概率论PPT课件
合集下载
概率论课件之随机事件PPT课件
(4)德 摩根律 : A B A B, A B A B.
例1 设A,B,C 表示三个随机事件,试将下列事件 用A,B,C 表示出来.
(1) A 发生,且 B 与 C 至少有一个发生;
A( B∪C))
(2) A 与 B 发生,而 C 不发生; (3) A , B, C 中恰有一个发生;
ABC ABC ABC ABC
(4) A , B, C 中至少有两个发生;
AB BC AC
(5) A , B, C 中至多有两个发生;
ABCA不BC发生;
(6) A , B, C 中不多于一个发生.
AB BC AC
或ABC ABC ABC ABC
3. 小结
(1) 随机试验、样本空间与随机事件的关系
(4) 事件 A 与 B 积事件(交) 事件 A B { x x A 且 x B}称为事件
A 与事件 B 的积事件. A和B同时发生 A B发生 积事件也可记作 A B 或 AB.
实例 某种产品的合格与否是由该产品的长度 与直径是否合格所决定,设C=“产品合格” ,A =“长度合格”,B=“直径合格”.
AA B
B
Ω
B A
B
A AB Ω
(7) 事件 A 的对立事件
设 A 表示“事件 A 出现”, 则“事件 A 不出现”
称为事件 A 的对立事件或逆事件. 记作
A.
实例 “骰子出现1点”
“骰对子立不出现1点”
图示 A 与 B 的对立.
A
若 A 与 B对立,则有
A B 且 AB .
B A Ω
对立事件与互斥事件的区别 A、B 互斥(互不相容) A、B 对立(互逆)
(5) 事件 A 与 B 互不相容 (互斥)
例1 设A,B,C 表示三个随机事件,试将下列事件 用A,B,C 表示出来.
(1) A 发生,且 B 与 C 至少有一个发生;
A( B∪C))
(2) A 与 B 发生,而 C 不发生; (3) A , B, C 中恰有一个发生;
ABC ABC ABC ABC
(4) A , B, C 中至少有两个发生;
AB BC AC
(5) A , B, C 中至多有两个发生;
ABCA不BC发生;
(6) A , B, C 中不多于一个发生.
AB BC AC
或ABC ABC ABC ABC
3. 小结
(1) 随机试验、样本空间与随机事件的关系
(4) 事件 A 与 B 积事件(交) 事件 A B { x x A 且 x B}称为事件
A 与事件 B 的积事件. A和B同时发生 A B发生 积事件也可记作 A B 或 AB.
实例 某种产品的合格与否是由该产品的长度 与直径是否合格所决定,设C=“产品合格” ,A =“长度合格”,B=“直径合格”.
AA B
B
Ω
B A
B
A AB Ω
(7) 事件 A 的对立事件
设 A 表示“事件 A 出现”, 则“事件 A 不出现”
称为事件 A 的对立事件或逆事件. 记作
A.
实例 “骰子出现1点”
“骰对子立不出现1点”
图示 A 与 B 的对立.
A
若 A 与 B对立,则有
A B 且 AB .
B A Ω
对立事件与互斥事件的区别 A、B 互斥(互不相容) A、B 对立(互逆)
(5) 事件 A 与 B 互不相容 (互斥)
概率论与数理统计课件ppt
简化数据结构,解释变量间的关系。
操作步骤
计算相关系数矩阵、求特征值和特征 向量、确定主成分个数。
实例
分析消费者对不同品牌手机的偏好。
聚类分析
聚类分析
常见方法
目的
实例
将类似的对象归为同一 组,即“簇”,不同簇
的对象尽可能不同。
层次聚类、K均值聚类、 DBSCAN等。
揭示数据的内在结构, 用于分类、猜测和决策
用数学符号表示一个随机实验的结果 。
随机变量可以取到任何实数值,且取 每个结果的概率为一个确定的函数。
离散型随机变量
随机变量可以取到所有可能的结果, 且取每个结果的概率为一个确定的数 。
随机变量的函数变换
线性变换
对于随机变量X和常数a、b,有 aX+b的散布与X的散布不同。
非线性变换
对于随机变量X和函数g(x),g(X)的散 布与X的散布不同。
置信区间
根据样本数据对总体参数进行估计的一个范围,表示我们对 估计的可靠程度。
假设检验与置信水平
假设检验
通过样本数据对总体参数或散布进行 假设,然后根据检验结果判断假设是 否成立。
置信水平
假设检验中,我们相信结论正确的概 率,通常表示为百分比。
05 数理统计的应用
方差分析
方差分析(ANOVA)
随机进程在通讯、气象、物理等领域有广泛应用。
马尔科夫链蒙特卡洛方法
01
