) 0.000000 2.000000 VOLUME( WH4, V3) 0.000000 4.000000 VOLUME( WH4, V4) 0.000000 1.000000 VOLUME( WH4, V5) 0.000000 3.000000 VOLUME( WH4, V6) 5.000000 0.000000 VOLUME( WH4, V7) 0.000000 2.000000 VOLUME( WH4, V8) 38.00000 0.000000 VOLUME( WH5, V1) 34.00000 0.000000 VOLUME( WH5, V2) 7.000000 0.000000 VOLUME( WH5, V3) 0.000000 7.000000 VOLUME( WH5, V4) 0.000000 4.000000 VOLUME( WH5, V5) 0.000000 2.000000 VOLUME( WH5, V6) 0.000000 1.000000 VOLUME( WH5, V7) 0.000000 2.000000 VOLUME( WH5, V8) 0.000000 5.000000 VOLUME( WH6, V1) 0.000000 3.000000 VOLUME( WH6, V2) 0.000000 2.000000 VOLUME( WH6, V3) 22.00000 0.000000 VOLUME( WH6, V4) 0.000000 1.000000 VOLUME( WH6, V5) 0.000000 3.000000 VOLUME( WH6, V6) 27.00000 0.000000 VOLUME( WH6, V7) 3.000000 0.000000 VOLUME( WH6, V8) 0.000000 3.000000Row Slack or Surplus Dual Price1 664.0000 -1.0000002 0.000000 -4.0000003 0.000000 -5.0000004 0.000000 -4.0000005 0.000000 -3.0000006 0.000000 -7.0000007 0.000000 -3.0000008 0.000000 -6.0000009 0.000000 -2.00000010 0.000000 3.00000011 22.00000 0.00000012 0.000000 3.00000013 0.000000 1.00000014 0.000000 2.00000015 0.000000 2.000000model:!3发点4收点运输问题;sets:warehouses/wh1..wh3/: capacity;vendors/v1..v4/: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));!这里是数据;data:capacity=60 55 51 ;demand=35 37 22 72 ;cost=6 2 6 74 95 35 2 1 9;enddataendGlobal optimal solution found at iteration: 5Objective value: 561.0000Variable Value Reduced Cost CAPACITY( WH1) 60.00000 0.000000 CAPACITY( WH2) 55.00000 0.000000 CAPACITY( WH3) 51.00000 0.000000 DEMAND( V1) 35.00000 0.000000 DEMAND( V2) 37.00000 0.000000 DEMAND( V3) 22.00000 0.000000 DEMAND( V4) 72.00000 0.000000 COST( WH1, V1) 6.000000 0.000000 COST( WH1, V2) 2.000000 0.000000 COST( WH1, V3) 6.000000 0.000000 COST( WH1, V4) 7.000000 0.000000 COST( WH2, V1) 4.000000 0.000000 COST( WH2, V2) 9.000000 0.000000 COST( WH2, V3) 5.000000 0.000000 COST( WH2, V4) 3.000000 0.000000 COST( WH3, V1) 5.000000 0.000000 COST( WH3, V2) 2.000000 0.000000 COST( WH3, V3) 1.000000 0.000000 COST( WH3, V4) 9.000000 0.000000 VOLUME( WH1, V1) 6.000000 0.000000 VOLUME( WH1, V2) 37.00000 0.000000 VOLUME( WH1, V3) 0.000000 4.000000 VOLUME( WH1, V4) 17.00000 0.000000 VOLUME( WH2, V1) 0.000000 2.000000 VOLUME( WH2, V2) 0.000000 11.00000 VOLUME( WH2, V3) 0.000000 7.000000 VOLUME( WH2, V4) 55.00000 0.000000 VOLUME( WH3, V1) 29.00000 0.000000 VOLUME( WH3, V2) 0.000000 1.000000 VOLUME( WH3, V3) 22.00000 0.000000 VOLUME( WH3, V4) 0.000000 3.000000 Row Slack or Surplus Dual Price1 561.0000 -1.0000002 0.000000 -6.0000003 0.000000 -2.0000004 0.000000 -2.0000005 0.000000 -7.0000006 0.000000 0.0000007 0.000000 4.0000008 0.000000 1.000000示例3 分配问题model:!4个工人,4个工作的分配问题;sets:workers/w1..w4/;jobs/j1..j4/;links(workers,jobs): cost,volume;endsets!目标函数;min=@sum(links: cost*volume);!每个工人只能有一份工作;@for(workers(I):@sum(jobs(J): volume(I,J))=1;);!