算法-第6章-变治法(李静)解析
三年级奥数算式谜教案
三年级奥数算式谜教案【篇一:三年级奥数专题之算式谜】算式谜算式谜是一种有趣的数学问题,它的特点是在算术运算的式子中,使一些数字或运算符号“残缺”,要我们根据运算法则,进行判断推理,从而把“残缺”的算式补充完整。
研究和解决算式谜问题,有利于培养我们观察、分析、归纳、推理等思维能力。
从这个意义上讲,算式谜问题是一种很好的锻炼思维的“体操”。
例1、在下面算式的括号里填上合适的数。
(1)()6()()(2)()0()()+ 2()15 - 3() 1 68 0 914 857巩固:在“庆元旦”晚会上,主持人小丽出了这样两道题目:1916711066请大家想一想,被纸片盖住的是什么数字?例2.a、b、c、d分别代表4个不同的数字,相同的字母代表相同的数字,求使得下面算式成立a、b、c、d各自代表的数字。
a b c da c d+c d1 9 8 9巩固:下面的符号各表示几?19189356197例3.a、b、c、d它们各是什么数字时同上面的算式成立? 83分别代表不同的数字,a b c d-c d c a b c1、、23、、45、、、678、9这十个数字组成下面的加法算式,每个数字只许用一巩固:用0、次,现已写出3个数字,请把这个算式补齐.42例4.下面的算式中的“数”、“学”、“俱”、“乐”、“部”这五个汉字各应代表什么数字?8巩固:下面算式中不同的字母所找表的数字均不同,当这些字母代表什么数时,算式成立?例5、下面的算式里四个小纸片各盖住一个数字,问被盖住的四个数字的和是多少?149巩固:下面的算式里,每个方框代表一个数字,问:这6个方框中数字的总和是多少?1991课后作业1.下面算式中不同的图形代表不同的数,不同的字母代表不同的数,请将算式中的图形或字母还原成数字。
(1) 1 ○ 2 □(2) a b c d -□ 1 △ + a b e d3 ○ ○ e d c a d2、在下列竖式的空格内,各填入一个合适的数字,使竖式成立.397211493、下面的符号代表几?7458213184134.下面算式中汉字或字母分别代表不同的数字,请将汉字或字母还原成数字。
算法设计与分析部分算法伪代码
第三章 蛮力法1.选择排序SelectionSort(A[0..n-1])for i=0 to n-2 domin=ifor j=i+1 to n-1 doif A[j]<A[min]min=jswap A[i] and A[min]2.冒泡排序BubbleSort(A[0..n-1])// 输入:数组A,数组中的元素属于某偏序集// 输出:按升序排列的数组Afor i=0 to n-2 dofor j=0 to n-2-i doif A[j+1]<A[j] swap A[j] and A[j+1]3.改进的冒泡算法ALGORITHM BubbleSortImproved( A[0,…,n –1] )// 冒泡排序算法的改进// 输入:数组A,数组中的元素属于某偏序集// 输出:按升序排列的数组Afor i ← 0 to n – 2 doflag ← Truefor j ← 0 to n – 2 – i doif A[j+1] < A[j]swap(A[j], A[j+1])flag ← False// 如果在某一轮的比较中没有交换,则flag为True,算法结束returnif flag = True4. 顺序查找算法算法 SwquentialSearch2(A[0...n],k)//顺序查找算法的实现,它用了查找键来作限位器//输入:一个n个元素的数组A和一个查找键K//输出:第一个值等于K的元素的位置,如果找不到这样的元素就返回 -1A[n]<--ki<--0while A[i]!=K doi<--i+1if i<n return iElse return -15. 蛮力字符串匹配算法 BruteForceStringMatch(T[0...n-1],P[0...m-1])//该算法实现了蛮力字符串匹配代表一段文本//输入:一个n个字符的数组T[0...n-1]// 一个m个字符的数组P[0..m-1]代表一个模式//输出:如果查找成功的话,返回文本的第一个匹配字串中第一个字符的位置, // 否则返回-1For i<--0 to n-m doj<--0While j<m and P[j]=T[i+j]doj<--i+1If j=m return ireturn -1合并排序最差Θ(nlog2n)快速排序最优Θ(nlog2n)最差Θ(n2)平均Θ(1.38nlog2n)选择排序 Θ(n2)冒泡排序 Θ(n2)插入排序最差Θ(n2)最优 Θ(n)平均 Θ(n2)第四章 分治法合并排序算法 MergeSort(A[0..n-1] )排序 // 递归调用mergesort来对数组 A[0...n-1]// 输入:一个可排序数组A[0..n-1]// 输出:非降序排列的数组A[0..n-1]if n > 1n/2 -1]copy A[0.. n/2 -1] to B[0..n/2 -1]copy A[ n/2 ..n-1] to C[0..MergeSort( B )MergeSort( C )Merge( B,C,A )两个数组合并的算法算法 Merge(B[0..p-1],C[0..q-1],A[0..p+q-1])//将两个有序数组合并成一个有序的数组和C[0...q-1]//输入:两个有序数组B[0...p-1]//输出:A[0..p+q-1]中已经有序存放了B和C中的元素 i=0,j=0,k=0;while i<p and j<q do≤C[j]if B[i]A[k]=B[i], i=i+1elseA[k]=C[j], j=j+1k=k+1if i=pcopy C[j..q-1] to A[k..p+q-1]elsecopy B[i..p-1] to A[0..p+q-1]快速排序算法QuickSort(A[l..r])// 使用快速排序法对序列或者子序列排序或者序列本身A[0..n-1]// 输入:子序列A[l..r]// 输出:非递减序列Aif l < rs ← Partition( A[l..r] )QuickSort( A[l..s-1] )QuickSort( A[s+1..r] )//s是中轴元素/基准点,是数组分区位置的标志实现分区的算法Partition( A[l..r] )// 输入:子数组A[l..r]// 输出:分裂点/基准点pivot的位置p ← A[l]i ← l; j ← r+1repeat≥ prepeat i ←i + 1until A[i]≤ prepeat j ← j – 1 until A[j]swap( A[i], A[j] )≥ juntil iswap( A[i], A[j] )swap( A[l], A[j] )return j折半查找BinarySearch( A[0..n-1], k )// 输入:已排序大小为n的序列A,待搜索对象k// 输出:如果搜索成功,则返回k的位置,否则返回-1 l=0,r=n-1;While l≤rmid= (l+r)/2if k = A[mid] return midelse if k < A[mid] r=m-1else l=m+1return -1Strassen矩阵Strassen方法M1=A11(B12-B22)M2=(A11+A12)B22M3=(A21+A22)B11M4=A22(B21-B11)M5=(A11+A22)(B11+B22)M6=(A12-A22)(B21+B22)M7=(A11-A21)(B11+B12)第五章 减治法插入排序ALGORITHM InsertionSort( A[0..n-1] )// 对给定序列进行直接插入排序// 输入:大小为n的无序序列A// 输出:按非递减排列的序列Afor i ← 1 to n-1 dotemp ← A[i]j ← i-1while j ≥ 0 and A[j] > temp doA[j+1] ← A[j]j ← j –1A[j+1] ←temp深度优先查找算法 BFS(G)//实现给定图的深度优先查找遍历//输入:图G=<V,E>//输出:图G的顶点,按照被DFS遍历第一次访问到的先后次序,用连续的整数标记,将V中的每个顶点标记为0,表示还“未访问”count =0//记录这是第几个访问的节点标记为 unvisitedmark each vertex with 0//∈ V