马尔科夫链蒙特卡洛方法是一种 基于蒙特卡洛模拟的统计推断方 法,通过构造一个马尔科夫链来 到达近似求解复杂问题的目的。
02
马尔科夫链蒙特卡洛方法在许多 领域都有应用,如物理学、化学 、经济学等。
04 数理统计基础
样本与样本空间
操作步骤
计算相关系数矩阵、求特征值和特征 向量、确定主成分个数。
实例
分析消费者对不同品牌手机的偏好。
聚类分析
聚类分析
常见方法
目的
实例
将类似的对象归为同一 组,即“簇”,不同簇
的对象尽可能不同。
层次聚类、K均值聚类、 DBSCAN等。
揭示数据的内在结构, 用于分类、猜测和决策
用数学符号表示一个随机实验的结果 。
随机变量可以取到任何实数值,且取 每个结果的概率为一个确定的函数。
离散型随机变量
随机变量可以取到所有可能的结果, 且取每个结果的概率为一个确定的数 。
随机变量的函数变换
线性变换
对于随机变量X和常数a、b,有 aX+b的散布与X的散布不同。
非线性变换
对于随机变量X和函数g(x),g(X)的散 布与X的散布不同。
置信区间
根据样本数据对总体参数进行估计的一个范围,表示我们对 估计的可靠程度。
假设检验与置信水平
假设检验
通过样本数据对总体参数或散布进行 假设,然后根据检验结果判断假设是 否成立。
置信水平
假设检验中,我们相信结论正确的概 率,通常表示为百分比。
05 数理统计的应用
方差分析
方差分析(ANOVA)
随机进程在通讯、气象、物理等领域有广泛应用。
马尔科夫链蒙特卡洛方法
01
马尔科夫链蒙特卡洛方法是一种 基于蒙特卡洛模拟的统计推断方 法,通过构造一个马尔科夫链来 到达近似求解复杂问题的目的。
02
马尔科夫链蒙特卡洛方法在许多 领域都有应用,如物理学、化学 、经济学等。
04 数理统计基础
样本与样本空间
第一章 概率论的基本概念PPT课件
性质 4:对任一 A,P 事 (A)件 1. 上一页 下一页 返 回
性质 5:对任一A事,件有 P(A)1P(A).
性 质 6: 对 于 任 意 两A,个 B,事有件 P(AB)P(A)P(B)P(AB)
上一页 下一页 返 回
3、古典概型 定义1.4:
设随机试验E满足如下条件:
(1) 试验的样本空间只有有限个样本点,即
(1)A1 {4个数字排成一个}偶 ; 数 (2)A2 {4个数字排成一个四}位 ; 数 (3)A3 {4个数字中 0恰好出现两}.次
因 为 是 有 放 ,所 回以 抽样 样本 空 间总中数样 1为 04.本 若使 4个数字组,成 则偶 只数 需末位数即字可 . 为
上一页 下一页 返 回
这 有 5种 可 能 :0,2,4,6,8,
P ( A3 )
ห้องสมุดไป่ตู้
C
2 4
•
9
2
10 4
0 .0486
上一页 下一页 返 回
例4: (一个古老的问题)一对骰子连掷25次.问出现双6 与不出现双6的概率哪个大?
解:设A {出现双6},B {不出现双6},
一对骰子掷1次,有66 36种结果.
掷25次共有3625种结果,
掷一次出现双6只有1种结果,不出现双6共有
上一页 下一页 返 回
解 : (1) A (B C ); (2) AC B或 AB C; (3 ) A B C A B C A B C ;
(4) ABCABCABCABC或 A BA CB;C
(5) AB 或 A C BC; (6) A BAC BC
或 AC BABCABC AB. C
上一页 下一页 返 回
乘法定理可推广至任意有限个事件的情形:
概率论高等院校概率论课件
应用场景
强大数定律在统计学中用于 估计极端事件发生的概率和 风险,在决策理论中用于评 估最优策略和期望收益,在 可靠性工程中用于分析系统 的可靠性和寿命。
注意事项
强大数定律的应用有一定的 限制条件,例如随机序列必 须是独立同分布的。此外, 强大数定律并不能保证每个 随机事件的绝对正确性,而 只是给出了最大值分布的稳 定性。
连续随机过程
如布朗运动,每一步都是连续 的,每一步的状态都是连续的
。
随机游走与布朗运动
随机游走
一个随机过程,其中每一步都是随机的,通 常用来描述粒子的无规则运动。
布朗运动
一种连续随机过程,由大量微小粒子在流体 中无规则运动产生,通常用来描述微观粒子 的运动。
马尔科夫链与马尔科夫过程
马尔科夫链
一个随机过程,其中下一个状态只依赖于当前状态,与过去状态 无关。
注意事项
大数定律的前提是试验次数必须足够多,并且随 机事件之间必须是独立的。此外,大数定律并不 能保证每个随机事件的绝对正确性,而只是给出 了频率趋于概率的稳定性。
强大数定律