每份工作只能有一个工人;@for(jobs(J):@sum(workers(I): volume(I,J))=1;);data:cost= 6 2 6 74 95 35 2 1 97 6 7 3 ;enddataendGlobal optimal solution found at iteration: 0Objective value: 10.00000Variable Value Reduced Cost COST( W1, J1) 6.000000 0.000000 COST( W1, J2) 2.000000 0.000000 COST( W1, J3) 6.000000 0.000000 COST( W1, J4) 7.000000 0.000000 COST( W2, J1) 4.000000 0.000000 COST( W2, J2) 9.000000 0.000000 COST( W2, J3) 5.000000 0.000000 COST( W2, J4) 3.000000 0.000000 COST( W3, J1) 5.000000 0.000000 COST( W3, J2) 2.000000 0.000000 COST( W3, J3) 1.000000 0.000000 COST( W3, J4) 9.000000 0.000000 COST( W4, J1) 7.000000 0.000000 COST( W4, J2) 6.000000 0.000000 COST( W4, J3) 7.000000 0.000000 COST( W4, J4) 3.000000 0.000000 VOLUME( W1, J1) 0.000000 1.000000 VOLUME( W1, J2) 1.000000 0.000000 VOLUME( W1, J3) 0.000000 0.000000 VOLUME( W1, J4) 0.000000 3.000000 VOLUME( W2, J1) 1.000000 0.000000 VOLUME( W2, J2) 0.000000 8.000000 VOLUME( W2, J3) 0.000000 0.000000 VOLUME( W2, J4) 0.000000 0.000000 VOLUME( W3, J1) 0.000000 5.000000 VOLUME( W3, J2) 0.000000 5.000000 VOLUME( W3, J3) 1.000000 0.000000 VOLUME( W3, J4) 0.000000 10.00000 VOLUME( W4, J1) 0.000000 3.000000 VOLUME( W4, J2) 0.000000 5.000000 VOLUME( W4, J3) 0.000000 2.000000 VOLUME( W4, J4) 1.000000 0.000000 Row Slack or Surplus Dual Price1 10.00000 -1.0000002 0.000000 -1.0000003 0.000000 0.0000004 0.000000 4.0000005 0.000000 0.0000006 0.000000 -4.0000007 0.000000 -1.0000008 0.000000 -5.0000009 0.000000 -3.000000示例4 解整数规划,在lingo窗口输入以下代码,min=3*x1+x2+3*x3+3*x4+x5+x6+3*x7;4*x1+3*x2+2*x3+x4+x5>=50;x2+2*x4+x5+3*x6>=20;x3+x5+2*x7>=15;@gin(x1);@gin(x2);@gin(x3);@gin(x4);@gin(x3);@gin(x6);@gin(x7);END运行结果为:Global optimal solution found.Objective value: 27.00000Extended solver steps: 0Total solver iterations: 5Variable Value Reduced CostX1 0.000000 3.000000X2 12.00000 1.000000X3 0.000000 2.000000X4 0.000000 3.000000X5 15.00000 0.000000X6 0.000000 1.000000X7 0.000000 1.000000Row Slack or Surplus Dual Price1 27.00000 -1.0000002 1.000000 0.0000003 7.000000 0.0000004 0.000000 -1.0000002 用运筹学实验软件计算运输问题和整数规划问题五、总结对上机实践结果进行分析,问题回答,上机的心得体会及改进意见。
运筹学中的线性规划与整数规划算法
运筹学中的线性规划与整数规划算法运筹学是一门研究如何有效地做出决策的学科,它集合了数学、计算机科学和经济学等多个学科的理论和方法。
其中,线性规划和整数规划是运筹学中最常用的一类问题求解方法。
本文将重点讨论运筹学中的线性规划和整数规划算法。
线性规划是一种通过线性数学模型来实现决策优化的方法。
在线性规划中,目标函数和约束条件都是线性关系。
目标函数表示要优化的目标,约束条件则限制了决策变量的取值范围。
线性规划的基本思想是通过调整决策变量的取值,使得目标函数达到最大或最小值。
线性规划的求解方法主要有两种:单纯形法和内点法。
单纯形法是一种通过在顶点间移动来寻找最优解的方法。
它从一个可行解开始,然后通过交替移动到相邻的顶点来逐步优化目标函数值。
而内点法则是一种通过将目标函数与约束条件转化为一组等价的非线性方程组,通过迭代方法逼近最优解的方法。
内点法相对于单纯形法而言,在求解大规模问题时速度更快。
整数规划是线性规划的一个扩展,它要求决策变量只能取整数值。
整数规划问题更接近实际问题,因为很多情况下我们只能从离散的选择中进行决策。
然而,整数规划的求解难度要远远高于线性规划。
因为整数规划问题的解空间是离散的,不再是连续的顶点,这导致了求解整数规划的困难。
为了解决整数规划问题,提出了许多算法,其中最著名的是分支定界法和割平面法。
分支定界法是一种通过将整数规划问题分解为一系列线性规划子问题来求解的方法。
它通过将整数规划问题不断分解为子问题,并利用线性规划的求解方法求解子问题。
割平面法则是一种在单纯形法的基础上引入额外的不等式约束来加强整数规划问题的求解方法。
割平面法通过将不等式约束添加到线性规划模型中,逐步缩小解空间,最终找到整数规划问题的最优解。
除了分支定界法和割平面法之外,还有一些其他的整数规划求解方法,如启发式算法和元启发式算法。
启发式算法是一种基于经验和启发知识的求解方法,它通过模拟生物进化、社会行为等过程来搜索整数规划问题的解。
运筹学整数线性规划
Ax b s.t.x 0,i 1,2,...,n
xi为整数,i 1,2,...,p
1 整数线性规划问题举例
•例311 某财团有 B 万元的资金,有 n(n 2) 个可以考
虑的投资项目,假定每个项目最多投资一次。其中
第 j 个项目需投资金额为 b j 万元,将会获得的利润
为 c j 万元,问应如何选择项目才能使得获得的总 利润最大?
2 解整数线性规划问题的困难性
LP的可行集合
费用下降方向 LP问题的最优解
ILP问题的最优解
2 解整数线性规划问题的困难性续
• 最优解不一定在顶点上达到 • 最优解不一定是松弛问题最优解的邻近整数解 • 整数可行解远多于松弛问题的顶点;枚举法不可
取 • 解ILP问题要远难于解松弛的LP问题 • 如果松弛的LP问题无解;显然原ILP问题无解 反
bjxj B
j1
x
j
0或 1;
j
1, 2..., n
旅行售货员问题
• 此外;运筹学还有一个著名的问题:
旅行售货员问题TSP
显示问题
2 解整数线性规划问题的困难性
整数规划
min z c x Ax b
s.t.x 0, x为整数
松弛的线性规划问题
min z c x
s.t. xAห้องสมุดไป่ตู้x
0
b
可行解是松弛问题的可行解 最优值大于等于松弛问题的最优值
第一节 整数线性规划问题
• 整数线性规划问题举例 • 解整数线性规划问题的困难性
整数线性规划问题
• 整数线性规划ILP具有下述形式
min c x
Ax b
s .t .