dofor each vertex vif v is marked with 0dfs(v)dfs(v)//递归访问所有和v相连接的未访问顶点,然后按照全局变量count的值//根据遇到它们的先后顺序,给它们附上相应的数字count = count + 1mark v with countv dofor each vertexw adjacent toif w is marked with 0dfs(w)广度优先BFS(G)/实现给定图的深度优先查找遍历//输入:图G=<V,E>//输出:图G的顶点,按照被BFS遍历第一次访问到的先后次序,用连续的整数标记,将V中的每个顶点标记为0,表示还“未访问”count =0mark each vertex with 0for each vertex v∈ V dobfs(v)bfs(v)//递归访问所有和v相连接的未访问顶点,然后按照全局变量count的值//根据遇到它们的先后顺序,给它们附上相应的数字count = count + 1mark v with countinitialize queue with vwhile queue is not empty doa = front of queuefor each vertex w adjacent to a doif w is marked with 0count = count + 1mark w with countadd w to the end of the queueremove a from the front of the queue拓扑排序第六章 变治法Gauss消去法GaussElimination(A[1..n], b[1..n])// 输入:系数矩阵A及常数项 b// 输出:方程组的增广矩阵等价的上三角矩阵for i=1 to n doA[i][n+1] =b[i]for j= i+1 to n dofor k = i to n+1 do– A[i][k]*A[j][i]/A[i][i]A[j][k] = A[j][k]堆排序堆排序主要包括两个步骤:对于给定的数组构造相应的堆。
(陈慧南 第3版)算法设计与分析——第6章课后习题答案
⑥ 选择作业 1,则 X 6, 2,3,5,1 。将其按照期限 di 非减次序排列可
得:
ID
di
5
1
6
2
3
3
1
3
2
4
作业5
作业3 作业2
-1
0
1
2
3
4
作业6 作业1(冲突)
该集合无可行排序,因此 X 6, 2,3,5,1 不可行, X 6, 2,3,5 ;
3
⑦ 选择作业 0,则 X 6, 2,3,5, 0 。将其按照期限 di 非减次序排列
可得:
ID
di
5
1
0
1
6
2
3
3
2
4
作业5
作业3 作业2
-1
0
1
2
3
4
作业0(冲突)作业6
该集合无可行排序,因此 X 6, 2,3,5, 0 不可行,X 6, 2,3,5 ;
⑧ 选择作业 4,则 X 6, 2,3,5, 4 。将其按照期限 di 非减次序排列
可得:
ID
Hale Waihona Puke di516
12,5,8,32, 7,5,18, 26, 4,3,11,10, 6 。请给出最优存储方案。
解析:首先将这 13 个程序按照程序长度非降序排列,得:
程序 ID
9 8 1 5 12 4 2 11 10 0 6 7 3
程序长度 ai 3 4 5 5 6 7 8 10 11 12 18 26 32
根据定理可知,按照程序编号存放方案如下:
解析:已知 Prim 算法时间复杂度为 O n2 ,受顶点 n 影响;
Kruskal 算法时间复杂度为 O m logm ,受边数 m 影响;
第7章 减治法(《算法设计与分析(第3版)》C++版 王红梅 清华大学出版社)
比较对象,若 k 与中间元素相等,则查找成功;若 k 小于中间元素,则在中间元
算 法 设
计
素的左半区继续查找;若 k 大于中间记录,则在中间元素的右半区继续查找。不
与 分
析
断重复上述过程,直到查找成功,或查找区间为空,查找失败。
( 第
版 )
k
清 华
大
学
[ r1 … … … rmid-1 ] rmid [ rmid+1 … … … rn ] (mid=(1+n)/2)
Page 4
3
7.1.2 一个简单的例子——俄式乘法
【问题】俄式乘法(russian multiplication)用来计算两个正整数 n 和 m 的乘积
,运算规则:如果 n 是偶数,计算 n/2×2m;如果 n 是奇数,计算(n-1)/2×2m+
m;当 n 等于 1 时,返回 m 的值。
算
法
俄式乘法的优点?
与 分 析
2. 测试查找区间[low,high]是否存在,若不存在,则查找失败,返回 0;
( 第
3. 取中间点 mid = (low+high)/2; 比较 k 与 rmid,有以下三种情况:
版 )
3.1 若 k < rmid,则 high = mid - 1;查找在左半区进行,转步骤2;
清 华
3.2 若 k > rmid,则 low = mid + 1;查找在右半区进行,转步骤2;
Page 12
7.2.2 选择问题
【想法】假定轴值的最终位置是 s,则: (1)若 k=s,则 rs 就是第 k 小元素; (2)若 k<s,则第 k 小元素一定在序列 r1 ~ rs-1 中; (3)若 k>s,则第 k 小元素一定在序列 rs+1 ~ rn 中。
谈谈方法第六部分解析 -回复
谈谈方法第六部分解析-回复方法第六部分解析乃是以推理与研究为主题,我将在下文中逐步回答相关问题。
推理是思维过程中的一种重要工具,它可以帮助我们从一系列已知事实或假设出发,得出一些可能的结论或解释。
推理需要根据逻辑规则进行,以便确保得出的结论是合理和准确的。
在研究过程中,推理被广泛应用于问题的解决、新知识的构建和理论的发展等方面。
那么,推理的方法有哪些呢?1. 归纳推理:归纳推理通过从具体的案例或观察中总结一般规律,从而推导出普遍的结论。
它可以帮助我们从有限的信息中找出普遍的规律,进而进行预测和应用。
2. 演绎推理:演绎推理是从一些已知事实或前提出发,通过逻辑推理得出结论。
它根据一定的逻辑规则,从特殊情况中推导出一般性的结论。
演绎推理是严密和准确的,可以用于证明和解决问题。
3. 反证法:反证法是一种常用的推理方法,它通过假设所要证明的结论为假,然后推导出一个与已知事实或前提相矛盾的结论,从而得出所要证明的结论为真的结论。
反证法在证明某些命题时非常有效。
4. 归谬法:归谬法是一种通过推理将论证的对立面谬误化的方法。
它通过逻辑推理找出论证中的漏洞或谬误,从而削弱或反驳对立立场的论据。
归谬法可以帮助我们理解问题,并从中提炼出正确的观点。
除了以上几种方法,推理还可以与统计学、实证研究等方法相结合,以增加推理的准确性和可靠性。
例如,我们可以将归纳推理与实证研究相结合,通过大量的观察数据来验证归纳得出的结论的普遍性。
在进行推理时,我们需要注意以下几点:1. 逻辑思维的训练:逻辑思维是推理的基础,我们需要通过学习和训练逻辑思维,熟悉常见的逻辑规则和谬误,以便能够准确地进行推理。
2. 搜集和分析信息:在进行推理之前,我们需要搜集和分析相关的信息。
只有了解了问题的背景和相关的事实,才能进行有根据的推理。
3. 正确运用推理方法:在进行推理时,我们需要根据具体情况选择合适的推理方法。
不同的问题可能需要不同的推理方法来解决,我们需要根据问题的特点来合理运用推理方法。
北师大版必修三2.1 算法的基本思想祥解
短除法可以使这个过程更清晰.
2 936 2 468 2 234 3 117 3 39
13
【例3】 设计算法,求840与1764的最大公 因数.
解:第一步,将840分解质因数:840=23×3 × 5 × 7; 第二步,将1764分解质因数:1764=22×3×72;
第三步,确定它们的公共质因数:2、3、7; 第四步,确定公共质因数的指数:2、1、1; 第五步,最大公因数为:22×3×7= 84.
一般而言,我们将解决某类问题的一系列 步骤或程序称为算法。
【例1】在中央电视台的《幸运52》节目中,要求参 与者快速猜出物品的价格。主持人出示某件物品,参 与者每次估算出一个价格,主持人只能回答高了、低 了或者正确。在某次节目中,主持人出示了一台价值 在1000元以内的随身听,并开始了竞猜。下面是主 持人和参与者的一段对话:
第四步:若|a-b|<0.1,计算终止,输出x*= x0, 否则转到第二步.
