华师大版九年级(下) 中考题单元试卷:第27章 二次函数(22)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华师大版九年级(下)中考题单元试卷:第27章二次函数(22)一、解答题(共30小题)

1.如图,已知抛物线y=﹣x2+2x+c经过点C(0,3),且与x轴交于A、B两点(点A在点B的左侧),线段BC与抛物线的对称轴相交于点P.M、N分别是线段OC和x轴上的动点,运动时保持∠MPN=90°不变.

(1)求抛物线的解析式;

(2)①试猜想PN与PM的数量关系,并说明理由;

②在①的前提下,连结MN,设OM=m.△MPN的面积为S,求S的最大值.

2.在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“梦之点”,例如点(﹣1,﹣1),(0,0),(,),…都是“梦之点”,显然,这样的“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;

(2)函数y=3kx+s﹣1(k,s是常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标;若不存在,请说明理由;

(3)若二次函数y=ax2+bx+1(a,b是常数,a>0)的图象上存在两个不同的“梦之点”

A(x1,x1),B(x2,x2),且满足﹣2<x1<2,|x1﹣x2|=2,令t=b2﹣2b+,试求出t 的取值范围.

3.在平面直角坐标系xOy中,二次函数y=﹣x2+x+2的图象与x轴交于点A,B(点B 在点A的左侧),与y轴交于点C.过动点H(0,m)作平行于x轴的直线l,直线l与二次函数y=﹣x2+x+2的图象相交于点D,E.

(1)写出点A,点B的坐标;

(2)若m>0,以DE为直径作⊙Q,当⊙Q与x轴相切时,求m的值;

(3)直线l上是否存在一点F,使得△ACF是等腰直角三角形?若存在,求m的值;若不存在,请说明理由.

4.如图,在平面直角坐标中,点O为坐标原点,直线y=﹣x+4与x轴交于点A,过点A 的抛物线y=ax2+bx与直线y=﹣x+4交于另一点B,且点B的横坐标为1.

(1)求a,b的值;

(2)点P是线段AB上一动点(点P不与点A、B重合),过点P作PM∥OB交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,过点P作PF⊥MC 于点F,设PF的长为t,MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);

(3)在(2)的条件下,当S△ACN=S△PMN时,连接ON,点Q在线段BP上,过点Q作QR∥MN交ON于点R,连接MQ、BR,当∠MQR﹣∠BRN=45°时,求点R的坐标.5.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于A(6,0),C(﹣4,0)两点,与y轴交于点B(0,3).

(1)求抛物线的解析式;

(2)点D、点E同时从点O出发以每秒1个单位长度的速度分别沿x轴正半轴,y轴正半轴向点A、点B方向移动,当点D运动到点A时,点D、E同时停止移动.过点D作

x轴的垂线交抛物线于点F,交AB于点G,作点E关于直线DF的对称点E′,连接FE′,射线DE′交AB于点H.设运动时间为t秒.

①t为何值时点E′恰好在抛物线上,并求此时△DE′F与△ADG重叠部分的面积;

②点P是平面内任意一点,若点D在运动过程中的某一时刻,形成以点A、E′、D、P

为顶点的四边形是菱形,那么请直接写出点P的坐标.

6.在平面直角坐标系xOy中,抛物线y=mx2﹣2x与x轴正半轴交于点A,顶点为B.(1)求点B的坐标(用含m的代数式表示);

(2)已知点C(0,﹣2),直线AC与BO相交于点D,与该抛物线对称轴交于点E,且△OCD≌△BED,求m的值;

(3)在由(2)确定的抛物线上有一点N(n,﹣),N在对称轴的左侧,点F,G在对称轴上,F在G上方,且FG=1,当四边形ONGF的周长最小时:

①求点F的坐标;

②设点P在抛物线上,在y轴上是否存在点H,使以N,F,H,P为顶点的四边形是平

行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.

7.二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=﹣

1与y轴交于点H.

(1)求二次函数的解析式;

(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP;

(3)当△FPM是等边三角形时,求P点的坐标.

8.如图,抛物线y=ax2+bx+c经过原点,与x轴相交于点E(8,0),抛物线的顶点A在第四象限,点A到x轴的距离AB=4,点P(m,0)是线段OE上一动点,连结P A,将线段P A绕点P逆时针旋转90°得到线段PC,过点C作y轴的平行线交x轴于点G,交抛物线于点D,连结BC和AD.

(1)求抛物线的解析式;

(2)求点C的坐标(用含m的代数式表示);

(3)当以点A、B、C、D为顶点的四边形是平行四边形时,求点P的坐标.

9.如图1,在平面直角坐标系xOy中,点M为抛物线y=﹣x2+2nx﹣n2+2n的顶点,过点(0,4)作x轴的平行线,交抛物线于点P、Q(点P在Q的左侧),PQ=4.

(1)求抛物线的函数关系式,并写出点P的坐标;

(2)小丽发现:将抛物线y=﹣x2+2nx﹣n2+2n绕着点P旋转180°,所得新抛物线的顶点恰为坐标原点O,你认为正确吗?请说明理由;

(3)如图2,已知点A(1,0),以P A为边作矩形P ABC(点P、A、B、C按顺时针的

方向排列),=.

①写出C点的坐标:C(,)(坐标用含有t的代数式表示);

②若点C在题(2)中旋转后的新抛物线上,求t的值.

10.如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.

(1)求此抛物线的解析式;

(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;

(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?

请说明理由.

11.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y ≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.

(1)分别判断函数y=(x>0)和y=x+1(﹣4<x≤2)是不是有界函数?若是有界函数,求其边界值;

相关文档
最新文档