x
运筹学实验一:规划求解操作(线性规划问题)
实验一:规划求解操作(线性规划问题)一、实验目的在Excel 软件中加载规划求解工具,使用Excel 软件求解线性规划问题。
二、实验内容1. 在Excel 软件中,加载“规划求解”工具。
2. 在Excel 窗体上输入问题的数据及计算公式。
3. 使用规划求解进行分析,找出线性规划问题的最优解。
4. 对结果进行简单分析。
某营养师建议一位缺铁质与维生素B 的病人,应在一段时间内摄取至少2400mg 的铁质、2100mg 的维生素B1与1500mg 的维生素B2。
现在考虑A, B 两个牌子的维生素,A 牌的维生素每颗含40mg 铁质、10mg 维生素B1与5mg 维生素B2;B 牌的维生素每颗含10mg 铁质,以及各15mg 的维生素B1与B2。
已知A 牌维生素每颗6元,B 牌每颗为8元。
试问在满足营养师建议的情况下,A 与B 两种厂牌的维生素各应服用多少才能使花费的费用最少?1212121212min 684010240010152100 .5151500,0z x x x x x x s t x x x x =++≥⎧⎪+≥⎪⎨+≥⎪⎪≥⎩ 三、实验步骤1. 加载规划求解工具,如图1-1a~图1-1c 。
2. 在窗体上输入问题数据及模块,服用量可先输入任意数值,如图1-2。
3. 输入目标函数和约束的计算公式,如图1-3。
4. 打开规划求解工具,如图1-4。
5. 完成规划求解的参数设定,如图1-5a~图1-5d。
6. 找出线性规划问题的最优解,如图1-6a与图1-6b。
图1-1a 加载规划求解工具图1-1b 加载规划求解工具图1-1c 加载规划求解工具图1-2 输入问题数据与模块图1-3 输入公式图1-4 打开规划求解工具图1-5a 参数设定图1-5b 参数设定图1-5c 参数设定图1-5d 参数设定图1-6 找出线性规划问题的最优解图1-6b 线性规划问题的敏感性报告。
物流运筹实验报告
实验报告课程名称:物流运筹学学院:专业班级:姓名:学号:管理学院课程名称物流运筹学实验项目名称线性规划问题求解、灵敏度分析、运输问题求解指导教师实验软件Exsel实验地点实验时间2019.11.21一、实验目的及要求熟练使用Exsel软件求解本课程中的线性规划问题、灵敏度分析及运输问题,结合教材中的例题,完成Exsel求解。
要求在报告中体现求解过程,对每一步过程要求有截图。
二、实验内容与步骤1、运用Exsel求解线性规划问题(1)根据题干输入相应数据,如下图(2)建模,输入相关数据实际使用=(甲)单位产品消耗定额*计划生产量生产量+(乙)单位产品消耗定额*理化生产量(E5=C5*C10+D5*D10;E6=C6*C10+D6*D10;E7=C7*C10+D7*D10) 总利润=单位利润*计划生产量(G10=C5*C10+D5*D10)(4)计算结果点击“数据”–“模拟分析”–“规划求解”如上图输入。
按“选项”按钮,勾选“采用线性模型”和“假定非负”,点击“确定”,最后点击求解后可求出所需要的解。
(5)输出结果2、运用Exsel进行灵敏度分析点击敏感性报告3、运用Exsel求解运输问题(1)根据题干输入相关数据。
(2)定义名称,选中单元格右键定义名称。
(单位运价,运输量,销量等)(3)建模,输入相关数据实际产量=销地B1+销地B2+销地B3+销地B4;实际销量=产地A1+产地A2+产地A3.G9=C9+D9+E9+F9;G10=C10+D10+E10+F10;G11=C11+D11+E11+F11;C12=C9+C10+C11; D12=D9+D10+D11; E12=E9+E10+E11; F12=F9+F10+F11点击“数据”—“模拟分析”—“规划求解”--如图输入点击选项,勾选“采用线性模型”和“假定非负”,点击确定,进行求解。
输出结果如下图。
三、实验结果(结论)注:可根据内容加页。
实验2 Lingo求解运输问题和整数规划
a=1.25,8.75,0.5,5.75,3,7.25;
b=1.25,0.75,4.75,5,6.5,7.75;
!quantities of the demand and supply(供需量);
d=3,5,4,7,6,11; e=20,20;
x,y=5,1,2,7;
enddata
init:
!initial locations for the supply(初始点);
j 1 i1
2
s.t.