1.625
【例4】“韩信点兵”问题
【例5】思考以下问题的算法:
一位商人有9枚银元,其中有1枚略轻的是假银元。 你能用天平(不用砝码)将假银元找出来吗?
另外算法:
解: 1.把银元分成3组,每组3枚。
2.先将两组分别放在天平的两边。如果天 平不平衡,那边假银元就放在轻的那一组; 如果天平左右平衡,则假银元就在末称的 第3组里。
80400元0元!! 600元!
高了 低了 高了
参与者
………………….
如果你是参与者,你接下来会怎么猜?
主持人:李咏
方法:(已知价格在1000元以内)
1.报出首次价格T1; 2.根据回答确定价格区间: (1)若T1低于价格P,则价格区间为(T1,1000); (2)若T1高于价格P,则价格区间为(0,T1); (3)若T1等于价格P,则游戏结束. 3.若没结束,则报出上面确定的价格区间的中点T2.
教材全解青岛版九年级数学下册第六章检测题及答案解析
第6章 事件的概率检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.(2015·浙江舟山中考)质检部门为了检测某品牌电器的质量,从同一批次共10 000件产品中随机抽取100件进行检测,检测出次品5件.由此估计这一批次产品中的次品件数是( ) A.5B.100C.500D.10 0002.已知一个样本的数据个数是,在样本的频率分布直方图中各个小长方形的高的比依次为,则第二小组的频数为( )A .4B .12C .9D .8 3. (2014•北京中考)如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是( )A .16B .14C .13D .124. 下列说法正确的是( ) A .在一次抽奖活动中,“中奖的概率是1100”表示抽奖100次就一定会中奖 B .随机抛一枚硬币,落地后正面一定朝上C .同时掷两枚质地均匀的骰子,朝上一面的点数和为6D .在一副没有大、小王的扑克牌中任意抽一张,抽到的牌是6的概率是1135.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为( ) A.2 B.4 C.12 D.16 6.(2014•杭州中考)让图中两个转盘分别自由转动一次,当转盘 停止转动时,两个指针分别落在某两个数所表示的区域,则这 两个数的和是2的倍数或是3的倍数的概率等于( ) A .316B .38C .58D .13167.(2015·海南中考)某校开展“文明小卫士”活动,从学生会“督查部”的3名学生(2男1女)中随机选两名进行督导,则恰好选中两名男生的概率是( )A. B. C. D.第3题图第6题图8.某市民政部门五一期间举行“即开式福利彩票”的销售活动,发行彩票10万张(每张彩票2元),在这次彩票销售活动中,设置如下奖项:奖金(元)100050010050102数量(个)1040150400100010000如果花2元钱买1张彩票,那么所得奖金不少于50元的概率是()A. B. C. D.9.航空兵空投救灾物资到指定的区域(大圆)如图所示,若要使空投物资落在中心区域(小圆)的概率为,则小圆与大圆的半径比值为()A. B.4 C. D.210.青青的袋中有红、黄、蓝、白球若干个,晓晓又放入5个黑球,通过第9题图多次摸球试验,发现摸到红球、黄球、蓝球、白球的频率依次为30%、15%、40%、10%,则青青的袋中大约有黄球()A.5个B.10个C.15个D.30个二、填空题(每小题3分,共24分)11.(2015·四川资阳中考)某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表.已知该校全体学生人数为1 200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有________人.0~1 1~2(不含1)2~3(不含2)超过3 每周课外阅读时间(小时)人数7 10 14 1912.在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球.每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球实验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是.13.为了解小学生的体能情况,抽取了某小学同年级50名学生进行跳绳测试,将所得数据整理后,画出频率分布直方图,已知图中从左到右各小组的频率分别是,,,,则第四小组的频率是_____,频数是______.14.对某班的一次数学测验成绩进行统计分析,各分数段的人数如图所示(分数取正整数,满分为100分).请根据图形回答下列问题:该班有名学生,70~79分这一组的频数是 ,频率是 .15.(2015·山西中考)现有两个不透明的盒子,其中一个装有标号分别为1,2的两张卡片,另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同.若从两个盒子中各随机抽取一张卡片,则两张卡片标号恰好相同的概率是 . 16.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下: 种子粒数 100 400 800 1 000 2 000 5 000 发芽种子粒数 85 318 652 793 1 604 4 005 发芽频率0.8500.7950.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率约为_________(精确到 0.1). 17.如图所示,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面 上均匀地撒一把豆子,则豆子落在阴影部分的概率是_________.18. 有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡 片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放, 从中任意抽取一张,抽到有中心对称图案的卡片的概率是________.三、解答题(共46分)19.(6分)在对某班的一次英语测验成绩进行统计分析中,各分数段的人数如图所示(分数取正整数,满分分).(1)该班有多少名学生? (2)分这一组的频数是多少?频率是多少?20.(6分)(2015•湖北襄阳中考)为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛,赛后组委会整理参赛同学的成绩,并制作了如下不完整的频数分布表和频数分布直方图.分数段(分数为x 分) 频数 百分比 60≤x <70 8 20% 70≤x <80 a 30% 80≤x <90 16 b % 90≤x <100410%第17题图第20题图请根据图象提供的信息,解答下列问题:(1)表中的a=_______,b=_________,请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是________;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学,学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为_______.21.(6分)(2014•成都中考)第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率.(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.22.(6分)随着我国汽车产业的发展,城市道路拥堵问题日益严峻.某部门对15个城市的交通状况进行了调查,得到的数据如下表所示:城市项目北京太原杭州沈阳广州深圳上海桂林南通海口南京温州威海兰州中山上班花费时间(分钟)523334344846472324243725242518上班堵车时间(分钟)1412121212111177665550(1)根据上班花费时间,将下图所示的频数分布直方图补充完整;(2)求15个城市的平均上班堵车时间(计算结果保留一位小数);(3)规定:城市的堵车率=×100%.比如:北京的堵车率=×100%≈36.8%;沈阳的堵车率=×100%≈54.5%.某人欲从北京、沈阳、上海、温州四个城市中任意选取两个作为出发目的地,求选取的两个城市的堵车率都超过30%的概率.23.(7分)(2015·安徽中考)A ,B ,C 三人玩篮球传球游戏,游戏规则是:第一次传球由A 将球随机地传给B ,C 两人中的某一人,以后的每一次传球都是由上次的接球者将球随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B 手中的概率; (2)求三次传球后,球恰在A 手中的概率.24.