总结词
强大数定律是概率论中的重 要定理之一,它描述了随机 序列中最大值的分布性质。
详细描述
强大数定律指出,对于任意 给定的正整数序列$a_n$和 $b_n$,有$lim_{n to infty} frac{a_n}{b_n} = 1$的概率 为1。这个定理说明了随机 序列中最大值的分布具有很 强的稳定性。
随机变量的性质
随机变量具有可测性、可加性和有限 可加性。
离散型随机变量及其分布
离散型随机变量的定义
离散型随机变量是在样本空间中取有 限个或可数个值的随机变量。
离散型随机变量的分布
《概率论讲义》课件
线性回归
介绍线性回归模型的基本原理和应用案例。
多元非线性回归
探讨多元非线性回归分析的方法和实际应用。
蒙特卡罗方法
1
简介和基本概念
介绍蒙特卡罗方法的基本思想和使用领域。
2
模拟方法
说明蒙特卡罗方法的模拟过程和实际应用。
3
抽样方法
讨论蒙特卡罗方法中的抽样技术和抽样步骤。
应用案例
金融风险管理
探讨概率论在金融风险管理中的应用和重要性。
2
弱大数定律
探讨具体的弱大数定律和其适用性。
3
中心极限定理
详细解释中心极限定理及其在概率论中的重要性。
统计推断
1 点估计
介绍点估计的概念和方法,以及其在概率论中的应用。
2 区间估计
说明区间估计的原理和步骤,并讨论其实际应用。
3 假设检验
讲解假设检验的基本思想和步骤,以及其在统计学中的作用。
回归分析
《概率论讲义》PPT课件
概率论讲义PPT课件大纲
简介
介绍概率论的基本概念和应 用领域,初步了解概率论的 历史和发展。
随机变量
定义随机变量,离散型和连 续型随机变量及其概率分布。
概率分布
二项分布,泊松分布和正态 分布。
大数定律与中心极限定理
1
定义大数定律和中心极限定理
深入了解大数定律和中心极限定理的概念和应用。
人口统计学
展示概率论如何应用于人口统计学数据的分析和预测。
物理学和天文学
介绍概率论在物理学和天文学研究中的关键作用。
结论
总结所学内容,展望概率论的未来发展和应用前景。
参考文献
推荐阅读经典著作和相关文献
提供经典著作和相关文献,供学习和研究参考。
《概率论》ppt课件
xi R, i 1, 2, , n.
对于固定的 n ,我们称{FX (x1, x2, , xn;t1,t2, ,tn ),ti T}
为随机过程{X (t),t T}的 n 维分布函数族。
注:可以证明(柯尔莫哥洛夫),在一定条件下 ,随机过程的统计特性完全由它的有限维分布函 数族决定。
(二)二维随机过程的联合分布函数
p
2 (1, )
2 1 2
(0, 1 ) 4
1
2
三 随机过程的数字特征
1.单个随机过程的情况
① 函数 X (t) E[X (t)], t T
为{X(t),tT}的均值函数.
②
2 X
(t)
E[ X
2
(t )]
为{X(t),tT}的均方值函数.
③
2 X
(t
)
DX (t) D[ X (t)]
为{X(t),tT}的方差函数.
例3: 考虑抛掷一颗骰子的试验,(i)设 X是n 第n次 (n )1 抛掷的点数,对于n=1,2…的不同值, 是X不n 同的随机变量,因而 { Xn构, n成 1一} 随机过程,称为 贝努利过程或贝努利随机序列,(ii)设Xn是前n次
抛掷中出现的最大点数,
也{是X一n , n随机1}过程。
例 4 在时间 [0,t]内某地段出现的交通事故次数
2. n维分布函数族
对 任 意 正 整 数 n 可 取 定 t1,t2, ,tn T 则 (X (t1), X (t2 ), , X (tn )) 是一个n 维随机变量,他的分 布函数为
FX (x1, x2 , , xn; t1, t2, , tn )
P( X (t1) x1, X (t2 ) x2, , X (tn ) xn ),
对于固定的 n ,我们称{FX (x1, x2, , xn;t1,t2, ,tn ),ti T}
为随机过程{X (t),t T}的 n 维分布函数族。
注:可以证明(柯尔莫哥洛夫),在一定条件下 ,随机过程的统计特性完全由它的有限维分布函 数族决定。
(二)二维随机过程的联合分布函数
p
2 (1, )
2 1 2
(0, 1 ) 4
1
2
三 随机过程的数字特征
1.单个随机过程的情况
① 函数 X (t) E[X (t)], t T
为{X(t),tT}的均值函数.
②
2 X
(t)
E[ X
2
(t )]
为{X(t),tT}的均方值函数.
③
2 X
(t
)
DX (t) D[ X (t)]
为{X(t),tT}的方差函数.