cij d i , i 1,...,6
线性规划模型
j 1
6
cij e j ,
j 1,2
用例中数据计算,
最优解为
i
i 1
12 345 6
ci1( 料 场A) 3 5 0 7 0 1
ci2( 料 场B) 0 0 4 0 6 10
总吨公里数为136.2
Location(Linear)
月份型 monthM..monthN OCT..JAN
OCT, NOV, DEC, JAN
年份月份型
monthYearM..mo nthYearN
OCT2001..JAN OCT2001,
2002
NOV2001,
DEC2001,
JAN2002
运算符的优先级
三类运算符:
算术运算符 逻辑运算符 关系运算符 优先级 运算符 最高 #NOT# —(负号)
43
A5
2 3 9 57 2
65
41
A6
5 5 2 28 1
43
52
销量
35 37 22 32 41 32 43 38
a i 6 0 5 5 1 4 3 4 1 5 2 30 2 b i 3 3 5 2 7 3 2 4 2 3 1 4 2 3 3 2 88
运筹学中的线性规划与整数规划
运筹学中的线性规划与整数规划在运筹学中,线性规划和整数规划是两个常用且重要的数学模型。
它们被广泛应用于资源分配、生产调度、物流管理等问题的决策过程中。
本文将介绍线性规划和整数规划的基本概念、数学模型以及求解方法。
一、线性规划线性规划是一种通过线性关系来描述问题的数学模型。
它的目标是在给定的约束条件下,找到使目标函数达到最优的决策变量取值。
线性规划模型一般可以表示为如下形式:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t. a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0其中,Z表示目标函数值,c₁, c₂, ..., cₙ表示目标函数的系数,x₁, x₂, ..., xₙ为决策变量,a₁₁, a₁₂, ..., aₙₙ为约束条件的系数,b₁,b₂, ..., bₙ为约束条件的右侧常数。
线性规划的求解方法主要有两类:图形法和单纯形法。
图形法适用于二维问题,通过绘制目标函数和约束条件在坐标系中的图形,找到交点来确定最优解。
而单纯形法适用于多维问题,通过迭代计算,逐步接近最优解。
二、整数规划整数规划是线性规划的一种特殊情况,它要求决策变量的取值必须为整数。
整数规划模型可以表示为如下形式:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t. a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ∈ Z其中,Z表示目标函数值,c₁, c₂, ..., cₙ表示目标函数的系数,x₁, x₂, ..., xₙ为整数决策变量,a₁₁, a₁₂, ..., aₙₙ为约束条件的系数,b₁, b₂, ..., bₙ为约束条件的右侧常数。
整数规划及运输问题
(2)选择了S3或S4就不能选择S5,反 过来也一样;
(3)在S5,S6 ,S7,S8中最多只能选 两个。 问如何选择井位使总费用最小?
课堂练习1: 某钻井队要从S1~S10共10个井位中确定五个钻井探油,
如果选Si,估计钻探费用为ci元,并且井位选择上要满足下列条件: (1)或选择S1和S7,或选择S8 (2)选择了S3或S4就不能选择S5,反过来也一样 (3)在S5,S6 ,S7,S8中最多只能选两个 问如何选择井位使总费用最小?
min Z x1 5 x2 x1 x2 2 5 x1 6 x2 30 x 4 1 ( IP6) x1 2 x2 3 x 3 1 x1 , x2 0且为整数
只要求出(LP5)和(LP6)的最优解即可。
先求( LP5 ) , 如图所示。此时 E
3
3
x1
按整数规划约束条件,其可行解肯定在线性规划问题的可
行域内且为整数点。故整数规划问题的可行解集是一个有限集,
如图所示。
整数规划与线性规划的关系
因此,可将集合内的整数点一一找出,其最
大目标函数的值为最优解,此法为完全枚举法。
如上例:其中( 2 , 2 )( 3 , 1 )点为最大值, Z=4。
记为(LP)
用图解法求(LP)的最 优解,如图所示。
分枝定界法 ⑵
x2
3
⑴
(18/11,40/11)
⑶
x1=18/11, x2 =40/11
Z(0) =-218/11≈(-19.8)
即Z(0) 是(IP)最小值的下限。 对于x1=18/11≈1.64,
取值x1 ≤1, x1 ≥2
对于x2 =40/11 ≈3.64,取值x2 ≤3 ,x2 ≥4
运筹学实验报告(一)线性规划问题的计算机求解
运筹学实验报告实验课程:运筹学实验日期: 2020年4月4日任课教师:杨小康班级:数学1802 姓名:王超学号:2501180224一、实验名称: 简单线性规划模型的求解与Lingo软件的初步使用二、实验目的:了解Lingo软件的基本功能和简单线性规划模型的求解的输入和输出结果。
熟悉Lingo 软件在运筹学模型求解中的作用,增强自身的动手能力,提高实际应用能力三、实验要求:1、熟悉Lingo软件的用户环境,了解Lingo软件的一般命令2、给出Lingo中的输入,能理解Solution Report中输出的四个部分的结果。
4、能给出最优解和最优值;5、能给出实际问题的数学模型,并利用lingo求出最优解四、报告正文(文挡,数据,模型,程序,图形):1.在Lingo中求解下面的线性规划数学模型;(1)12132412512345 max2543..28,,,,0z x xx xx xs tx x xx x x x x=++=⎧⎪+=⎪⎨++=⎪⎪≥⎩(2)12121212max2343..28,0z x xxxs tx xx x=+≤⎧⎪≤⎪⎨+≤⎪⎪≥⎩(3)12121212max243..28,0z x xxxs tx xx x=+≤⎧⎪≤⎪⎨+≤⎪⎪≥⎩(4)12121212max324 ..3,0z x xx xs t x xx x=+-≤⎧⎪-+≤⎨⎪≥⎩(5)1212121212max102401.530.50,0z x xx xx xs tx xx x=++≤⎧⎪+≤⎪⎨+≥⎪⎪≥⎩2、某工厂利用三种原料生产五种产品,其有关数据如下表。
原料可利用数(千克)每万件产品所用材料数(千克)A B C D E甲10 1 2 1 0 1 乙24 1 0 1 3 2 丙21 1 2 2 2 2 每万件产品的利润(万元)8 20 10 20 21 (l)建立该问题的运筹学模型。