(7分)(2014•武汉中考)袋中装有大小相同的2个红球和2个绿球. (1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球. ①求第一次摸到绿球,第二次摸到红球的概率; ②求两次摸到的球中有1个绿球和1个红球的概率.(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和 1个红球的概率是多少?请直接写出结果.25.(8分)小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,她们共做了60次试验,实验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据上述试验,一次试验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次”.小颖和小红的说法正确吗?为什么?第6章 事件的概率检测题参考答案1. C 解析:估计这一批次产品中的次品件数=10 000×5100=500(件). 2.B 解析:因为各个小长方形的高的比依次为,所以第二小组的频率为,所以第二小组的频数为,故选B .3. D 解析:这6张扑克牌中点数为偶数的有3张,根据概率计算公式得到点数为偶数的概率为3162. 4.D5.B 解析:设黄球的个数为,则由题意得,解得.6.C 解析:两个指针分别落在某两个数所表示的区域,两个数的和的各种可能性列表如下:朝上的点数 1 2 3 4 5 6出现的次数 7 9 6 8 20 10由表格知共有16种结果,其中两个数的和是2的倍数的结果有8种;两个数的和是3的倍数的结果有5种;既是2的倍数,又是3的倍数的结果有3种,故两个数的和是2的倍数或是3的倍数的结果有10种.根据概率计算公式得P =105168=.7. A 解析:画树状图如图所示.∵共有6种等可能的结果,其中恰好选中两名男学生有2种,∴恰好选中两名男学生的概率为2163=. 8. D 解析:10万张彩票中设置了10个1 000元,40个500元,150个100元,400个50元的奖项,所以所得奖金不少于50元的概率为.9. C 解析:由题意可知小圆的面积是大圆面积的,从而小圆的半径是大圆半径的. 10.C 解析:由于知道有5个黑球,又黑球所占的比例为1-30%―15%―40%―10%=5%,所以袋中球的总数为5÷5%=100(个),从而黄球的数量为100×15%=15(个). 11. 240 解析:被调查的学生人数为7+10+14+19=50(人),样本中每周课外阅读时间在1~2(不含1)小时的学生所占的百分比为10010%20%50,由此来估计全体学生1 200人中每周课外阅读时间在1~2(不含1)小时的学生人数为1 200×20%=240(人).12.10 解析:由题意可得=0.2,解得n =10.两数和第 二 个12341 2 3 4 5 2 3 4 5 6 3 4 5 6 7 45678第 一 个第7题答图13.0.210解析:已知图中从左到右前三个小组的频率分别是则第四小组的频率,频数是14.60180.3解析:该班有学生,70~79分这一组的学生人数为18,所以频数是18,频率为.15.解析:(方法1)列表法:第一盒第二盒1 21 1,1 1,22 2,1 2,23 3,1 3,2共有6种情况,两张卡片标号恰好相同的情况有2种,所以P(两张卡片标号恰好相同).(方法2)画树状图如图所示:共有6种情况,两张卡片标号恰好相同的情况有2种,所以P(两张卡片标号恰好相同).16.0.8解析:由表知,玉米种子发芽的频率在0.8左右摆动,并且随着统计量的增加这种规律逐渐明显,所以可以把0.8作为该玉米种子发芽概率的估计值.17.12解析:由图可知阴影部分的面积是大圆面积的一半,所以豆子落在阴影部分的概率是12.18. 45解析:在圆、等腰三角形、矩形、菱形、正方形5种图形中,只有等腰三角形不是中心对称图形,所以抽到有中心对称图案的卡片的概率是4 5 .19.解:(1)答:该班有60名学生.(2)由题图,知分这一组的频数是,频率是34÷60=.20.解:(1)12 40补全频数分布直方图如图.(2)108°第15题答图(3)21. 解:(1)P (选到女生)=123205=.(2)不公平. 画树状图如图:列表如下:第二张和第一张2 3 4 52 5 6 73 5 7 84 6 7 9 5789任取2张,牌面数字之和的所有可能为:5,6,7,5,7,8,6,7,9,7,8,9,共12种,其中和为偶数的有:6,8,6,8.故甲参加的概率为:P (和为偶数)=41123=, 而乙参加的概率为:P (和为奇数)=23. 因为12,33≠所以游戏不公平. 22.分析:本题考查了统计与概率的综合应用.(1)上班花费时间在30至40分钟的城市有4个,上班花费时间在40至50分钟的城市有3个;(2)每个城市平均上班堵车时间=;(3)从4个城市中任意选取两个作为出发目的地共有6种不同选择.第21题答图第20题答图解:(1)补全频数分布直方图如图所示(阴影部分).(2)15个城市的平均上班堵车时间==≈8.3(分钟). (3)上海的堵车率=×100%≈30.6%,温州的堵车率=×100%=25.0%.4个城市中堵车率超过30%的城市有北京、沈阳和上海.从四个城市中选两个的所有方法有6种:(北京,沈阳),(北京,上海),(北京,温州),(沈阳,上海),(沈阳,温州),(上海,温州).其中两个城市堵车率都超过30%的情况有3种:(北京,沈阳),(北京,上海),(沈阳,上海),所以选取的两个城市堵车率都超过30%的概率P ==.23.解:(1)两次传球的所有结果有4种,分别是A→B→C,A→B→A,A→C→B,A→C→A,每种结果发生的可能性相等,球恰在B手中的结果只有一种,所以两次传球后,第23题答图球恰在B 手中的概率是(2)由树状图可知,三次传球的所有结果有8种,每种结果发生的可能性相等.其中,三次传球后,球恰在A手中的结果有A→B→C→A,A→C→B→A这2种,所以三次传球后,球恰在A 手中的概率是=.24.解:(1)分别用R1,R2表示2个红球,G1,G2表示2个绿球,列表如下:第二次R1R2G1G2①其中第一次摸到绿球,第二次摸到红球的结果有4种, ∴ P (第一次摸到绿球,第二次摸到红球)=41=164.②其中两次摸到的球中有1个绿球和1个红球的结果有8种, ∴ P (两次摸到的球中有1个绿球和1个红球)=81=162.(2)23. 25.解:(1)“3点朝上”的频率是101606=;“5点朝上”的频率是316020=.(2)小颖的说法是错误的,因为“5点朝上”的频率最大并不能说明“5点朝上”这一事 件发生的概率最大,只有当试验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近;小红的说法也是错误的,因为事件的发生具有随机性,所以“6点朝上”的次数不一定是100次.数学试卷及试题数学试卷及试题11。
平新乔十八讲答案第五讲
解:记 为初始财富,显然效用函数 二阶可微,被罚款的效用可以写成
, .
记被抓到的可能性按比例增加为 ,罚金按比例增加为 ;记 分别为被抓到的可能性增加的倍数和罚金增加的倍数.有
,
,其中 ;
根据条件, ,我们得到结果 .罚金按比例增加在防止非法停车上更有效.
解:他的财富现值为 ,最大化问题是
得, , .
因为 ,因此,他该借贷.
[注]当第零期消费的价格是1的时候,第一期的价格是 ,于是可以用前面的最大化框架来方便理解和处理类似跨期问题.
6.2如果 ,他该储蓄还是借贷?
解:最大化问题是
得, ,
因为 ,因此,他还是该借贷.
7一个人拥有固定财富 ,并把它分配在两时期的消费中,个人的效用函数由 给出,预算约束为 ,这里 是单期利率.
5.3如果所有的资产收益都要按比例交收入税,你对5.2的回答会怎样变化?
4题和5题的答案在文件“第五讲第四、五题”.
6某消费者的效用函数为 .这里 表示其在时期0的消费开支, 表示其在时期1的消费开支.银行存贷利率相等且为 ,该消费者在 期的收入为 ,在 的收入 .问
6.1如果 ,他该储蓄还是借贷?
解:种小麦和谷子的期望效用分别记为 和 ,有
,同理可得 ;
有 ,因此他会选择种谷子.
1.2假定农民在他的土地上可以每种作物都播种一半的话,他还会选择这样做吗?请解释你的结论.
解:农民这样播种的效用记为 ,有
;
因为 ,因此他会选择这样做.
1.3怎样组合小麦和谷子才可以给这个农民带来最大的效用?
解:最大化问题是
4在固定收益率为 的资产上投资 美元,可以在两种状态时获得 ;而在风险资产上的投资在好日子收益为 ,在坏日子为 ,其中 .通过上述假定,风险资产上的投资就可以在状态偏好的框架中被加以研究.