例3: 考虑抛掷一颗骰子的试验,(i)设 X是n 第n次 (n )1 抛掷的点数,对于n=1,2…的不同值, 是X不n 同的随机变量,因而 { Xn构, n成 1一} 随机过程,称为 贝努利过程或贝努利随机序列,(ii)设Xn是前n次
抛掷中出现的最大点数,
也{是X一n , n随机1}过程。
例 4 在时间 [0,t]内某地段出现的交通事故次数
2. n维分布函数族
对 任 意 正 整 数 n 可 取 定 t1,t2, ,tn T 则 (X (t1), X (t2 ), , X (tn )) 是一个n 维随机变量,他的分 布函数为
FX (x1, x2 , , xn; t1, t2, , tn )
P( X (t1) x1, X (t2 ) x2, , X (tn ) xn ),
《概率论》课件
物理学
描述粒子在气体或液体中的运动状态。
金融学
用于股票价格和收益率的分析。
隐马尔科夫模型
定义
隐马尔科夫模型是一种特殊的马尔科夫模型 ,其中观测状态与隐藏状态有关,而隐藏状 态之间相互独立。
应用
语音识别、手写识别、生物信息学等领域。
05
大数定律与中心极限定理
大数定律及其应用
大数定律
在独立重复试验中,当试验次数趋于无穷时,事件发 生的频率趋于该事件发生的概率。
《概率论》ppt课 件
目录
• 概率论简介 • 概率的基本性质 • 随机变量及其分布 • 随机过程与马尔科夫链 • 大数定律与中心极限定理 • 贝叶斯统计推断
01
概率论简介
概率论的定义
概率论
研究随机现象的数学学科,通过数学模型和公式 来描述随机事件、随机变量和随机过程。
随机变量
表示随机现象的数值变量,其取值具有随机性。
THANKS
感谢观看
计算机科学
概率论在计算机科学中用于算法设计和数据 挖掘等领域。
02
概率的基本性质
概率的公理化定义
概率的公理化定义是概率论的基础,它规定了概率的几个基本性质,包括非负性 、规范性、可加性和有限可加性。
非负性指的是任何事件的概率都不小于0;规范性指的是必然事件的概率为1;可 加性指的是两个独立事件的概率等于它们各自概率的和;有限可加性指的是任意 有限个两两独立的事件的概率等于这些事件概率的和。
应用
在统计学中,大数定律用于估计样本的统计量和参数 ,如平均值、方差等。
中心极限定理及其应用
中心极限定理
无论随机变量的分布是什么,当样本量足够大时,样 本均值的分布近似正态分布。
概率论第一章ppt课件
A 1 “: 至少有一人命中目标 A 2 “: 恰有一人命中目标” A 3 “: 恰有两人命中目标” A 4 “: 最多有一人命中目标 A 5 “: 三人均命中目标” A 6 “: 三人均未命中目标”
”:
ABC
: ABCABCABC
: AC BABC ABC
”: BCACAB
:
ABC
:
ABC
21
小结
i1
i1
13
3. 积(交)事件 : 事件A与事件B同时发生,记
作 AB 或AB。
推广:n个事件A1, A2,…, An同时发生,记作
n
n
A1A2…An或 A i 或 A i
i1
i1
14
4. 差事件: A-B称为A与B的差事件, 表示事件 A发生而事件B不发生
15
5. 互不相容事件(也称互斥的事件): 即事件 A与事件B不能同时发生。AB= 。
3
第一章 概率论的基本概念
§1.1 随机事件及其运算 §1.2 概率的定义及其性质 §1.3 古典概型与几何概型 §1.4 条件概率 §1.5 独立性
4
§1.1 随机事件及其运算
1.1.1 随机现象
自然界的现象按照发生的可能性(或者必然 性)分为两类:
一类是确定性现象,特点是条件完全决定结果 一类是随机现象,特点是条件不能完全决定结 果 在一定条件下,可能出现这样的结果,也可 能出现那样的结果,我们预先无法断言,这类现象 成为随机现象。
概率论与数理统计
1
概率论与数理统计是研究什么的?