(2)利用lingo 软件求出最优解,得出最优生产计划解:(1)设xi(i=1,2...,5)为所用材料生产的件数则数学模型,,,,21 2222242 3102;212010208max543215 43215431532154321≥≤++++≤+++≤+++++++ =xxxxxx xxxxt xxxx xxxxsxxxxxz (2)结果为220.3:现有15米长的钢管若干,生产某产品需4米、5米、7米长的钢管各为100、150、120根,问如何截取才能使原材料最省?(建立线性规划模型并利用lingo软件求解)解:方案4米5米7米剩余量截取长度1 3 0 0 32 2 1 0 23 2 0 1 04 1 2 0 15 0 3 0 06 0 1 1 37 0 0 2 14人力资源分配问题某昼夜服务的公交线路每天各时间段内所需司机和乘务人员人数如表1所示。
运筹学实训实验报告
一、实验背景运筹学是一门应用数学的分支,它运用数学模型和算法来解决各种优化问题。
随着现代科技的发展,运筹学在各个领域的应用越来越广泛,如生产管理、物流运输、资源分配等。
为了提高学生运用运筹学知识解决实际问题的能力,我们开展了运筹学实训实验。
二、实验目的1. 熟悉运筹学的基本概念和常用方法;2. 掌握线性规划、整数规划、运输问题、目标规划等运筹学模型;3. 学会运用计算机软件解决实际问题;4. 培养学生的团队合作精神和创新意识。
三、实验内容本次实验主要包括以下内容:1. 线性规划:以生产计划问题为例,建立数学模型,并运用Excel规划求解器求解最优解。
2. 整数规划:以人员排班问题为例,建立数学模型,并运用Lingo软件求解最优解。
3. 运输问题:以物流配送问题为例,建立数学模型,并运用Lingo软件求解最优解。
4. 目标规划:以投资组合问题为例,建立数学模型,并运用Lingo软件求解最优解。
四、实验步骤1. 线性规划实验(1)问题分析:某企业需要生产甲、乙两种产品,已知生产甲、乙两种产品所需的原料、劳动力及设备等资源消耗量,以及产品的售价和利润。
(2)模型建立:根据问题分析,建立线性规划模型,目标函数为最大化利润,约束条件为资源消耗量不超过限制。
(3)求解:运用Excel规划求解器求解最优解。
2. 整数规划实验(1)问题分析:某公司需要安排员工值班,要求每天至少有3名员工值班,且员工值班时间不能超过一周。
(2)模型建立:根据问题分析,建立整数规划模型,目标函数为最小化员工值班成本,约束条件为员工值班时间不超过限制。
(3)求解:运用Lingo软件求解最优解。
3. 运输问题实验(1)问题分析:某物流公司需要将货物从A、B两个仓库运送到C、D两个销售点,已知各仓库的货物量、各销售点的需求量以及运输成本。
(2)模型建立:根据问题分析,建立运输问题模型,目标函数为最小化运输成本,约束条件为各仓库的货物量不超过需求量。
运筹学运输问题、整数规划、目标规划和动态规划
整数规划案例一案例二案例三动态规划案例四:某开发区养老保险定量分析模型养老保险属于社会保障系统的重要内容,社会保障系统作为一个国家社会制度的重要组成部分,其内容、形式和其中所使用的各种计算方法不仅关系到国民的自身利益,而且对一个国家的政治和社会经济的发展具有重要的作用。
社会保障系统中所包含的定量分析和计算是多种多样的,主要包括三个方面:第一,对社会保障基金提取量的测算;第二,对职工享受社会保障待遇的标准测算;第三,对社会保障基金各阶段收付额的预测。
基本养老保险金的提取比例一般是一年或若干年调整一次,从数学模型的角度看两者并无实质性区别,这里定义一年为一个阶段。
考虑到养老保险制度是一个长期制度,具体年限并不确定,因而阶段数可以根据实际问题的研究目标制定。
如:要确定10年内各年的提取比例,则阶段数就定为10;也可以将老龄化程度最高、养老保险金支付额最大的年份作为决策过程的终止年。
不失一般性,将整个决策过程定义为n个阶段。
状态变量x k定义为阶段k开始时的储备基金,M是最大储备金额。
为阶段k基本养老保险金按工资总额提取的比例,这一比例也决策变量uk应在一定范围之内。
按照国际标准,提取比例达到20%时即为社会预警线,29%即达到社会承受的极限,因此我们设定R为提取的最大比例,若s为阶段k的k工资总额,则有:d k -xk≤sk•uk≤min{sk•R,dk+dk+1+…+dn+A-xk}其中sk•R就是基本养老保险金所能提取的最大金额。
已知阶段k开始时的储备基金是x k,阶段k的基本养老保险金收入额为s k•u k ,支付额是dk。
假定储备基金的年增值率为ik,考虑资金的时间价值,则阶段末即阶段k+1的初始储备基金为:x k+1=(1+ik)xk+sk•uk-dk,即状态转移方程。
可以看出,k+1阶段的储备基金xk+1完全由k阶段的储备基金xk和基本养老保险金的提取比例uk所决定,与前面的状态和决策无关,即满足无后效性。
运筹学实验报告
实验一:线性规划问题1、实验目的:①学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。
②掌握利用计算机软件求解线性规划最优解的方法。
2、实验任务①结合已学过的理论知识,建立正确的数学模型;②应用运筹学软件求解数学模型的最优解③解读计算机运行结果,结合所学知识给出文字定性结论3、实验仪器设备:计算机4、实验步骤:(1)在主菜单中选择线性规划模型,在屏幕上就会出现线性规划页面,如图所示。
(2)在点击“新建”按钮以后,按软件的要求输入目标函数个数和约束条件个数,输入目标函数及约束条件的各变量的系数和b值,并选择好“≥”、“≤”或“=”号,如图所示。
(3)当约束条件输入完毕后,请点击“解决”按钮,屏幕上将显现线性规划问题的结果,如图所示。
例题一:例题二:例题三:例题四:例题五5、试验体会或心得运筹学是一门实用的学科,学习运筹学,结合生活实际运用运筹学,我们可以将资源最大化利用。
学习理论的目的就是为了解决实际问题。
线性规划的理论对我们的实际生活指导意义很大。
当我们遇到一个问题,需要认真考察该问题。
如果它适合线性规划的条件,那么我们就利用线性规划的理论解决该问题。
线性规划指的是在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。
其数学模型有目标函数和约束条件组成。
一个问题要满足一下条件时才能归结为线性规划的模型:⑴要求解的问题的目标能用效益指标度量大小,并能用线性函数描述目标的要求;⑵为达到这个目标存在很多种方案;⑶要到达的目标是在一定约束条件下实现的,这些条件可以用线性等式或者不等式描述。
所以,通过这次实验,不仅对运筹学的有关知识有了进一步的掌握,同时对在自己的计算机操作水准也有了很大的提高。
这次实验让我懂得了运筹学在电脑的应用,让我对运输与数学相结合的应用理解更深了。
实验二:整数规划与运输问题1、实验目的:①学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。