(完整word版)人工智能 第7章 参考答案
第7章机器学习参考答案7-6 设训练例子集如下表所示:序号属性分类x1x21 T T +2 T T +3 T F -4 F F +5 F T _6 F T _请用ID3算法完成其学习过程。
解:设根节点为S,尽管它包含了所有的训练例子,但却没有包含任何分类信息,因此具有最大的信息熵。
即:H(S)= - (P(+)log2 P(+) + P(-)log2 P(-))式中P(+)=3/6,P(-)=3/6分别是决策方案为“+”或“-”时的概率。
因此有H(S)= - ((3/6)log2(3/6) + (3/6)log2(3/6))=1按照ID3算法,需要选择一个能使S的期望熵为最小的一个属性对根节点进行扩展,因此我们需要先计算S关于每个属性的条件熵:H(S|x i)= ( |S T| / |S|)* H(S T) + ( |S F| / |S|)* H(S F)其中,T和F为属性x i的属性值,S T和S F分别为x i=T或x i=F时的例子集,|S|、| S T|和|S F|分别为例子集S、S T和S F的大小。
下面先计算S关于属性x1的条件熵:在本题中,当x1=T时,有:S T={1,2,3}当x1=F时,有:S F={4,5,6}其中,S T和S F中的数字均为例子集S中的各个例子的序号,且有|S|=6,| S T |=| S F |=3。
由S T可知,其决策方案为“+”或“-”的概率分别是:P ST(+)=2/3P ST (-)=1/3因此有:H(S T)= - (P ST (+)log2 P ST (+) + P ST (-)log2 P ST (- ))= - ((2/3)log2(2/3) + (1/3)log2(1/3))=0.9183再由S F可知,其决策方案为“+”或“-”的概率分别是:P SF (+)=1/3P SF (-)=2/3则有:H (S F)= - (P SF (+)log2 P SF (+) + P SF (-)log2 P SF (- ))= - ((1/3)log2(1/3)+ (2/3)log2(2/3))=0.9183将H(S T)和H (S F)代入条件熵公式,有:H(S|x1)=(|S T|/|S|)H(S T)+ (|S F|/|S|)H(S F)=(3/6)﹡0.9183 + (3/6)﹡0.9183=0.9183下面再计算S关于属性x2的条件熵:在本题中,当x2=T时,有:S T={1,2,5,6}当x2=F时,有:S F={3,4}其中,S T和S F中的数字均为例子集S中的各个例子的序号,且有|S|=6,| S T |=4,| S F |=2。
3 1用解析法解决问题
3 1用解析法解决问题----61697c80-7154-11ec-83ef-7cb59b590d7d31用解析法解决问题第三阶段;1.用分析的方法解决问题用解析法解决问题一、教科书分析本节课是“用解析法解决问题”,是第3章第1节内容,本章侧重于运用算法解决实际问题,设计合理的算法并编程实现。
本节主要阐述解析法,该方法应用广泛,与数学学科的代数解析式相联系,结合教学要求和教材事例,本课从数学角度入口,引发学生思维迁移,解决实际问题。
分析法是解决日常生活问题的一种非常常用的方法,所以学生对这个词不会感到陌生。
您可以通过一些指导来理解它,但是应该彻底分析代码的编码和理解。
课时安排:1课时二、学术状况分析本节课内容的教学对象为高二的学生,由于他们在数学、物理等课上经常接触到解析法解决一些问题,但没有用计算编写程序来实现过。
而且他们已经对vb程序设计已经有了一定的认知,并且刚学习了程序的三大基本结构。
三、教学目标1、知识目标::1)了解分析方法,学会用分析方法分析和解决问题2)学会编写程序来实现分析方法2。
能力目标:培养学生分析、比较、迁移等能力,培养学生类比迁移思维,探索性、创造性思维3、情感目标:培养学生积极的学习态度,团结协作,勇于质疑、探索和创新四、教学重点·难点根据教学目标,确定了教学重点和难点:能够编写程序实现分析法难点:如何用解析法分析解决具体问题五、教学方法:“点拨、分析、归纳、概括”等探索式教学方法,分组合作教学方法。
六、教学过程:七、教学反思:在整个教学过程中,通过启发引导、提出问题、分析问题、解决问题等形式,充分调动学生的学习积极性。
因为学生运用分析方法解决其他学科的一些问题,小组合作,强者带动弱者,使学生在积极思考和探索中掌握新知识,完成既定的教学目标,突破重点难点。
然而,学生在将伪代码转换为源代码的过程中存在一些困难,因此他们应该加强这方面的培训。
减治法
第5章减治法(Decrease and Conquer)减治法的基本思想规模为n的原问题的解与较小规模(通常是n/2)的子问题的解之间具有关系:(1)原问题的解只存在于其中一个较小规模的子问题中;(2)原问题的解与其中一个较小规模的解之间存在某种对应关系。
由于原问题的解与较小规模的子问题的解之间存在这种关系,所以,只需求解其中一个较小规模的子问题就可以得到原问题的解。
2减治法的基本思想一旦建立了这种关系,就可以从顶至下(递归),也可以从底至上(非递归)的来运用Example, n!A top down (recursive) solutionA bottom up (iterative) solution3减治法的类型减治法有三种变种:1)减去一个常量2)减去一个常数因子3)减去的规模是可变的gcd(m, n)4减(一)治技术a problem of size nsubproblemof size n-1a solution to thesubprobleme.g., n!a solution tothe original problem5减(半) 治技术a problem of size nsubproblemof size n/2a solution to thesubprobleme.g., Binary searcha solution tothe original problem67典型的分治法subproblem 2 of size n /2subproblem 1 of size n /2a solution to subproblem 1 a solution to the original problema solution to subproblem 2a problem of size ne.g., mergesort减治与分治的区别考虑以下指数问题: 计算a n减一法Bottom-up: iterative (brute Force) Top-down:recursive分治法:减常因子法:a n= a*a*a*a*...*aa n= a n-1* a if n > 1= a if n = 1a n= a ⎣n/2 ⎦* a ⎡n/2⎤if n > 1= a if n = 1a n = (a n/2 ) 2if n is even and positive= (a(n-1)/2 ) 2 * a if n is odd and > 1 = a if n = 1O (log2n) O (n log2n)89111)2/(0)(>=⎩⎨⎧+=n n n T n T 所以,通常来说,应用减治法处理问题的效率是很高的,一般是O (log 2n)数量级。
计算方法简明教程复习题
引 论1.基于化归策略的三种基本的算法设计技术为缩减技术、校正技术、松弛技术.缩减技术的设计思想是 ,如;校正技术的设计思想是 ,如 ;松弛技术的设计思想是 ,如 .2.由计算公式32((()))ax bx cx d ax b x c x d +++=+++知,此算法运用了技术.3.设计累乘求积1ni i T a ==∏算法时,可以运用 技术.4.由计算公式322222(((())))x x x = 知:此算法运用了缩减 技术. 5.开方公式是 校正 技术的应用.第一章1.设()i x ϕ为n 次的Lagrange 插值基函数,0~ix i n =()为两两互异的 节点,则()i x ϕ= ;32()x ϕ= 0;0()ni i x ϕ==∑1 ;4(3)njj j xϕ==∑ 81(4)n ≥;若0()()()nn ii i P x x f x ϕ==∑,则()n P x 为次数 n 的插值多项式.2.20ni i y =∆=∑ .3.设()p x 、()N x 是()f x 满足同一插值条件的n 次lagrange 、N ew ton 插值多项式,则()p x =()N x ;若()f x 也是次数不超过n 的代数 多项式,则:()p x =()f x .4.设()3(1)(2)(3)f x x x x x =---,则差商[0,1,2,3]f = 0,[0,1,2,3,4]f = 3,[0,1,2,3,4,5]f = 0.5.