随机现象:不确定性与统计规律性 概率论——从数量上研究随机现象的统计规律性的
科学。
数理统计——从应用角度研究处理随机性数据,建 立有效的统计方法,进行统计推理。
概率论ppt课件
先验概率与后验概率
先验概率是指在事件产生前对某一事件产生的概率的估计, 后验概率是指在事件产生后,根据新的信息对某一事件产生 的概率的重新估计。
贝叶斯分析在实践中的应用
金融风险评估
贝叶斯分析可以用于金融风险评估,通过对历史数据的分析,猜测未来市场的 走势和风险。
医学诊断
在医学诊断中,贝叶斯分析可以用于根据患者的症状和体征,结合疾病的特点 ,对疾病进行诊断和猜测。
遍历性和安稳散布
遍历性的定义
01
如果一个马尔科夫链的任意状态在长期平均下占据相同的时间
比例,则称该马尔科夫链具有遍历性。
安稳散布的定义
02
如果一个马尔科夫链的状态概率散布不随时间变化,则称该散
布为安稳散布。
遍历性和安稳散布的关系
03
一个具有遍历性的马尔科夫链通常会有一个唯独的安稳散布,
该散布描写了马尔科夫链在长期运行下的状态概率散布。
伯努利实验
只有两种可能结果的实验 ,例如抛硬币。
二项散布
在n次伯努利实验中成功的 次数所服从的散布。
泊疏松布
在单位时间内(或单位面 积上)随机事件的次数所 服从的散布。
连续型随机变量
正态散布
一种常见的连续型随机变量,其 概率密度函数呈钟形。
指数散布
描写某随机事件的时间间隔所服从 的散布。
均匀散布
在一定区间内均匀散布的概率密度 函数。
的散布假设检验中。
强大数定律
强大数定律的定义
强大数定律是概率论中的一个强大工具,它表明在独立同散布随 机变量序列中,几乎必定有任意给定的收敛子序列。
强大数定律的证明
可以通过切比雪夫不等式和Borel-Cantelli引理等工具来证明。
先验概率是指在事件产生前对某一事件产生的概率的估计, 后验概率是指在事件产生后,根据新的信息对某一事件产生 的概率的重新估计。
贝叶斯分析在实践中的应用
金融风险评估
贝叶斯分析可以用于金融风险评估,通过对历史数据的分析,猜测未来市场的 走势和风险。
医学诊断
在医学诊断中,贝叶斯分析可以用于根据患者的症状和体征,结合疾病的特点 ,对疾病进行诊断和猜测。
遍历性和安稳散布
遍历性的定义
01
如果一个马尔科夫链的任意状态在长期平均下占据相同的时间
比例,则称该马尔科夫链具有遍历性。
安稳散布的定义
02
如果一个马尔科夫链的状态概率散布不随时间变化,则称该散
布为安稳散布。
遍历性和安稳散布的关系
03
一个具有遍历性的马尔科夫链通常会有一个唯独的安稳散布,
该散布描写了马尔科夫链在长期运行下的状态概率散布。
伯努利实验
只有两种可能结果的实验 ,例如抛硬币。
二项散布
在n次伯努利实验中成功的 次数所服从的散布。
泊疏松布
在单位时间内(或单位面 积上)随机事件的次数所 服从的散布。
连续型随机变量
正态散布
一种常见的连续型随机变量,其 概率密度函数呈钟形。
指数散布
描写某随机事件的时间间隔所服从 的散布。
均匀散布
在一定区间内均匀散布的概率密度 函数。
的散布假设检验中。
强大数定律
强大数定律的定义
强大数定律是概率论中的一个强大工具,它表明在独立同散布随 机变量序列中,几乎必定有任意给定的收敛子序列。
强大数定律的证明
可以通过切比雪夫不等式和Borel-Cantelli引理等工具来证明。
概率论与数理统计ppt课件
称这种试验为等可能概型(或古典概型)。
*
例1:一袋中有8个球,其中3个为红球,5个为黄球,设摸到每一球的可能性相等,从袋中不放回摸两球, 记A={恰是一红一黄},求P(A). 解:
(注:当L>m或L<0时,记 )
例2:有N件产品,其中D件是次品,从中不放 回的取n件, 记Ak={恰有k件次品},求P(Ak). 解:
*
第四章 随机变量的数字特征 4.1 数学期望 4.2 方差 4.3 协方差及相关系数 4.4 矩、协方差矩阵 第五章 大数定律和中心极限定理 5.1 大数定律 5.2 中心极限定理 第六章 数理统计的基本概念 6.1 总体和样本 6.2 常用的分布
*
第七章 参数估计 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计 第八章 假设检验 8.1 假设检验 8.2 正态总体均值的假设检验 8.3 正态总体方差的假设检验 8.4 置信区间与假设检验之间的关系 8.5 样本容量的选取 8.6 分布拟合检验 8.7 秩和检验 第九章 方差分析及回归分析 9.1 单因素试验的方差分析 9.2 双因素试验的方差分析 9.3 一元线性回归 9.4 多元线性回归
解: 设 Ai={ 这人第i次通过考核 },i=1,2,3 A={ 这人通过考核 },
亦可:
*
例:从52张牌中任取2张,采用(1)放回抽样,(2)不放 回抽样,求恰是“一红一黑”的概率。
利用乘法公式
与 不相容
(1)若为放回抽样:
(2)若为不放回抽样:
解: 设 Ai={第i次取到红牌},i=1,2 B={取2张恰是一红一黑}
①
②
①
1 2 N
①
②
1 2 N
……
概率论与数理统计ppt课件(完整版)
*
几何概型的概率的性质
对任一事件A ,有
三.统计定义:
(一) 频率
在相同的条件下, 共进行了n次试验,事件A发生的次数nA, 称为A的频数, nA/n称为事件A发生的频率, 记为fn(A).
频率的特性: 波动性和稳定性.
*
四.概率公理化定义:
定义: 设S是样本空间, E是随机试验. 对于E的每个事件A对应一个实数P(A), 称为事件 A的概率, 其中集合函数P(.)满足下列条件: 对任一事件A,有P(A)≥0; (非负性) P(S)=1;(规范性) 设A1,A2,…是两两互不相容的事件,则有 P(A1 A2 …)=P(A1)+P(A2)+… (可列可加性)
2. 样本空间与随机事件
(一) 样本空间: 定义 随机试验E的所有可能结果组成的集合称为 E的样本空间, 记为S. 样本空间的元素称为样本点,用表示.