运筹学中的线性规划和整数规划
运筹学中的线性规划和整数规划运筹学是一门涉及决策分析、优化、模型构建和仿真等知识领域的学科,应用广泛,如供应链管理、交通规划、制造业生产、金融投资等方面。
其中,线性规划和整数规划是运筹学中最为基础和重要的优化技术,被广泛应用于各个领域。
一、线性规划线性规划是一种在一组线性约束条件下,求解线性目标函数极值问题的数学方法。
在生产、运输、选址等问题中,线性规划都有着重要的应用。
其数学模型可以表示为:$\max c^Tx$$s.t. Ax \leq b,x\geq 0$其中$c$为目标函数的向量,$x$为决策变量向量,$A$为约束矩阵,$b$为约束向量,$c^Tx$表示目标函数的值,$\leq$表示小于等于。
如果目标函数和约束都是线性的,则可以通过线性规划的求解方法来确定决策变量的最优值。
线性规划的求解方法一般分为单纯形法和内点法两种方法。
单纯性法是线性规划中最为常用的方法,通过对角线交替调整,逐步从可行解中寻找最优解,收敛速度较快,但是存在不稳定的情况。
内点法是近年来发展起来的用于求解大规模线性规划问题的数值方法,其核心思想是迭代求解一系列线性方程组,每次保持解在可行域内部,直到找到最优解为止。
这种方法对大规模问题求解能力强,使用较多。
二、整数规划整数规划是线性规划的升级版,它要求决策变量必须取整数值。
整数规划在很多实际问题中都有着重要的应用,比如很多生产过程中需要将生产数量取整数,物流路径问题需要选取整数条路径等。
与线性规划不同的是,整数规划是NP难问题,没有一种有效的算法能够完全解决所有的整数规划问题。
因此,通常需要采用分支定界、割平面等方法来求解。
分支定界是一种常用的整数规划求解方法。
它通过将整数规划问题分为多个子问题,依次求解这些子问题并优化当前最优解,以逐步逼近最优解。
割平面法则是在分支定界方法的基础上加入约束条件,使得求解过程更加严格化,最终得到更好的结果。
总的来说,运筹学中线性规划和整数规划是不可或缺的优化工具,我们可以通过理论和实践加深对它们的理解。
运筹学线性规划实验报告
《管理运筹学》实验报告5.输出结果如下5.课后习题: 一、P31习题1某家具公司生产甲、乙两种型号的组合柜,每种组合柜需要两种工艺(制白坯和油漆).甲型号组合柜需要制白坯6工时,油漆8工时:乙型号组合柜需要制白坯12工时,油漆4工时.已知制白坯工艺的生产能力为120工时/天,油漆工艺的生产能力为64工时/天,甲型号组合柜单位利润200元,乙型号组合柜单位利润为240元.约束条件:问题:(1)甲、乙两种柜的日产量是多少?这时最大利润是多少?答:由实验过程中的输出结果得甲组合柜的日产量是4个,乙的事8个。
.0,0,6448,120126;240200 z max ≥≥≤+≤++=y x y x y x y x(2)图中的对偶价格13.333的含义是什么?答: 对偶价格13.333的含义是约束条件2中,每增加一个工时的油漆工作,利润会增加13.33元。
(3)对图中的常数项范围的上、下限的含义给予具体说明,并阐述如何使用这些信息。
答:当约束条件1的常数项在48~192范围内变化,且其他约束条件不变时,约束条件1的对偶价格不变,仍为15.56;当约束条件2的常数项在40~180范围内变化,而其他约束条件的常数项不变时,约束条件2的对偶价格不然,仍为13.333。
(4)若甲组合柜的利润变为300,最优解不变?为什么?答:目标函数的最优值会变,因为甲组合柜的利润增加,所以总利润和对偶价格增加;甲、乙的工艺耗时不变,所以甲、乙的生产安排不变。
二、学号题约束条件:学号尾数:56 则:约束条件:无约束条件(学号)学号43214321432143214321 0 0,309991285376)(53432max x x x x x x x x x x x x x x x x x x x x z ≤≥≤-+-+≥-+-+=-++-+++=无约束条件43214321432143214321 0 0,3099912445376413432max x x x x x x x x x x x x x x x x x x x x z ≤≥≤-+-≥-+-=-++-+++=⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⨯-≥⨯-⨯-⨯-⨯-⨯-7606165060~5154050~414)30(40~313)20(30~21210 20~11 10~1)(学号)(学号)(学号学号学号)(学号不变学号规则3.运算过程实验结果报告与实验总结:输出结果分析:答:由输出结果可得:最优解为352元,具体排班情况为:11点到12点的时段安排8个临时工;13点到14点的时段再安排1个临时工;14点到15点的时段安排1个临时工;16点到17点时段安排5个临时工;18点到19点安排7个临时工。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西华大学能源与环境工程学院学生上机实验报告西华大学上机实验报告一、实验目的掌握线性规划求解的基本方法,熟悉灵敏度分析的步骤和内容;掌握运输问题的模型,概念,求解方法;掌握整数规划的算法。
在熟悉lingo软件基本功能基础上,能熟练操作,正确完成模型求解过程及分析过程。
二、实验内容或设计思想1.lingo软件或运筹学实验软件的安装及菜单熟悉了解.2.lingo软件或运筹学实验软件应用内容之:任选几种不同类型的LP输入计算程序,运行求解;完成产销平衡的运输问题求解;求解任一整数规划。
三、实验环境与工具计算机、lingo软件四、实验过程或实验数据1用lingo求解线性规划某家具公司制造书桌、餐桌和椅子,所用的资源有三种:木料、木工和漆工。
生产数据如下表所示:用DESKS、TABLES和CHAIRS分别表示三种产品的生产量,建立LP模型。
max=60*desks+30*tables+20*chairs;8*desks+6*tables+chairs<=48;4*desks+2*tables+1.5*chairs<=20;2*desks+1.5*tables+.5*chairs<=8;tables<=5;求解这个模型,并激活灵敏性分析。
这时,查看报告窗口(Reports Window),可以看到如下结果。
Global optimal solution found at iteration: 3第 1 页共8 页Objective value: 280.0000Variable Value Reduced Cost DESKS 2. 0.TABLES 0. 5.CHAIRS 8. 0.Row Slack or Surplus Dual Price1 280.0000 1.2 24.00000 0.3 0. 10.000004 0. 10.000005 5. 0.2 用运筹学软件求解线性规划(例子和过程参照教材)使用LINGO软件计算运输问题和整数规划问题model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));!这里是数据;data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 5西华大学能源与环境学院学生上机实验报告4 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataendGlobal optimal solution found at iteration: 20Objective value: 664.0000Variable Value Reduced CostCAPACITY( WH1) 60.00000 0.CAPACITY( WH2) 55.00000 0.CAPACITY( WH3) 51.00000 0.CAPACITY( WH4) 43.00000 0.CAPACITY( WH5) 41.00000 0.CAPACITY( WH6) 52.00000 0.DEMAND( V1) 35.00000 0.DEMAND( V2) 37.00000 0.DEMAND( V3) 22.00000 0.DEMAND( V4) 32.00000 0.DEMAND( V5) 41.00000 0.DEMAND( V6) 32.00000 0.DEMAND( V7) 43.00000 0.DEMAND( V8) 38.00000 0.COST( WH1, V1) 6. 0.COST( WH1, V2) 2. 0.COST( WH1, V3) 6. 0.COST( WH1, V4) 7. 0.COST( WH1, V5) 4. 0.COST( WH1, V6) 2. 0.COST( WH1, V7) 9. 0.COST( WH1, V8) 5. 0.COST( WH2, V1) 4. 0.COST( WH2, V2) 9. 0.COST( WH2, V3) 5. 0.COST( WH2, V4) 3. 0.COST( WH2, V5) 8. 0.COST( WH2, V6) 5. 0.COST( WH2, V7) 8. 0.COST( WH2, V8) 2. 0.COST( WH3, V1) 5. 0.COST( WH3, V2) 2. 0.COST( WH3, V3) 1. 0.COST( WH3, V4) 9. 0.COST( WH3, V5) 7. 0.COST( WH3, V6) 4. 0.COST( WH3, V7) 3. 0.COST( WH3, V8) 3. 0.COST( WH4, V1) 7. 0.COST( WH4, V2) 6. 0.COST( WH4, V3) 7. 0.COST( WH4, V4) 3. 0.COST( WH4, V5) 9. 0.COST( WH4, V6) 2. 0.COST( WH4, V7) 7. 0.COST( WH4, V8) 1. 0.COST( WH5, V1) 2. 0.COST( WH5, V2) 3. 0.COST( WH5, V3) 9. 0.COST( WH5, V4) 5. 0.COST( WH5, V5) 7. 0.COST( WH5, V6) 2. 0.COST( WH5, V7) 6. 0.COST( WH5, V8) 5. 0.COST( WH6, V1) 5. 0.COST( WH6, V2) 5. 0.COST( WH6, V3) 2. 0.COST( WH6, V4) 2. 0.COST( WH6, V5) 8. 0.COST( WH6, V6) 1. 0.COST( WH6, V7) 4. 0.COST( WH6, V8) 3. 0.VOLUME( WH1, V1) 0. 5.VOLUME( WH1, V2) 19.00000 0. VOLUME( WH1, V3) 0. 5.VOLUME( WH1, V4) 0. 7.VOLUME( WH1, V5) 41.00000 0. VOLUME( WH1, V6) 0. 2.VOLUME( WH1, V7) 0. 6.VOLUME( WH1, V8) 0. 6.VOLUME( WH2, V1) 1. 0.VOLUME( WH2, V2) 0. 4.VOLUME( WH2, V3) 0. 1.VOLUME( WH2, V4) 32.00000 0. VOLUME( WH2, V5) 0. 1.VOLUME( WH2, V6) 0. 2.VOLUME( WH2, V7) 0. 2.VOLUME( WH2, V8) 0. 0.VOLUME( WH3, V1) 0. 4.VOLUME( WH3, V2) 11.00000 0. VOLUME( WH3, V3) 0. 0.VOLUME( WH3, V4) 0. 9.VOLUME( WH3, V5) 0. 3.VOLUME( WH3, V6) 0. 4.VOLUME( WH3, V7) 40.00000 0. VOLUME( WH3, V8) 0. 4.VOLUME( WH4, V1) 0. 4.VOLUME( WH4, V2) 0. 2.VOLUME( WH4, V3) 0. 4.VOLUME( WH4, V4) 0. 1.VOLUME( WH4, V5) 0. 3.VOLUME( WH4, V6) 5. 0.VOLUME( WH4, V7) 0. 2.VOLUME( WH4, V8) 38.00000 0. VOLUME( WH5, V1) 34.00000 0. VOLUME( WH5, V2) 7. 0.VOLUME( WH5, V3) 0. 7.VOLUME( WH5, V4) 0. 4.VOLUME( WH5, V5) 0. 2.VOLUME( WH5, V6) 0. 1.VOLUME( WH5, V7) 0. 2.VOLUME( WH5, V8) 0. 5.VOLUME( WH6, V1) 0. 3.VOLUME( WH6, V2) 0. 2.VOLUME( WH6, V3) 22.00000 0. VOLUME( WH6, V4) 0. 1.VOLUME( WH6, V5) 0. 3.VOLUME( WH6, V6) 27.00000 0. VOLUME( WH6, V7) 3. 0.VOLUME( WH6, V8) 0. 3.西华大学能源与环境学院学生上机实验报告 Row Slack or Surplus Dual Price1 664.0000 -1.2 0. -4.3 0. -5.4 0. -4.5 0. -3.6 0. -7.7 0. -3.8 0. -6.9 0. -2.10 0. 3.11 22.00000 0.12 0. 3.13 0. 1.14 0. 2.15 0. 2.model:!3发点4收点运输问题;sets:warehouses/wh1..wh3/: capacity;vendors/v1..v4/: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));!这里是数据;data:capacity=60 55 51 ;demand=35 37 22 72 ;cost=6 2 6 74 95 35 2 1 9;enddataendGlobal optimal solution found at iteration: 5Objective value: 561.0000Variable Value Reduced Cost CAPACITY( WH1) 60.00000 0.CAPACITY( WH2) 55.00000 0.CAPACITY( WH3) 51.00000 0.DEMAND( V1) 35.00000 0.DEMAND( V2) 37.00000 0.DEMAND( V3) 22.00000 0.DEMAND( V4) 72.00000 0.COST( WH1, V1) 6. 0.COST( WH1, V2) 2. 0.COST( WH1, V3) 6. 0.COST( WH1, V4) 7. 0.COST( WH2, V1) 4. 0.COST( WH2, V2) 9. 0.COST( WH2, V3) 5. 0.COST( WH2, V4) 3. 0.COST( WH3, V1) 5. 0.COST( WH3, V2) 2. 0.COST( WH3, V3) 1. 0.COST( WH3, V4) 9. 0.VOLUME( WH1, V1) 6. 0.VOLUME( WH1, V2) 37.00000 0.VOLUME( WH1, V3) 0. 4.VOLUME( WH1, V4) 17.00000 0.VOLUME( WH2, V1) 0. 2.VOLUME( WH2, V2) 0. 11.00000VOLUME( WH2, V3) 0. 7.VOLUME( WH2, V4) 55.00000 0.VOLUME( WH3, V1) 29.00000 0.VOLUME( WH3, V2) 0. 1.VOLUME( WH3, V3) 22.00000 0.VOLUME( WH3, V4) 0. 3.Row Slack or Surplus Dual Price1 561.0000 -1.2 0. -6.3 0. -2.4 0. -2.5 0. -7.6 0. 0.7 0. 4.8 0. 1.示例3 分配问题model:!4个工人,4个工作的分配问题;sets:workers/w1..w4/;jobs/j1..j4/;links(workers,jobs): cost,volume;endsets!目标函数;min=@sum(links: cost*volume);!每个工人只能有一份工作;@for(workers(I):西华大学能源与环境学院学生上机实验报告@sum(jobs(J): volume(I,J))=1;);!每份工作只能有一个工人;@for(jobs(J):@sum(workers(I): volume(I,J))=1;);data:cost= 6 2 6 74 95 35 2 1 97 6 7 3 ;enddataendGlobal optimal solution found at iteration: 0Objective value: 10.00000Variable Value Reduced CostCOST( W1, J1) 6. 0.COST( W1, J2) 2. 0.COST( W1, J3) 6. 0.COST( W1, J4) 7. 0.COST( W2, J1) 4. 0.COST( W2, J2) 9. 0.COST( W2, J3) 5. 0.COST( W2, J4) 3. 0.COST( W3, J1) 5. 0.COST( W3, J2) 2. 0.COST( W3, J3) 1. 0.COST( W3, J4) 9. 0.COST( W4, J1) 7. 0.COST( W4, J2) 6. 0.COST( W4, J3) 7. 0.COST( W4, J4) 3. 0.VOLUME( W1, J1) 0. 1.VOLUME( W1, J2) 1. 0.VOLUME( W1, J3) 0. 0.VOLUME( W1, J4) 0. 3.VOLUME( W2, J1) 1. 0.VOLUME( W2, J2) 0. 8.VOLUME( W2, J3) 0. 0.VOLUME( W2, J4) 0. 0.VOLUME( W3, J1) 0. 5.VOLUME( W3, J2) 0. 5.VOLUME( W3, J3) 1. 0.VOLUME( W3, J4) 0. 10.00000VOLUME( W4, J1) 0. 3.VOLUME( W4, J2) 0. 5.VOLUME( W4, J3) 0. 2.VOLUME( W4, J4) 1. 0.Row Slack or Surplus Dual Price1 10.00000 -1.2 0. -1.3 0. 0.4 0. 4.5 0. 0.6 0. -4.7 0. -1.8 0. -5.9 0. -3.示例4 解整数规划,在lingo窗口输入以下代码,min=3*x1+x2+3*x3+3*x4+x5+x6+3*x7;4*x1+3*x2+2*x3+x4+x5>=50;x2+2*x4+x5+3*x6>=20;x3+x5+2*x7>=15;@gin(x1);@gin(x2);@gin(x3);@gin(x4);@gin(x3);@gin(x6);@gin(x7);END运行结果为:Global optimal solution found.Objective value: 27.00000Extended solver steps: 0Total solver iterations: 5Variable Value Reduced CostX1 0. 3.X2 12.00000 1.X3 0. 2.X4 0. 3.X5 15.00000 0.X6 0. 1.X7 0. 1.Row Slack or Surplus Dual Price1 27.00000 -1.2 1. 0.3 7. 0.4 0. -1.2 用运筹学实验软件计算运输问题和整数规划问题五、总结对上机实践结果进行分析,问题回答,上机的心得体会及改进意见。