已知32()61f x x x =++,则差商23[1,2,2,2]f = 6.6.332,01()1(1)(1)(1)1,132x x s x x a x b x x ⎧ ≤≤⎪=⎨-+-+-+ ≤≤⎪⎩ ,若()s x 是[]0,3上以0,1,3为节点的三次样条函数,则,a b ==3.7.构造插值多项式的三种基本方法是 .第二章1. Romberg 算法设计中,运用了 技术.2.复化C otes 公式与复化Simpson 公式之间存在公式 . 3.五个节点的G auss 求积公式具有阶精度;而五个节点的N ew ton C otes-公式具有阶精度.4.复化梯形求积公式具有 阶代数精度.5.Romberg (龙贝格)算法中,2n n n S T T = - . 6.已知[](1)0()()(),,,nbm ii a i f x dx Af x kfa b kξξ-==+∈∑⎰为常数,则求积公式0()()nbii ai f x dx Af x =≈∑⎰的代数精度为 阶.7.n 个节点的cot N ew ton es -公式的代数精度至少为 . 8.n 个节点的G auss 求积公式具有 阶的代数精度.第三章 1.梯形格式111((,)(,))2n n n n n n h y y f x y f x y +++=++具有阶精度.2.改进的E uler 格式是 阶的方法,其计算公式为.3.E uler 格式是 阶的方法,其计算公式为 . 4.隐式E uler 格式111(,)n n n n y y hf x y +++=+是阶的方法.5.差分格式112(,)n n n n y y hf x y +-=+是步法.第四章1. N ew ton 迭代法求方程的根时,在重根附近是 收敛的. 2.方程()0f x =求根的迭代010()()()k k k k k x x x x f x f x f x +-=--是 迭代公式.3.为求方程23(2)0x -=附近迭代1()3()k k k k f x x x f x +=-'是收敛的,其中23()(2)f x x =-. 4.“设[]1(),0,11x x xϕ=∈+,则(0)1ϕ'=,所以迭代函数不满足压缩性条件,因此[]00,1x ∀∈ ,迭代1()k k x x ϕ+=是发散的.” 此 结论 的.5.方程()0f x =求根的迭代111()()()k k k k k k k x x x x f x f x f x -+--=--是法.6.若*x 是方程()x g x =的根,且**()()0g x g x '''==,而*()0g x '''≠则迭代1()k k x g x +=是阶收敛的.7.N ew ton 迭代法求方程的根时,在单根附近是收敛的.8.设迭代函数()x ϕ在方程()x x ϕ=的根*x 的邻近有连续的二阶导数,且*()1x ϕ'<,则1()k k x x ϕ+=在*x 附近,当*()0x ϕ'≠时,是收敛的;而*()0x ϕ'= ,*()0x ϕ''≠时,是 收敛的. 9.为求方程22()0x a -=的根1()()k k k k f x x x f x +=-'是收敛的,其中22()()f x x a =-.第五、六章1.对角占优线性方程组求解,相应的 迭代法是收敛的.2.求解方程组512121012x xx x-⎧+=⎨+=⎩,使用列主元法时,此方程组变为.3.G S-迭代的迭代矩阵为 ;Jacobi迭代的迭代矩阵为 .4.方程组,其求解的G auss Seidel-迭代总是比其相应的Jacobi迭代收敛得更快.5.矩阵TA LL=,L为对角元为正的下三角矩阵是A为对称正定矩阵的条件.6.若线性方程组 ,则Gauss消去法无需选主元素.7.G auss消去法是 技术的应用.答案:大事化小,小事化了秦九昭算法第五章线性方程组的迭代法1.基本内容:迭代公式的建立及敛散性的判断2.公式:Jacobi迭代、G-S迭代公式的分量及矩阵形式3.定理:1、24.习题:2、4、55.其它:SOR方法第六章线性方程组的直接法1.基本内容:矩阵三角分解法、Gauss消去法2.定理:2、33.习题:1、3、8、104.其它:缩减技术的运用题型:选择题、判断题、计算题、设计题、综合题工具:笔、计算器引论1.基本内容:三种基本的算法设计技术及其设计思想;相关例题及其他各章中三种设计技术的运用。
算法-第2章-算法效率分析基础(李静)
2.2.2 符号О
定义1 我们把函数t(n)属于O(g(n)) ,记作t(n) ∈ O(g(n)) ; 它的成立条件是:对于所有足够大的n, t(n) 的上界由g(n) 的常数倍数所确定,也就是说,存在大于0的常数c和非负 的整数n0,使得: 对于所有的n≥ n0来说, t(n) ≤c g(n)
cg(n)
思考
• • • • P46 2T P46 4.bT P46 5T P46 6.aT
补充知识
• 渐近分析中函数比较
– f(n)∈ O(g(n)) a b; – f(n)∈ (g(n)) a b; – f(n)∈ (g(n)) a = b; – f(n)∈ o(g(n)) a < b; – f(n)∈ (g(n)) a > b.
• 无论是最差效率分析还是最优效率分析都不能提供一 种必要的信息:在“典型”或者“随机”输入的情况 下, 一个算法会具有什么样的行为。这正是平均效率 试图提供给我们信息。 • 摊销效率: 它并不适用于算法的单次运行,而是应用于 算法对同样数据结构所执行的一系列操作。
2.1.4 算法的最优、最差和平均效率
对于两个连续执行部分组成的算法,应该如何应 用这个特性呢?它意味着该算法的整体效率是由 具有较大的增长次数的部分所决定的,即它的效 率较差的部分.
பைடு நூலகம்
算法分析:加法规则
t(n, m)=t1(n)+t2 (m) ∈O(max (f (n), g (m)))
两个并列循环的例子 void example (float x[ ][ ], int m, int n, int k) { float sum [ ]; for ( int i=0; i<m; i++ ) { //x[][]中各行 sum[i] = 0.0; //数据累加 for ( int j=0; j<n; j++ ) sum[i]+=x[i][j]; } for ( i = 0; i < m; i++ ) //打印各行数据和 cout << “Line ” << i << “ : ” <<sum [i] << endl; } 渐进时间复杂度为O(max (m*n, m))
最新人教版普通高中课程标准实验教科书必修3《算法案例——辗转相除法和更相减损术》说课稿
课题:算法案例——辗转相除法和更相减损术教材:人教版普通高中课程标准实验教科书必修3第一章第1.3节1、教材分析与传统教学内容相比,《算法初步》为新增内容,算法是计算机科学的重要基础,算法思想已经渗透到社会的方方面面,算法思想也逐渐成为每个现代人应具有的数学素养。
算法思想即体现了时代的特点,也是中国古代数学灿烂的历史和巨大的贡献在新层次上的复兴。
本节内容是探究古代算法案例――辗转相除法和更相减损术,经历设计算法解决问题的全过程,体会算法在解决问题中的重要作用,体会算法的基本思想,提高逻辑思维能力,发展有条理的思考和数学表达能力,巩固算法三种描述性语言(自然语言、图形语言和程序语言),提高学生分析和解决问题的能力。
2、教学目标分析:(1)知识目标:①理解辗转相除法和更相减损术求两个正数的最大公约数的原理;②能用写算法步骤、画流程图和编程序表达辗转相除法;说明:在这里,理解案例中的新的知识是理解算法的必要的前提,但重要的是理解案例中的算法核心思想,而不是强调对案例中新知识的记忆和灵活运用。
(2)能力目标:①培养学生把具体问题抽象转化为算法语言的能力;②培养学生自主探索和合作学习的能力。
(3)情感目标:①使学生进一步了解从具体到一般思想方法。
②体会中国古代数学对世界数学的巨大贡献,培养爱国思想和学习数学的积极性。
3、教学重点与难点分析:(1)教学重点:能用写算法步骤、画流程图和编程序表达辗转相除法及更相减损术。
(体会算法解决问题的全过程)(2)教学难点:用不同逻辑结构的程序框图表达算法;4、教学方法与手段(1)、教法:阅读指导,以问题为载体,有引导的对话,让学生经历知识的形成过程和发展过程,有利于学生活动的充分展开。
(2)、学法:以观察、讨论、思考、分析、动手操作、自主探索、合作学习多种形式相结合,引导学生多角度、多层面认识事物,突破教学难点。
5、教学过程设计分析:辅助工具:ppt课件知识准备:带余除法6、评价分析:(1)、指导思想:①新知识与旧知识相结合的原则;②掌握知识与发展智力、能力相统一的原则;③教师的主导作用与学生的主体作用相结合的原则。
北航最优化教材
例1. 食谱问题
◎ 问题:确定食品数量,满足营养需求,花费最小?