样本空间的分类:
1.离散样本空间:样本点为有限个或可列个. 例 E1,E2等.
2.无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
*
(二) 乘法公式:
P(AB)>0, 则有 P(ABC)=P(A)P(B|A)P(C|AB).
一般, 设A1, A2, …,An是n个事件,(n≥2), P(A1A2 ...An-1)>0, 则有乘法公式:
P(A1A2…An)=P(A1)P(A2|A1)…P(An-1|A1A2…An-2) P(An|A1A2…An-1).
*
B
A
S
2.和事件:
3.积事件: 事件A B={x|x A 且 x B}称A与B的积,即事件A与B同时发生. A B 可简记为AB.
类似地, 事件 为可列个事件A1, A2, ...的积事件.
几何概型的概率的性质
对任一事件A ,有
三.统计定义:
(一) 频率
在相同的条件下, 共进行了n次试验,事件A发生的次数nA, 称为A的频数, nA/n称为事件A发生的频率, 记为fn(A).
频率的特性: 波动性和稳定性.
*
四.概率公理化定义:
定义: 设S是样本空间, E是随机试验. 对于E的每个事件A对应一个实数P(A), 称为事件 A的概率, 其中集合函数P(.)满足下列条件: 对任一事件A,有P(A)≥0; (非负性) P(S)=1;(规范性) 设A1,A2,…是两两互不相容的事件,则有 P(A1 A2 …)=P(A1)+P(A2)+… (可列可加性)
2. 样本空间与随机事件
(一) 样本空间: 定义 随机试验E的所有可能结果组成的集合称为 E的样本空间, 记为S. 样本空间的元素称为样本点,用表示.
样本空间的分类:
1.离散样本空间:样本点为有限个或可列个. 例 E1,E2等.
2.无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
*
(二) 乘法公式:
P(AB)>0, 则有 P(ABC)=P(A)P(B|A)P(C|AB).
一般, 设A1, A2, …,An是n个事件,(n≥2), P(A1A2 ...An-1)>0, 则有乘法公式:
P(A1A2…An)=P(A1)P(A2|A1)…P(An-1|A1A2…An-2) P(An|A1A2…An-1).
*
B
A
S
2.和事件:
3.积事件: 事件A B={x|x A 且 x B}称A与B的积,即事件A与B同时发生. A B 可简记为AB.
类似地, 事件 为可列个事件A1, A2, ...的积事件.
《概率论总复习》课件
常见问题解答二:条件概率与独立性的关系?
总结词
条件概率与独立性是概率论中的重要概念,它们之间 存在密切的联系。
详细描述
条件概率是指在某个已知事件发生的条件下,另一个 事件发生的概率。而独立性则是指两个事件之间没有 相互影响,一个事件的发生不影响另一个事件的发生 。在条件概率中,如果两个事件在给定条件下是独立 的,那么它们同时发生的概率等于各自发生的概率的 乘积。因此,条件概率和独立性之间存在密切的联系 ,理解它们的概念和关系有助于更好地掌握概率论中 的相关内容。
04
概率论的应用
统计学中的概率论应用
统计推断
概率论为统计学提供了理论基 础,用于估计未知参数、检验 假设和进行预测。
随机抽样
概率论确保了随机抽样的公正 性和代表性,使得样本数据能 够反映总体特征。
统计决策
基于概率论的决策分析方法, 如贝叶斯决策和风险分析,帮 助决策者做出最优选择。
计算机科学中的概率论应用
100%
离散型随机变量的分布
离散型随机变量的分布通常由概 率质量函数或概率分布函数描述 。
80%
连续型随机变量的分布
连续型随机变量的分布由概率密 度函数描述,其总概率为1,即 ∫−∞∞f(x)dxF(x)=∫−∞∞f(x)dxF (x)=∫−∞∞f(x)dxF(x)=1。
02
概率论中的重要定理
贝叶斯定理
01
02
03
04
贝叶斯定理是概率论中的基本 定理之一,它提供了在已知某 些条件下,对概率进行更新和 推理的方法。
贝叶斯定理是概率论中的基本 定理之一,它提供了在已知某 些条件下,对概率进行更新和 推理的方法。
贝叶斯定理是概率论中的基本 定理之一,它提供了在已知某 些条件下,对概率进行更新和 推理的方法。
概率论ppt
当且仅当子集A中某个样本点出现时, 称事件A发生.
实例 抛掷一枚骰子, 观察出现的点数. 特别地:
基本事件 由一个样本点组成的单点集 实例 “出现1点”, “出现2点”, … , “出现6点”. 必然事件 随机试验中必然发生的事件. 实例 上述试验中 “点数不大于6” 就是必然事件. 不可能事件 随机试验中不可能发生的事件. 实例 上述试验中 “点数大于6” 就是不可能事件.
(2) 随机试验通常用 E 来表示.