n种食品,m种营养成份; -第 j 种食品的单价 -每单位第 j 种食品所含第 i 种营养的数量 -为了健康,每天必须食用第i 种营养的数量
◎ 变量: -食用第 j 种食品的数量 ◎ 模型:
4
例2. 目标函数中含绝对值的问题
假设: 事实: 转化为:
基本可行解
定义 称
的非负基本解是标准形的基
本可行解(basic feasible solution);
◆ 退化基本可行解:某个或某些基变量取零的基本可行解! 问题:基本可行解与基的对应关系?(见习题2.5)
例. 基本可行解及几何意义
基本可行解的个数不超过
线性规划的基本定理(*****)
考虑线性规划标准形,其中A是秩为m的m×n 矩阵,则以下结论成立:
将 Ax=b 的任一解 x 用非基变量表示为
确定进基变量
◎最优性定理
◎定理:BFS的提高 给定目标值为z0的非退化基本可行解,且假定存
在 j 使得 rj < 0,则 i) 如果用 aj 替换基中某列得到了新的BFS,则新解
处的目标值比 z0 严格小. ii) 如果任何替换都产生不了新的BFS,则问题无界.
基本解
基变量
一般地:
只要有m个单位列
非基变量 即可,次序可以打乱!
8
规范形的转换问题
◎ 替换问题
假设在上述规范形中,想用
⊙ 什么时候可以替换? ⊙ 替换后新规范形是什么?
转轴(pivot)
◎ 当且仅当
,可以替换
◎ 替换后,新规范形的系数
转轴公式
-转轴元(pivot element)
(完整)算法分析复习题目及答案
一。
选择题1、二分搜索算法是利用( A )实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是( A ).A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是( A )的一搜索方式。
A、分支界限法B、动态规划法C、贪心法D、回溯法4、在下列算法中有时找不到问题解的是( B )。
A、蒙特卡罗算法B、拉斯维加斯算法C、舍伍德算法D、数值概率算法5. 回溯法解旅行售货员问题时的解空间树是(B )。
A、子集树B、排列树C、深度优先生成树D、广度优先生成树6.下列算法中通常以自底向上的方式求解最优解的是( B )。
A、备忘录法B、动态规划法C、贪心法D、回溯法7、衡量一个算法好坏的标准是(C )。
A 运行速度快B 占用空间少C 时间复杂度低D 代码短8、以下不可以使用分治法求解的是(D )。
A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题9。
实现循环赛日程表利用的算法是( A )。
A、分治策略B、动态规划法C、贪心法D、回溯法10、下列随机算法中运行时有时候成功有时候失败的是(C )A 数值概率算法B 舍伍德算法C 拉斯维加斯算法D 蒙特卡罗算法11.下面不是分支界限法搜索方式的是( D )。
A、广度优先B、最小耗费优先C、最大效益优先D、深度优先12.下列算法中通常以深度优先方式系统搜索问题解的是( D )。
A、备忘录法B、动态规划法C、贪心法D、回溯法13。
备忘录方法是那种算法的变形.( B )A、分治法B、动态规划法C、贪心法D、回溯法14.哈弗曼编码的贪心算法所需的计算时间为( B ).A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)15.分支限界法解最大团问题时,活结点表的组织形式是( B )。
A、最小堆B、最大堆C、栈D、数组16.最长公共子序列算法利用的算法是( B )。
A、分支界限法B、动态规划法C、贪心法D、回溯法17.实现棋盘覆盖算法利用的算法是( A )。
算法分析与设计期末复习题
一、选择题1.一个.java文件中可以有〔〕个public类。
A.一个B.两个C.多个D.零个2.一个算法应该是〔〕A.程序B.问题求解步骤的描绘C.要满足五个根本特性D.A和C3.用计算机无法解决“打印所有素数〞的问题,其原因是解决该问题的算法违犯了算法特征中的〔〕A.唯一性B.有穷性C.有0个或多个输入D.有输出4.某校有6位学生参加学生会主席竞选,得票数依次为130,20,98,15,67,3。
假设采用冒泡排序算法对其进展排序,那么完成第二遍时的结果是〔〕A.3,15,130,20,98,67B.3,15,20,130,98,67C.3,15,20,67,130,98 D.3,15,20,67,98,1305.以下关于算法的描绘,正确的选项是〔〕A.一个算法的执行步骤可以是无限的B.一个完好的算法必须有输出C.算法只能用流程图表示D.一个完好的算法至少有一个输入6.Java Application源程序的主类是指包含有〔〕方法的类。
A、main方法B、toString方法C、init方法D、actionPerfromed方法7.找出满足各位数字之和等于5的所有三位数可采用的算法思路是〔〕A.分治法B.减治法C.蛮力法D.变治法8.在编写Java Application程序时,假设需要使用到标准输入输出语句,必须在程序的开头写上( )语句。
9.计算某球队平均年龄的部分算法流程图如下列图,其中:c用来记录已输入球员的人数,sum用来计算有效数据之和,d用来存储从键盘输入的球员年龄值,输入0时表示输入完毕。
图中空白处理框①和②处应填入的是〔〕A.①sum ←sum + d B.①sum ←sum + c②c ←c + 1②c ←c + 1C.①sum ←sum + d D.①sum ←sum + c②d ←d + 1 ②d ←d + 110.报名参加冬季越野赛跑的某班5位学生的学号是:5,8,11,33,45。
第5章减治法(完)
Page 20
第5章 减治法
2021/2/14
二叉排序树的结点结构为:
struct BiNode
{ int data; //结点的值,假设查找集合的元素为整型 BiNode *lchild, *rchild; //指向左、右子树的指针
};
算法5.2——二叉排序树的查找
BiNode * SearchBST(BiNode *root, int k) {
k
[ r1 … … … rmid-1 ] rmid [ rmid+1 … … … rn ] (mid=(1+n)/2)
如果k<rmid查找这里 如果k>rmid查找这里
Page 12
第5章 减治法
2021/2/14
14 例:查找值为 的记录的过程:
0 1 2 3 4 5 6 7 8 9 10 11 12 13
例:计算an的值,应用减治技术得到如下计算方法:
a
an
(an 2 )2
(a( n-1) 2 )2 a
n 1 n 1且是偶数 n 1且是奇数
O (log2n)
应用分治法得到an的计算方法是:
an
a
n
a 2 an
2
n 1 n 1
O (nlog2n)
Page 5
第5章 减治法
2021/2/14
5.1 减治法的设计思想
由二叉排序树的定义,在二叉排序树root中查找给定 值k的过程是: ⑴ 若root是空树,则查找失败; ⑵ 若k=根结点的值,则查找成功; ⑶ 否则,若k<根结点的值,则在root的左子树上查找; ⑷ 否则,在root的右子树上查找;
上述过程一直持续到k被找到或者待查找的子树为空, 如果待查找的子树为空,则查找失败。 ❖二叉排序树的查找效率就在于只需要查找两个子树之一。
高三数学一轮复习算法及其表示生活问题数字化的关键公开课教学讲课文档
算法的表示
2.流程图
第七页,共15页。
信息技术----解放人的脑力与体力的革命技术
四 算法的表示 练习:电脑输出任意输入的两个数 中的最大值。