实例 “抛掷一枚硬币,观 察正面、反面出现的情况”.
分析 (1) 试验可以在相同的条件下重复地进行;
(2) 试验的所有可能结果: 正面、反面;
(3) 进行一次试验之前不能 确定哪一个结果会出现.
故为随机试验.
同理可知下列试验都为随机试验. (1) 抛掷一枚骰子,观察出现的点数.
例如 只包含两个样本点的样本空间
{H,T}
它既可以作为抛掷硬币出现正面或出现反面的
模型 , 也可以作为产品检验中合格与不合格的 模型 , 又能用于排队现象中有人排队与无人排 队的模型等.
在具体问题的 研究中 , 描述随机 现象的第一步就是 建立样本空间.
三、随机事件及其发生
随机事件:
通俗地讲 随机事件是指随机试验中可能发生也 可能不发生的结果。 根据这个说法不难发现 随机事件和样本空间的 子集有一一对应关系!
Ω
.
样本点e
实例1 抛掷一枚硬币,观察正面,反面出现的情况.
1 {H ,T }.
H 正面朝上 T 反面朝上
实例2 抛掷一枚骰子,观察出现的点数.
2 {1, 2, 3, 4, 5, 6}.
实例3 从一批产品中,依次任选三件,记录出 现正品与次品的情况.
实例 抛掷一枚骰子, 观察出现的点数. 特别地:
基本事件 由一个样本点组成的单点集 实例 “出现1点”, “出现2点”, … , “出现6点”. 必然事件 随机试验中必然发生的事件. 实例 上述试验中 “点数不大于6” 就是必然事件. 不可能事件 随机试验中不可能发生的事件. 实例 上述试验中 “点数大于6” 就是不可能事件.
(2) 随机试验通常用 E 来表示.
实例 “抛掷一枚硬币,观 察正面、反面出现的情况”.
分析 (1) 试验可以在相同的条件下重复地进行;
(2) 试验的所有可能结果: 正面、反面;
(3) 进行一次试验之前不能 确定哪一个结果会出现.
故为随机试验.
同理可知下列试验都为随机试验. (1) 抛掷一枚骰子,观察出现的点数.
例如 只包含两个样本点的样本空间
{H,T}
它既可以作为抛掷硬币出现正面或出现反面的
模型 , 也可以作为产品检验中合格与不合格的 模型 , 又能用于排队现象中有人排队与无人排 队的模型等.
在具体问题的 研究中 , 描述随机 现象的第一步就是 建立样本空间.
三、随机事件及其发生
随机事件:
通俗地讲 随机事件是指随机试验中可能发生也 可能不发生的结果。 根据这个说法不难发现 随机事件和样本空间的 子集有一一对应关系!
Ω
.
样本点e
实例1 抛掷一枚硬币,观察正面,反面出现的情况.
1 {H ,T }.
H 正面朝上 T 反面朝上
实例2 抛掷一枚骰子,观察出现的点数.
2 {1, 2, 3, 4, 5, 6}.
实例3 从一批产品中,依次任选三件,记录出 现正品与次品的情况.
《概率论与数理统计》课件
条件概率与独立性
条件概率
在某个事件B已经发生的条件下,另 一事件A发生的概率,记为P(A|B)。
独立性
两个事件A和B如果满足 P(A∩B)=P(A)P(B),则称事件A和B是 独立的。
随机变量及其分布
01
随机变量
随机变量是定义在样本空间上的 一个实值函数,表示随机试验的 结果。
02
离散型随机变量
03
连续型随机变量
离散型随机变量的取值可以一一 列举出来,其概率分布可以用概 率质量函数或概率函数表示。
连续型随机变量的取值范围是一 个区间或半开区间,其概率分布 可以用概率密度函数表示。
数理统计初步
02
统计数据的描述
01
统计数据的收集
描述如何通过调查、试验或观测 等方法,获取用于统计分析的数
据。
03
夫链
随机过程的基本概念
随机过程
随机过程是一组随机变量,每个随机 变量对应于时间或空间的一个点。
有限维分布
描述随机过程在有限个时间点上的联 合分布。
独立性
如果随机过程在不相交的时间区间上 的随机变量是独立的,则该随机过程
是独立的。
马尔科夫链及其性质
马尔科夫性
在已知现在状态下,未来与过去独立,即“未来 只取决于现在”。
03
数据的可视化
介绍如何使用图表(如直方图、 散点图等)将数据可视化,以便 更直观地理解数据分布和关系。
02
数据的整理
介绍如何对数据进行分类、排序 和分组,以便更好地理解和分析
。
04
数据的数字特征
介绍如何使用均值、中位数、众 数、方差等统计量来描述数据的
中心趋势和离散程度。
参数估计与置信区间
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
样本容量n固定, 置信水平1 增大, 置信区
间长度增大, 可信程度增大, 区间估计精度降低.
置信水平1 固定, 样本容量 n 增大, 置信区
间长度减小, 可信程度不变, 区间估计精度提高.
单击图形播放/暂停 ESC键退出 单击图形播放/暂停 ESC键退出
SUCCESS
THANK YOU
第四节 区间估计
一、区间估计的基本概念 二、典型例题 三、小结
一、区间估计的基本概念
1. 置信区间的定义
设总体 X 的分布函数F ( x; )含有一个未知参 数 , 对于给定值 (0 1), 若由样本X1, X2 ,,
Xn 确定的两个统计量
( X1, X2 ,, Xn )和 ( X1, X2 ,, Xn ) 满足 P{ ( X1, X2 ,, Xn ) ( X1, X2 ,, Xn )} 1 , 则称随机区间( , )是 的置信度为1 的置信区 间, 和分别称为置信度为1 的双侧置信区间 的置信下限和置信上限, 1 为置信度.
轴对称的情况, 易证取a和b关于原点对称时,能
使置信区间长度最小.
例2 设某工件的长度 X 服从正态分布 N ( ,16),
今抽9件测量其长度, 得数据如下(单位:mm): 142, 138, 150, 165, 156, 148, 132, 135,
试 16求 0.参数 的置信水平为 95%的置信区间.
Z Z( X1, X2 ,, Xn; ) 其中仅包含待估参数 , 并且 Z 的分布已知 且不依赖于任何未知参数 (包括 ).
(2) 对于给定的置信度1 ,定 出两个常数a,b, 使 P{a Z( X1, X2 ,, Xn; ) b} 1 .
(3) 若能从 a Z( X1, X2 ,, Xn; ) b 得到等价的 不等式 , 其中 ( X1, X2 ,, Xn ), ( X1, X2 ,, Xn ) 都是统计量, 那么 ( , ) 就 是 的一个置信度为1 的置信区间.
n
z
/
2
.
其置信区间的长度为
2
n
z / 2
.
注意 : 置信水平为 1 的置信区间是不唯一的.
如果在例1中取 n 16, 1, 0.05,
查表可得 z / 2 z0.025 1.96,
得一个置信水平为0.95的置信区间 X
1 16
1.96.
2019/8/3
例1 设 X1, X2,, Xn 是来自正态总体N (, 2 ) 的样本, 其中 2 为已知, 为未知, 求 的置信水平 为 1 的置信区间.
解 因为 X 是 的无偏估计, 且 U X ~ N (0,1), / n X ~ N (0,1)是不依赖于任何未知参数的, / n
由标准正态分布的上 分位点的定义知
P
X
/
n
z
/
2
1,
即
P X
nz/Fra bibliotek2
X
n
z
/
2
1
,
于是得的一个置信水平为 1 的置信区间
X
n z / 2 ,
X
n
z
/
2
.
这样的置信区间常写成
X
由一个样本值算得样本均值的观察值 x 5.20,
则置信区间为(5.20 0.49), 即 (4.71, 5.69).
在例1中如果给定 0.05,
则又有
P
z0.04
X
/
n
z0.01
0.95,
即
P{ X
n
z0.01
X
n
z0.04
}
0.95,
另外定义中的表达式
P{ ( X1 , X 2 ,, X n ) ( X1 , X 2 ,, X n )} 1
还可以描述为 :
若反复抽样多次(各次得到的样本容量相等,都是n) 每个样本值确定一个区间( , ),
每个这样的区间或包含 的真值或不包含 的真值,
故 X
n z0.01,
X
n
z0.04
也
是
的置信水平
为0.95的置信区间.
其置信区间的长度为
n
(
z0.04
z0.01) .
比较两个置信区间的长度
L1
2
n
z0.025
3.92
,
n
L2
n
( z0.04
z0.01 )
4.08
,
n
显然 L1 L2 . 置信区间短表示估计的精度高. 说明: 对于概率密度的图形是单峰且关于纵坐标
解 根据例1得的置信度为1的置信区间
X
n z / 2 ,
X
n
z / 2
,
由 n 9, 4, 0.05, z0.025 1.96, x 147.333知,
的置信度为0.95的置信区间为 (144.720, 149.946).
三、小结
点估计不能反映估计的精度, 故而本 节引入了区间估计.
置信区间是一个随机区间 ( , ), 它覆盖未知参
数具有预先给定的概率(置信水平), 即对于任
意的 , 有 P{ } 1 .
关于定义的说明
被估计的参数虽然未知, 但它是一个常数, 没有随机性, 而区间( , )是随机的.
因此定义中的表达式
P{ (X1, X 2, , X n ) (X1, X 2, , X n )} 1
它的本质是:
随机区间( , )以1 的概率包含着参数的真值, 而不能说参数以1 的概率落入随机区间( , ).
按伯努利大数定理, 在这样多的区间中,
包含真值的约占100(1 )%, 不包含的约占100%.
例如 若 0.01, 反复抽样1000 次, 则得到的 1000 个区间中不包含 真值的约为10个.
2. 求置信区间的一般步骤(共3步)
(1) 寻求一个样本 X1, X2 ,, Xn的函数 :