文字描述算法: 输入两个数值存放在变量a和b中。 如果a>=b,就输出(显示)a的值
否则就输出(显示)b的值
开始 输入a和b
如果a>=b
是
否
显示a的值
显示b的值
结束
第八页,共15页。
信息技术----解放人的脑力与体力的革命技术
四 算法的表示
初次练习:电脑输出任意输入 的两个数中的最大值。 文字描述算法: 输入两个数值存放在变量a和b中 如果a>=b,就没有操作 否则就 让a等于b变量里存放的值 ④显示a的值
第九页,共15页。
开始 输入a和b
如果a>=b
是
第六步:中圆盘移动到最右侧的柱子上
第七步:小圆盘移动到最右侧的柱子上
第三页,共15页。
信息技术----解放人的脑力与体力的革命技术
用计算机解决问题的过程
明确 分析 描述述 问题 问题 算法
编写 程序
调试
运行
解决 问题
第四页,共15页。
信息技术----解放人的脑力与体力的革命技术
算法的表示
1.文字描述
四四 课后练习
感兴趣的同学请课后思考这样的问题,将任意输入 的三个数按照顺序显示出来如何实现,完成此流程 图。
第十四页,共15页。
信息技术----解放人的脑力与体力的革命技术
第十五页,共15页。
谢谢
显示b 的值
显示c 的值
结束
信息技术----解放人的脑力与体力的革命技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
421
2020/9/23
第六章 变治法
57
构造一个堆
• 自底向上堆构造
– 初始化一个包含n个节点的完全二叉树,按照给定顺序放 置键
– 从最后的双亲节点开始,到根为止,检查这些节点是否 满足要求,如果不满足,将父节点与最大孩子节点交换
• 自顶向下堆构造
蛮力法:时间复杂度 t(n)=2(n-1)
算法MaxMin(分治法) 的时间复杂度为3n/2-2;
simpleMaxMin的时间复 杂度为2n-2,都属于 Θ(n);
但比较一下发现, MaxMin的速度要比 simpleMaxMin的快一些!
2020/9/23
第六章 变治法
11
6.4 堆和堆排序
• 堆是一种灵巧的、部分有序的数据结构,尤其 适合用于实现优先队列,因为他对于:
算法设计与分析基础 Introduction to the Design and Analysis of Algorithms
第六章 变治法
Transform and Conquer
• 引言 • 6.1 • 6.2 • 6.3 • 6.4 • 6.5 • 6.6
本章教学内容
变治法的思想及其3种主要类型 预排序(Presorting) 高斯消去法(Gaussian Elimination) 平衡查找树(Balanced Search Trees) 堆和堆排序(Heaps and Heapsort) 霍纳法则和二进制幂(Horner’s Rule) 问题简化(Problem Reduction)
1)蛮力算法; 2)基于预排序的算法;3)分治算法。
• 6.1 -4 (P153)
解答提示 a. 排序数组,然后返回它的第一和最后元素.
假设排序的效率是O(nlogn),则该算法效率. O(nlogn)+Θ(1)+Θ(1)= O(nlogn) b.蛮力和分治都是线性的, 所以优于基于预排序的算法.
(Why?)
}
2020/9/23
第六章 变治法
9
分治算法效率的计算
2020/9/23
第六章 变治法
10
蛮力法的算法如下
算法 simpleMaxMin(A[l..r]) //用蛮力法得到数组A的最大值和最小
值 //输入:数值数组A[l..r] //输出:最大值Max和最小值Min Max=Min=A[l]; for i=l+1 to r do if A[i]>Max Max←A[i]; else if A[i]<Min Min←A[i] return Max,Min }
2020/9/23
第六章 变治法
8
• 分治算法编写伪代码,该算法同时求出一个n元数组 的最大元素和最小元素的值。
同时求出最
大值和最 小值,只 需要将原 数组一分 为二,再 使用相同 的方法找 出这两个 部分中的 最大值和 最小值, 然后经过 比较就可 以得到整 个问题的 最大值和 最小值。
算法 MaxMin(A[l..r],Max,Min) //该算法利用分治技术得到数组A中的最大值和最小值 //输入:数值数组A[l..r] //输出:最大值Max和最小值Min {if(r=l) Max←A[l];Min←A[l]; //只有一个元素时
else if r-l=1 //有两个元素时
if A[l]≤A[r]
Max←A[r]; Min←A[l]
else
Max←A[l]; Min←A[r] else //r-l>1
MaxMin(A[l,(l+r)/2],Max1,Min1); //递归解决前一部分 MaxMin(A[(l+r/)2..r],Max2,Min2); //递归解决后一部分 if Max1<Max2 Max= Max2 //从两部分的两个最大值中选择 大值 if Min2<Min1 Min=Min2; //从两部分的两个最小值中选择小 值
–变换为同样实例的不同表现——称之为改变表现 –变换为另一个问题的实例,这种问题的算法是已知的—
—称之为问题化简
2020/9/23
第六章 变治法
3
6.1 预排序
• 预排序是基于这么一种考虑:如果列表有序的 话,许多关于列表的问题更容易求解
– 例1 检验数组中元素的唯一性 – 例2 模式计算 – 例3 查找问题
2020/9/23
第六章 变治法
4
预排序(Presorting)
• 如果列表是有序的话,许多关于列表的问题更容易解决。
• 例1:检查数组中元素的唯一性(每个元素都不一样P48)
T(n)=Tsort(n)+Tscan(n) ∈ Θ(nlogn)+ Θ(n)= Θ(nlogn)
2020/9/23
第六章 变治法
– 找出一个具有最高优先级的元素(最大值) – 删除一个具有最高优先级的元素 – 添加一个元素到集合中
都能高效的实现。
2020/9/23
第六章 变治法
55
堆的概念
• 定义:一棵二叉树,树的节点中包含键(每个节点一个 键),并且满足下列条件:
– 这棵二叉树是完全二叉树 – 每个节点的键都要大于等于子女
要求
– 掌握变治法的基本思想及在常见问题中的应用。
2020/9/23
第六章 变治法
2
变治法算法思想
• 变治法都是基于变换的思想
–“变”的阶段:出于这样或那样的原因,把问题的实例 变得更容易求解
–“治”的阶段:对实例进行求解
• 变治法的3种类型
–变换为同样问题的一个更简单或者更方便的实例——称 之为实例化简
• 性质
– n个节点的堆,高度为 log 2 n
– 树的根总是包含堆的最大元素
– 堆的一个节点以及该节点的子孙也是一个堆
– 可以用数组实现堆,即从上到下,从左到右存储堆的元 素
2020/9/23
第六章 变治法
56
下标 0 1 2 3 4 5 6
值
10 5 7 4 2 1
10
10
5
7
5
7
621
21
10
5
预排序(Presorting)
模式:给定数字列表中最经常出现的一个数值,称为模式!
例2 模式计算(Computing a mode)
蛮力法如何做?
2020/9/23
第六章 变治法
6
预排序(Presorting)
2020/9/23
第六章 变治法
7
本节习题
6.1 -4 (P153) 求一个n元数组的最大元素和最小元素的值. a. 设计一个基于预排序的算法并确定它的效率类型。 b. 比较一下3种算法的效率: