1.第1课时 实数
第1课时 实数的有关概念
第1课时 实数的有关概念学案学习目标:1、 掌握实数的分类,绝对值,相反数、倒数、有效数字、科学记数法的概念及应用;2、 知道开方和乘方之间的关系,会求一个数的平方根、算术平方和立方根; 学习重点;绝对值的化简,科学记数法,有效数字 学难习点:近似数和有效数字 学习过程:活动一:知识梳理 1. 实数的分类:2. 数轴:__________________________________________________.实数和数轴上的点一一对应.3. 绝对值:在数轴上表示数a 的点到原点的距离叫数a 的绝对值,记作∣a ∣,正数的绝对值是_____________;负数的绝对值是___________;0的绝对值是0.4. 相反数:符号不同、绝对值相等的两个数,叫做互为相反数.a 的相反数是-a ,0的相反数是0.5. 有效数字:一个近似数,从_____________的数字起,到_____________止,所有的数字,都叫做这个近似数的有效数字.6. 科学记数法:把一个数写成________的形式(其中1≤a<10,n 是整数),这种记数法叫做科学记数法. 如:407000=_________,0.000043=_________. 7. 大小比较:.8. 数的乘方:求____________________叫乘方,乘方运算的结果叫幂.9. 平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根).一个正数有_____个平方根,它们___________;0只有一个平方根,它是0本身;负数_____平方根.10. 开平方:求一个数a 的平方根的运算,叫做开平方.11. 算术平方根:一般地,如果一个正数x 的平方等于a,即x 2=a ,那么这个正数x 就叫做a 的____________,0的算术平方根是0. 12. 立方根:一般地,如果一个数x 的立方等于a,即x 3=a ,那么这个数x 就叫做a 的_________(也叫做三次方根),正数的立方根是_______;负数的立方根是________;0的立方根是0. 13. 开立方:求一个数a 的立方根的运算叫做开立方.活动二:例题精讲 例1.下列运算正确的是( )A .33--=B .3)31(1-=-C 3=±D 3=-例 )A. BC. D例3.2的平方根是( )A .4 BC. D.例4.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( ) A .107.2610⨯ 元B .972.610⨯ 元C .110.72610⨯ 元D .117.2610⨯元例5.实数a b ,在数轴上对应点的位置如图所示, 则必有( ) A .0a b +> B .0a b -< C .0ab > D .0ab< 例6.(改编题)有一个运算程序,可以使:a ⊕b = n (n 为常数)时,得(a +1)⊕b = n +2, a ⊕(b +1)= n -3 现在已知1⊕1 = 4,那么2009⊕2009 = .活动三:课堂练习:1.计算2(3)-的结果是( )A .6-B .6C .9-D .9 2.方程063=+x 的解的相反数是( )A .2B .-2C .3D .-3 3.若23(2)0m n -++=,则2m n +的值为( )A .4-B .1-C .0D .44.纳米是非常小的长度单位,已知1纳米=10-6毫米,某种病毒的直径为100纳米,如将这种病毒排成1毫米长,则病毒的个数是( )A.102个 B 104个 C 106个 D 108个5.改革开放以来,我国教育事业快速发展,去年普通高校招生人数达540万人,用科学记数法表示540万人为 人6.一组有规律排列的式子:―ab 2,25a b ,―38a b ,411ab …,(ab≠0),其中第7个式子是 , 第n 个式子是 .(n 为正整数)活动四:谈一谈本节课的收获:活动五:课堂检测a 0 例5图第1课时 实数的有关概念检测案1.计算312⎛⎫- ⎪⎝⎭的结果是( )A .16B .16-C .18D .18-2.2-的倒数是( )A .12-B .12C .2D .2-3.下列各式中,正确的是( )A .3152<<B .4153<<C .5154<<D .161514<< 4.已知实数a在数轴上的位置如图所示,则化简|1|a - )A .1B .1-C .12a -D .21a -5.2-的相反数是( ) A .2 B .2- C .12 D .12-6.-5的相反数是____,-12的绝对值是=_____.7.唐家山堰塞湖是―5.12汶川地震‖形成的最大最险的堰塞湖,垮塌山体约达2037万立方米,把2037万立方米这个数用科学记数法表示为 立方米.8.写出一个有理数和一个无理数,使它们都是小于-1的数 .9.如果2()13⨯-=,则―‖内应填的实数是( )A .32B . 23C .23-D .32-10.将正整数按如图所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示实数9,则表示实数17的有序实数对是 .第4题图第1课时 实数的有关概念巩固提高案一、选择题1.计算(-2)2-(-2) 3的结果是( ) A. -4 B. 2 C. 4 D. 122.下列计算错误的是( )A .-(-2)=2 B= C .22x +32x =52x D .235()a a = 4.下列各式正确的是( )A .33--=B .326-=-C .(3)3--=D .0(π2)0-=5.下列实数中,无理数是( )B.2π C.13 D.126.估计68的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间7.巳知某种型号的纸100张厚度约为lcm ,那么这种型号的纸13亿张厚度约为( ) A .1.3×107km B .1.3×103km C .1.3×102km D .1.3×10km 二、填空题: 8.若n m ,互为相反数,=-+555n m .9.如果2180a -=,那么a 的算术平方根是 .10.若商品的价格上涨5%,记为+5%,则价格下跌3%,记作 .11.―五一‖期间,某服装商店举行促销活动,全部商品八折销售.小华购买一件标价为280元的运动服,打折后他比按标价购买节省 元.12.6月1日起,某超市开始有偿提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的13、公斤散装大米,他们选购的3只环保购物袋至少..应付给超市 元. 14.如图所示,①中多边形(边数为12)是由 正三角形―扩展‖而来的, ②中多边形是由正方形―扩展‖ 而来的, ,依此类推,则由正n 边形―扩展‖而来的多边形的边数为 .15.探索规律:根据下图中箭头指向的规律,从2004到2005再到2006,箭头的方向是( )第15题图① ② ③ ④ 第24题图第2课时 实数的运算学案学习目标:掌握有理数的运算法则和运算律,并能够熟练应用。
第一课时 实数的有关概念
[2010²巴中]下列各数:
1A. 2
,0,
,0.303003„„,
中无理数的个数为( B. 3 ,1-
B
C .Байду номын сангаас4
【解析】属于无理数的是:
,0.303 003„„, ∴选B.
【点悟】实数可分为有理数(整数、分数)和无理数,只要是整数、分数,就一定不是无 理数.
类型之二
倒数、相反数和绝对值
(1)[2011²扬州]A. 2 B. 12
18,19,20,21,22,23,24题中的预测变形3,4题.
[学生用书P1] 1.[2011²湖州]-5的相反数是( A. 5 B. -5 C.
A A
)
) D. -1 ) D.
2.[2011²义乌]-3的绝对值是( A. 3 B. -3 C.
3.[2011²广东]-2的倒数是(
A. 2 B. - 2 C.
若实数x,y满足|x-2|+(3-y)2=0,则代数式xy-x2的值为 2 【解析】由非负数的意义确定x,y的值,再求代数式xy-x2的值. 由题意得 解得 【点悟】 (1)常见的非负数有|a|,a2, (a≥0);
.
(2)若几个非负数(式)的和为零,那么这几个数(式)都为零.
精确度:一个近似数,四舍五入
到哪一位,就说这个近似数精确到哪一位.
有效数字:对于一个近似数,从左边第一个不是0的数字起到 精确到的数位 止,所有的数字都叫做这个数的有效数字.
8.平方根与立方根 平方根:如果一个数的平方等于a,那么这个数就叫做a的平方根(也叫二次方根),记 为x=± (a≥0 ) .
[学生用书P1] 类型之一 实数的概念 、sin30°中,无理数的个数为( D.4 B )
第1课时_实数
第1课时 实数【课标要求】1.有理数①理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。
②借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母)。
③理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主)。
④理解有理数的运算律,并能运用运算律简化运算。
⑤能运用有理数的运算解决简单的问题。
⑥能对含有较大数字的信息作出合理的解释和推断。
2.实数①了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。
②了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根。
③了解无理数和实数的概念,知道实数与数轴上的点一一对应。
④能用有理数估计一个无理数的大致范围。
⑤了解近似数与有效数字的概念;解决实际问题中,能用计算器进行近似计算,并按问题要求对结果取近似值。
【知识要点】1.实数的分类:实数可分为: 和 ;也可以分为: 、 和 。
◆数轴上的点和 一一对应。
2.有理数:叫做有理数。
◆整数和分数统称为有理数。
3.无理数:叫做无理数。
◆常见的几种无理数:①根号型:如35,2等开方开不尽的数。
②三角函数型:如sin60°,cos45°等。
③圆周率π型:如2π,π-1等。
④构造型:如1.121121112…等无限不循环小数。
4.相反数、倒数和绝对值: (1)若a a =, 则:a 0; (2)若a a -=,则:a 0。
5.负指数幂、零指数幂:pp aa 1=-, ()010≠=a a6.平方根、算术平方根和立方根:(1)3的平方根表示为: ; (2)3的算术平方根表示为: ; (3)3的立方根表示为: 。
◆正数有两个平方根,这两个平方根互为相反数;0的平方根是它本身;负数没有平方根。
◆正数、0、负数都只有一个立方根,正数的立方根是正数;0的立方根是它本身;负数的立方根是负数。
第1课时实数
实数的有关概念【知识梳理】一. 实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数. 有理数和无理数统称为实数.二. 相反意义的量:“加分与扣分”“上涨量与下跌量”“零上温度与零下温度”等都是具有相反意义的量.为了表示具有相反意义的量,我们可把其中一个量规定为正的,用正数来表示,而把与这个量意义相反的量规定为负的,用负数来表示 在生活中存在名种各样的量,其中有一种量,它们的属性相同(即同类量),但表示的意义相反,我们把这种量叫做相反意义的量三.有理数:整数和分数统称为有理数。
分类 定义,性质四. 数轴:规定了原点、正方向和单位长度的直线叫数轴。
实数和数轴上的点一一对应. 数轴上两个点表示的数,右边的总比左边的大. 正数大于 0,负数小于 0,正数大于负数. 任 意一个有理数,都可以用数轴上的一个点表示,但数轴上的任意一点却不一定表示一个有理 数,正有理数用原点右边的点表示,负有理数用原点左边的点表示.1、实数a b ,在数轴上对应点的位置如图所示,则必有( )A .0a b +>B .0a b -<C .0ab >D .0a b <2、已知实数a在数轴上的位置如图所示,则化简|1|a -的结果为( )A .1B .1-C .12a -D .21a -五. 相反数:在数轴上,如果两个数所对应的点位于原点的两侧,且与原点的距离相同,那么称其中一个数为另一个数的相反数(opposite number ),也称这两个数互为相反数.特别地,0 的相反数是 0.(只有符号不同、绝对值相等的两个数,叫做互为相反数)1) A. BC.2-D.22、-52表示( ) A. 2个-5的积 B. -5与2的积 C. 2个-5的和 D,52的相反数a 0 例1图第2题图六.绝对值: 在数轴上, 一个数所对应的点与原点的距离叫做这个数的绝对值(absolute value ).记作∣a ∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.(1)下列说法正确的是( )A.两个数的绝对值相等,这两个数也相等B.两个数不相等,这两个数的绝对值也不相等C.一个数等于另一个数的绝对值,这两个数相等或互为相反数D. 两个数的绝对值相等,则这两个数一定相等(2)使等式│-5-x │=│-5│+│x │成立的x 是( )A.任意一个数B.任意一个正数C.任意一个非正数D.任意一个非负数(3)已知A ,B ,C ,D 四点在同一条直线上,点C 是线段AB 的中点,若AB =10,BD =3.求线段CD 的长.(4).若|M|=37 |N|=31 且|m+n|=-(m+n)求 m-n 的值(5).已知|a|=1 |b|=2 |c|=3 且 a>b>c 求a+b+c 的值。
中考数学(湘教版全国通用)复习课件:第1课时 实数的有关概念
考点聚焦
归类探究
回归教材
第1课时┃ 实数的有关概念
探究四 非负数的性质的运用
命题角度: 根据非负数的性质求值.
例4 (1)[2012·长沙] 若实数a,b满足|3a-1|+b2=0, 则ab的值为_____1___.
解析
依题意a=13,b=0,∴ab=130=1.
依题意a=13,b=0,∴ab=130=1.
第1课时 实数的有关概念
第1课时┃ 实数的有关概念
考点聚焦
考点1 实数的概念及分类
1. 按定义分类:
实数
有理数
整数
分数
正整数 零
负整数
正分数 有限小数或 负分数 无限循环小数
无理数
正 负无 无理 理数 数无限不循环小数
考点聚焦
归类探究
回归教材
第1课时┃ 实数的有关概念
2. 按正负分类:
正有理数
正实数
正整数 正分数
实数
正无理数 零
负有理数
负实数
负整数 负分数
负无理数
[注意] 0既不是正数,也不是负数,但0是自然数.
考点聚焦
归类探究
回归教材
第1课时┃ 实数的有关概念
考点2 实数的有关概念 1. 数轴的三个要素是__原__点____、_正__方__向___、_单___位__长__度___.
归类探究
回归教材
第1课时┃ 实数的有关概念
(2)[2014·岳阳] 实数2的倒数是( D )
A. -12
B. ±12
C. 2
1 D.2
解析
∵2×12=1,∴实数2的倒数是12.故选D.
(3)[2014·株洲] 下列各数中,绝对值最大的数是( A )
第1课时 实数的有关概念
第1课时 实数的有关概念【知识梳理】1. 实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限 环循小数)都是有理数. 有理数和无理数统称为实数.2. 数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上的点一一对应.3. 绝对值:在数轴上表示数a 的点到原点的距离叫数a 的绝对值,记作∣a ∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.4. 相反数:符号不同、绝对值相等的两个数,叫做互为相反数.a 的相反数是-a ,0的相反数是0.5. 有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字. 6. 科学记数法:把一个数写成a×10n 的形式(其中1≤a<10,n 是整数),这种记数法叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5. 7. 大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小.8. 数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂. 9. 平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根).一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.10. 开平方:求一个数a 的平方根的运算,叫做开平方.11. 算术平方根:一般地,如果一个正数x 的平方等于a,即x 2=a ,那么这个正数x 就叫做a的算术平方根,0的算术平方根是0.12. 立方根:一般地,如果一个数x 的立方等于a,即x 3=a ,那么这个数x 就叫做a 的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0. 13. 开立方:求一个数a 的立方根的运算叫做开立方.【思想方法】数形结合,分类讨论【例题精讲】 例1.下列运算正确的是( )A .33--=B .3)31(1-=-C 3=±D 3=-例 )A . B C . D 例3.2的平方根是( )A .4BC .D .例4.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A .107.2610⨯ 元 B .972.610⨯ 元 C .110.72610⨯ 元 D .117.2610⨯元 例5.实数a b ,在数轴上对应点的位置如图所示,则必有( )1 0 b 例5图A .0a b +>B .0a b -<C .0ab >D .0ab< 例6.(改编题)有一个运算程序,可以使:a ⊕b = n (n 为常数)时,得(a +1)⊕b = n +2, a ⊕(b +1)= n -3 现在已知1⊕1 = 4,那么2009⊕2009 = . 【当堂检测】1.计算312⎛⎫- ⎪⎝⎭的结果是( )A .16B .16-C .18D .18- 2.2-的倒数是( ) A .12-B .12C .2D .2-3.下列各式中,正确的是( )A .3152<<B .4153<<C .5154<<D .161514<< 4.已知实数a在数轴上的位置如图所示,则化简|1|a -的结果为( ) A .1 B .1-C .12a -D .21a -5.2-的相反数是( ) A .2B .2-C .12D .12-6.-5的相反数是____,-12的绝对值是=_____.7.写出一个有理数和一个无理数,使它们都是小于-1的数 .8.如果2()13⨯-=,则―‖内应填的实数是( )A .32B .23C .23-D .32-【课后作业】 一、选择题1.计算(-2)2-(-2) 3的结果是( ) A. -4 B. 2 C. 4 D. 122.下列计算错误的是( )A .-(-2)=2 B= C .2+32x =52x D .235()a a =3.2008年5月27日,北京奥运会火炬接力传递活动在古城南京境内举行,火炬传递路线全程约12900m ,将12900用科学记数法表示应为( )A .0.129×105B .41.2910⨯ C .312.910⨯ D .212910⨯ 4.下列各式正确的是( )第4题图A .33--=B .326-=-C .(3)3--=D .0(π2)0-= 5.若23(2)0m n -++=,则2m n +的值为( ) A .4-B .1-C .0D .46.计算2(3)-的结果是( )A .6-B .6C .9-D .9 7.方程063=+x 的解的相反数是( )A .2B .-2C .3D .-3 8.下列实数中,无理数是( )B.2π C.13D.129.估计68的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间10.用激光测距仪测量两座山峰之间的距离,从一座山峰发出的激光经过5410-⨯秒到达另一座山峰,已知光速为8310⨯米/秒,则两座山峰之间的距离用科学记数法......表示为( ) A .31.210⨯米B .31210⨯米C .41.210⨯米D .51.210⨯米11.纳米是非常小的长度单位,已知1纳米=10-6毫米,某种病毒的直径为100纳米,如将这种病毒排成1毫米长,则病毒的个数是( )A.102个 B 104个 C 106个 D 108个12.巳知某种型号的纸100张厚度约为lcm ,那么这种型号的纸13亿张厚度约为( ) A .1.3×107km B .1.3×103km C .1.3×102km D .1.3×10km 二、填空题: 13.若n m ,互为相反数,=-+555n m .14.唐家山堰塞湖是―5.12汶川地震‖形成的最大最险的堰塞湖,垮塌山体约达2037万立方米,把2037万立方米这个数用科学记数法表示为 立方米. 15.如果2180a -=,那么a 的算术平方根是 .16.若商品的价格上涨5%,记为+5%,则价格下跌3%,记作 . 17.如果□+2=0,那么―□‖内应填的实数是______________. 18.―五一‖期间,某服装商店举行促销活动,全部商品八折销售.小华购买一件标价为280元的运动服,打折后他比按标价购买节省 元.19. 某校认真落实苏州市教育局出台的―三项规定‖,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学有_________名.20.改革开放以来,我国教育事业快速发展,去年普通高校招生人数达540万人,用科学记数法表示540万人为 人.21.一组有规律排列的式子:―ab 2,25a b ,―38a b ,411a b …,(ab≠0),其中第7个式子是 , 第n 个式子是 .(n 为正整数)22.6月1日起,某超市开始有偿提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,他们选购的3只 环保购物袋至少..应付给超市元.23.将正整数按如图所示的规律排列下去,若有序实数对 (n ,m )表示第n 排,从左到右 第m 个数,如(4,2)表示实数9, 则表示实数17的有序实数对是 . 24.如图所示, ①中多边形(边数为12)是由 正三角形―扩展‖而来的, ②中多边形是由正方形―扩展‖ 而来的, ,依此类推,则由正n 边形―扩展‖而来的多边形的边数为 . 25.探索规律:根据下图中箭头指向的规律,从2004到2005再到2006,箭头的方向是( )第2课时 实数的运算【知识梳理】1.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.2.有理数减法法则:减去一个数,等于加上这个数的相反数.3.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘; 任何数与0相乘,积仍为0.4.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除; 0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数. 5.有理数的混合运算法则:先算乘方,再算乘除,最后算加减; 如果有括号,先算括号里面的. 6.有理数的运算律:加法交换律:a+b=b+a(a b 、为任意有理数) 加法结合律:(a+b)+c=a+(b+c)(a, b,c 为任意有理数)【思想方法】数形结合,分类讨论【例题精讲】第25题图① ② ③ ④ 第24题图例1.某校认真落实苏州市教育局出台的―三项规定‖,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学其有____________名.例2.下表是5个城市的国际标准时间(单位:时)那么北京时间2006年6月17日上午9时应是( )A .伦敦时间2006年6月17日凌晨1时.B .纽约时间2006年6月17日晚上22时.C .多伦多时间2006年6月16日晚上20时 .D .汉城时间2006年6月17日上午8时.例3.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,……,按照这样的规律排列下去,则第9个图形由__________个圆组成.例4.下列运算正确的是( ) A .523=+ B .623=⨯C .13)13(2-=-D .353522-=- 例5.计算: (1) 911)1(8302+-+--+-π(2)0(tan 45π--+º(3)102)21()13(2-+--;(4)2008011(1)()3π--+-+【当堂检测】1.下列运算正确的是( )A .a 4×a 2=a 6B .22532a b a b -=C .325()a a -=D .2336(3)9ab a b =2.某市2008年第一季度财政收入为76.41亿元,用科学记数法(结果保留两个有效数字)表示为( )A .81041⨯元 B .9101.4⨯元 C .9102.4⨯元 D .8107.41⨯元北京 汉城伦敦多伦多纽约-5 例2图……例3图3.估计68的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间 4.如图,数轴上点P 表示的数可能是( ) AB.C . 3.2- D.5.计算: (1)02200960cos 16)21()1(-+--- (2))1112-⎛⎫- ⎪⎝⎭【课后作业】一、选择题1.某市今年1月份某一天的最高气温是3℃,最低气温是﹣4℃,那么这一天的最高气温比最低气温高( )A .﹣7℃B .7℃C .﹣1℃D .1℃ 2.在2008年德国世界杯足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分.若小组赛中某队的积分为5分,则该队必是 ( )A .两胜一负B .一胜两平C .一胜一平一负D .一胜两负3.扬州市旅游经济发展迅速,据扬州市统计局统计,2008年全年接待境内外游客约11370000人次,11370000用科学记数法表示为( ) A .1.137×107 B .1.137×108 C .0.1137×108 D .1137×1044.在下列实数中,无理数是( ) A .13B .CD .2275.小明和小莉出生于1998年12月份,他们的出生日不是同一天,但都是星期五,且小明比小莉出生早,两人出生日期之和是22,那么小莉的出生日期是( ) A .15号 B .16号 C .17号 D .18号6.()23-运算的结果是( )A .-6B .6C .-9D .97.(2009年武汉)) A .3-B .3或3-C .9D .38.估计30的值 ( ) A .在3到4之间 B .在4到5之间 C .在5到6之间D .在6到7之间9.若―!‖是一种数学运算符号,并且1!=1,2!=2×1=2, 3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为( )-第4题图A.5049B. 99!C. 9900D. 2!二、填空题:10.改革开放以来,我国教育事业快速发展,去年普通高校招生人数达540万人,用科学记数法表示540万人为 人.11.已知点()P x y ,位于第二象限,并且4y x +≤,x y ,为整数,写出一个..符合上述条件的点P 的坐标:12.如图,在数轴上表示到原点的距离为3个单位的点有13. 2008(1)-+_______420=-.14.2008年5月26日下午,奥运圣火扬州站的传递在一路―中国加油‖声中胜利结束,全程11.8千米,11.8千米用科学记数法表示是________米.15.计算:23-+= ;(2)(3)-⨯-= . 16.若()2240a c -+-=,则=+-c b a . 17.在函数y =x 的取值范围是____________.三、计算:(1)0(1)π-⋅sin 60°+321(2)()4-⋅(2)0113(()3---(3)9212)1(103+⎪⎭⎫ ⎝⎛-+--(4)1301()(2)39-+-+--第3课时 整式与分解因式【知识梳理】1.幂的运算性质:①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即nm n m a a a -=÷(a≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即nn n b a ab =)((n 为正整数);④零指数:10=a (a≠0);⑤负整数指数:nna a 1=-(a≠0,n 为正整数); 2.整式的乘除法:(1)几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除. (2)单项式乘以多项式,用单项式乘以多项式的每一个项.(3)多项式乘以多项式,用一个多_项式的每一项分别乘以另一个多项式的每一项.第12题图(4)多项式除以单项式,将多项式的每一项分别除以这个单项式.(5)平方差公式:两个数的和与这两个数的差的积等于这两个数的平方, 即22))((b a b a b a -=-+;(6)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去) 它们的积的2倍,即2222)(b ab a b a +±=±3.分解因式:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式.4.分解因式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法. ⑵运用公式法:公式22()()a b a b a b -=+- ; 2222()a ab b a b ±+=±5.分解因式的步骤:分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解. 6.分解因式时常见的思维误区:⑴ 提公因式时,其公团式应找字母指数最低的,而不是以首项为准. ⑵ 提取公因式时,若有一项被全部提出,括号内的项― 1‖易漏掉. (3) 分解不彻底,如保留中括号形式,还能继续分解等【例题精讲】 【例1】下列计算正确的是( )A. a +2a=3a 2B. 3a -2a=aC. a 2∙a 3=a 6 D.6a 2÷2a 2=3a 2【例2】(2008年茂名)任意给定一个非零数,按下列程序计算,最后输出的结果是( )A .mB .mC .m +1D .m -1【例3】若2320a a --=,则2526a a +-= . 【例4】下列因式分解错误的是( )A .22()()x y x y x y -=+- B .2269(3)x x x ++=+ C .2()x xy x x y +=+D .222()x y x y +=+【例5】如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行―广‖字,按照这种规律,第5个―广‖字中的棋子个数是________,第n 个―广‖字中的棋子个数是________【例6】给出三个多项式:21212x x +-,21412x x ++,2122x x -.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.【当堂检测】1.分解因式:39a a -= , _____________223=---x x x2.对于任意两个实数对(a ,b )和(c ,d ),规定:当且仅当a =c 且b =d 时,(a ,b )=(c ,d ).定义运算―⊗‖:(a ,b )⊗(c ,d )=(ac -bd ,ad +bc ).若(1,2)⊗(p ,q )=(5,0),则p = ,q = . 3. 已知a=1.6⨯109,b=4⨯103,则a 2÷2b=( )A. 2⨯107B. 4⨯1014C.3.2⨯105D. 3.2⨯1014 .4.先化简,再求值:22()()(2)3a b a b a b a ++-+-,其中22a b =-=.5.先化简,再求值:22()()()2a b a b a b a +-++-,其中133a b ==-,.【课后作业】一、选择题1.下列运算正确的是( )A.a 2·a=3aB.a 6÷a 2=a 4C.a+a=a 2D.(a 2)3=a 5 2.计算:()23ab=( )A .22a b B .23a b C .26a b D .6ab 3.下列计算正确的是( )A .623a a a ÷= B .()122--=C .()236326x x x -=-· D .()0π31-=4.下列因式分解错误的是( )A .22()()x y x y x y -=+-B .2269(3)x x x ++=+C .2()x xy x x y +=+D .222()x y x y +=+5.若的值为则2y -x 2,54,32==y x ( )A.53 B. -2 C. 553 D. 56 6.下列命题是假.命题的是( ) A. 若x y <,则x +2008<y +2008 B. 单项式2347x y -的系数是-4C. 若21(3)0,x y -+-=则1,3x y ==D. 平移不改变图形的形状和大小 7.一个正方体的表面展开图如图所示,每一个面上都写有一个整数,并且相对两个面上所写的两个整数之和都相等,那么( )A .a=1,b=5B .a=5,b=1C .a=11,b=5D .a=5,b=118. 在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( ) A .2222)(b ab a b a ++=+B .2222)(b ab ab a +-=-C .))((22b a b a b a -+=-D .222))(2(b ab a b a b a -+=-+二.填空题.9.分解因式:328m m -= .33416m n mn -=3214x x x +-= ____.33222ax y axy ax y +-= _______. =++22363b ab a . 2232ab a b a -+= ___.10.计算:31(2)(1)4a a -⋅- = .11.计算: ⎪⎭⎫⎝⎛-⋅23913x x =________;()=÷523y y ________. 12.用正三角形和正六边形按如图所示的规律 拼图案,即从第二个图案开始,每个图案都比 上一个图案多一个正六边形和两个正三角形, 则第n 个图案中正三角形的个数为 (用含n 的代数式表示).三.解答题:13.先化简,再求值:(2)(2)(2)a a a a -+--,其中1a =-.14.已知2514x x -=,求()()()212111x x x ---++的值第一个图案第二个图案第三个图案…第12题图 ab图甲第8题第4课时 分式与分式方程【知识梳理】1. 分式概念:若A 、B 表示两个整式,且B 中含有字母,则代数式BA叫做分式. 2.分式的基本性质:(1)基本性质:(2)约分:(3)通分: 3.分式运算4.分式方程的意义,会把分式方程转化为一元一次方程.5.了解分式方程产生增根的原因,会判断所求得的根是否是分式方程的增根. 【思想方法】1.类比(分式类比分数)、转化(分式化为整式)2.检验【例题精讲】1.化简:2222111x x x x x x-+-÷-+2.先化简,再求值: 22224242x x x x x x --⎛⎫÷-- ⎪-+⎝⎭,其中2x =+3.先化简11112-÷-+x x x )(,然后请你给x 选取一个合适值,再求此时原式的值.4.解下列方程(1)013522=--+xx x x (2)41622222-=-+-+-x x x x x5.一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米,则根据题意所列方程正确的是( )A. B.C. D.【当堂检测】1.当99a =时,分式211a a --的值是.2.当x 时,分式112--x x 有意义;当x 时,该式的值为0.3.计算22()ab ab 的结果为.4. .若分式方程xx k x --=+-2321有增根,则k 为( ) A. 2 B.1 C. 3 D.-25.若分式32-x 有意义,则x 满足的条件是:( ) A .0≠x B .3≥x C .3≠x D .3≤x6.已知x =2008,y =2009,求x yx 4y 5x y x 4xy5x y 2xy x 2222-+-+÷-++的值7.先化简,再求值:4xx 16x )44x x 1x 2x x 2x (2222+-÷+----+,其中22+=x8.解分式方程. (1)22011xx x -=+- (2) x 2)3(x 22x x -=--;(3)11322xx x -=--- (4)11-x 1x 1x 22=+--【课后作业】 一、选择题 1.化简分式2bab b +的结果为( ) A .1a b+ B .11a b + C .21a b +D .1ab b+ 2.要使22969m m m --+的值为0,则m 的值为( )A .m=3B .m=-3C .m=±3D .不存在 3.若解方程333-=-x mx x 出现增根,则m 的值为( ) A . 0 B .-1 C .3 D .14.如果04422=+-y xy x ,那么yx y x +-的值等于( )A .31- B . y31- C . 31 D .y31二、填空题.5.当x = 时,分式6422---x x x 的值为0.6.若一个分式含有字母m ,且当5m =时,它的值为12,则这个分式可以是 .(写出一个..即可) 7.已知432z y x ==,求分式yx zy x 32534++-= 8.若分式方程12552=-+-x ax x 的解为x =0,则a 的值为 . 9.已知分式方程k x k=++131无解,则k 的值是 . 三、解答题 10.化简: (1)211()(1)11x x x ---+ (2)24142x x +-+11.先化简,再求值:224242x x x +---,其中2x =.12.当a=2时,求1121422-÷+--a a a a 的值.13.先化简,再求值:2224124422a a a a a a⎛⎫--÷ ⎪-+--⎝⎭,其中a 是方程2310x x ++=的根.三、解分式方程.(1)01221=---x x (2) 123514-+=--+x x x x (3)163104245--+=--x x x x (4)4)25.01(11=++x x (5)52742316--=+-x x x x (6) 141112-=--+-x x x x x四、当m 为何值时,分式方程xxx m --=+-2142无解?第5课时 二次根式【知识梳理】1.二次根式:(1)定义:____________________________________叫做二次根式. 2.二次根式的化简:3.最简二次根式应满足的条件:(1)被开方数中不含有能开得尽的因数或因式. (2)根号内不含分母 (3)分母上没有根号4.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 5.二次根式的乘法、除法公式:(1a 0b 0≥≥,)(2a 0b 0≥ ,)6..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式. 【思想方法】 非负性的应用【例题精讲】 【例1x 的取值范围是( ) A .1x ≠B .0x ≠C .10x x >-≠且D .10x x ≠≥-且【例2). A .6到7之间 B .7到8之间 C .8到9之间D .9到10之间【例3】 若实数x y ,2(0y =,则xy 的值是 .【例4】如图,A ,B ,C ,D 四张卡片上分别写有52π7-,,四个实数,从中任取两张卡片.A B C D(1)请列举出所有可能的结果(用字母A ,B ,C ,D 表示); (2)求取到的两个数都是无理数的概率.【例5】计算:(1)103130tan 3)14.3(27-+︒---)(π(2)11(1)52-⎛⎫π-+-+- ⎪⎝⎭【例6】先化简,再求值:)1()1112(2-⨯+--a a a ,其中33-=a .【当堂检测】1.计算:(1032tan 60(1--+- . (2)cos45°·(-21)-2 -(22-3)0+|-32|+121- (3)023cos 304sin 60++-.2.如图,实数a 、b在数轴上的位置,化简【课后作业】 一、选择题: 1. 2的值()A .在1到2之间B .在2到3之间C .在3到4之间 D.在4到5之间2.的倒数是()A .BC .2-D .23. 下列运算正确的是()A 3=B .0(π 3.14)1-=C .1122-⎛⎫=- ⎪⎝⎭D 3=±4. 若b a y b a x +=-=,,则xy 的值为 ( )A .a 2B .b 2C .b a +D .b a - 5.下列计算正确的是( )A . 22-=-= C. 325a a a ⋅= D.22x x x-=6. )A .点PB .点QC .点MD .点N7.下列根式中属最简二次根式的是( )8. +y)2,则x -y 的值为( )A.-1B.1C.2D.39. 一个正方体的水晶砖,体积为100cm 3,它的棱长大约在( )A. 4cm~5cm 之间B. 5cm~6cm 之间C. 6cm~7cm 之间D. 7cm~8cm 之间二、填空题:1.=_________.2.的结果是.3. 若|1|0a +=,则a b -=.4= .5.函数y =x 的取值范围是________.6. 对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b =ba ba -+, 如3※2=52323=-+.那么12※4= . 7.已知等边三角形ABC 的边长为33+,则ΔABC 的周长是________8.计算:tan60°-2-2 + 20080_________ 三、解答题 : 1.计算:(1) 103130tan 3)14.3(27-+︒---)(π (2)101(1)52-⎛⎫π-+-+- ⎪⎝⎭(3)0112sin 602-⎛⎫+- ⎪⎝⎭(4)01)41.12(45tan 32)31(-++---2.先化简,再求值:33)225(423-=---÷--a a a a a ,其中第6课时 一元一次方程及二元一次方程(组)【知识梳理】1.方程、一元一次方程、二元一次方程(组)和方程(组)的解、解方程(组)的概念及解法,利用方程解决生活中的实际问题. 2.等式的基本性质及用等式的性质解方程:等式的基本性质是解方程的依据,在使用时要注意使性质成立的条件 . 3.灵活运用代入法、加减法解二元一次方程组.4.用方程解决实际问题:关键是找到―等量关系‖,在寻找等量关系时有时可以借助图表等,在得到方程的解后,要检验它是否符合实际意义. 【思想方法】方程思想和转化思想【例题精讲】例1. (1)解方程.x x+--=21152156(2)解二元一次方程组 ⎩⎨⎧=+=+27271523y x y x 解:例2.已知x =-2是关于x 的方程()x m x m -=-284的解,求m 的值. 方法1 方法2例3.下列方程组中,是二元一次方程组的是( )A. B. C. D. 例4.在 中,用x 的代数式表示y ,则y=______________.例5.已知a 、b 、c 满足⎩⎨⎧=+-=-+02052c b a c b a ,则a :b :c= .例6 .某电厂规定该厂家属区的每户居民如果一个月的用电量不超过 A 度,那么这个月这户只需交 10 元用电费,如果超过 A 度,则这个月除了仍要交 10 元用电费外,超过部分还要按每度 0.5 元交费. ①该厂某户居民 2 月份用电 90 度,超过了规定的 A 度,则超过部分应该交电费多少元(用A 表示)? .②右表是这户居民 3 月、4 月的用电情况和交费情况:根据右表数据,求电厂规定A 度为 .【当堂检测】1.方程x -=52的解是___ ___.2.一种书包经两次降价10%,现在售价a 元,则原售价为_______元. 3.若关于x 的方程x k =-153的解是x =-3,则k =_________. 4.若⎩⎨⎧-==11y x ,⎩⎨⎧==22y x ,⎩⎨⎧==c y x 3都是方程ax+by+2=0的解,则c=____. 5.解下列方程(组):(1)()x x -=--3252; (2)....x x +=-0713715023; (3)⎩⎨⎧=+=+832152y x y x ; (4)x x -+=-2114135;⎪⎩⎪⎨⎧=+=+65115y x y x ⎩⎨⎧-=+=+2102y x y x ⎩⎨⎧==+158xy y x ⎩⎨⎧=+=31y x x 032=-+y x6.当x =-2时,代数式x bx +-22的值是12,求当x =2时,这个代数式的值.7.应用方程解下列问题:初一(4)班课外乒乓球组买了两副乒乓球板,若每人付9元,则多了5元,后来组长收了每人8元,自己多付了2元,问两副乒乓球板价值多少?【课后作业】一、选择题1.在解方程()()032312=---x x 中,去括号正确的是 ( ) A .09612=+--x x B.03622=---x xC.09622=---x x .D.09622=+--x x2.几个同学在日历竖列上圈出了三个数,算出它们的和,其中错误的一个是( )A. 28B. 33C. 45D. 573.甲、乙两个工程队共有100人,且甲队的人数比乙队的人数的4倍少10人,如果设乙队的人数为x 人,则所列的方程为( )A. 1004=+x xB. 100104=-+x xC.()100104=-+x xD. 1001041=+-x x4.若2(341)3250x y y x +-+--=则x =( )A .-1B .1C .2D .-25.若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k的值为( )A.43-B.43C.34D.34-6.已知 与 是同类项,则 与 的值分别是 ( ) A.4、1 B.1、4 C.0、8 D.8、0 二、填空题7.在349x y +=中,如果26y =,那么x = .8.在方程组 中,m 与n 互为相反数,则 9.娃哈哈矿泉水有大箱和小箱两种包装,3大箱、2小箱共92瓶;5大箱、3小箱共150瓶,那么一大箱有___________瓶,一小箱有__________瓶.10.当m=______,n=______时, 是二元一次方程. 11.如果 那么 12.写出一个二元一次方程组,使这个方程组的解为x 2y 2=⎧⎨=-⎩,你所写的方程组是 .⎩⎨⎧=+=+032ny x my x .__________=x 821=+-n m y x ,53=-y x .________38=+-y x mn my x 344-yx n5m n13.一个三位数的数字和为11,十位数字是x ,个位数字是十位数字的3倍,百位数字比十位数字的2倍少1,则这个三位数是______________ . 三、解方程(组)14.35122--=+x x 15. 16. 17.四.解答题 18.已知方程 的两个解为 和 ,求 的值.第7课时 一元二次方程【知识梳理】1. 一元二次方程的概念及一般形式:ax 2+bx +c =0 (a ≠0)2. 一元二次方程的解法:①直接开平方法②配方法③公式法④因式分解法 3.求根公式:当b 2-4ac≥0时,一元二次方程ax 2+bx +c =0 (a ≠0)的两根为 4.根的判别式: 当b 2-4ac >0时,方程有 实数根.当b 2-4ac=0时, 方程有 实数根. 当b 2-4ac <0时,方程 实数根.【思想方法】1. 常用解题方法——换元法2. 常用思想方法——转化思想,从特殊到一般的思想,分类讨论的思想 【例题精讲】 例1.选用合适的方法解下列方程:(1) (x-15)2-225=0; (2) 3x 2-4x -1=0(用公式法);(3) 4x 2-8x +1=0(用配方法); (4)x 2+22x=0()()x x x x --=--320379⎩⎨⎧=+-=8372y x x y ⎩⎨⎧=-=-74143y x y x ⎩⎨⎧==333y x b kx y +=⎩⎨⎧-==271y x b k ,aacb b x 242-±-=例2 .已知一元二次方程0437122=-+++-m m mx x m )(有一个根为零,求m 的值.例3.用22cm 长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽.又问:能否折成面积是32㎝2的矩形呢?为什么?例4.已知关于x 的方程x 2―(2k+1)x+4(k -0.5)=0(1) 求证:不论k 取什么实数值,这个方程总有实数根; (2) 若等腰三角形ABC 的一边长为a=4,另两边的长b .c 恰好是这个方程的两个根,求△ABC 的周长.【当堂检测】 一、填空1.下列是关于x 的一元二次方程的有_______ ①02x 3x12=-+ ②01x 2=+③)3x 4)(1x ()1x 2(2--=- ④06x 5x k 22=++ ⑤021x x 2432=--⑥0x 22x 32=-+2.一元二次方程3x 2=2x 的解是 .3.一元二次方程(m-2)x 2+3x+m 2-4=0有一解为0,则m 的值是 . 4.已知m 是方程x 2-x-2=0的一个根,那么代数式m 2-m = . 5.一元二次方程ax 2+bx+c=0有一根-2,则bc a 4+的值为 .6.关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根, 则k 的取值范围是__________.7.如果关于的一元二次方程的两根分别为3和4,那么这个一元二次方程可以是 . 二、选择题:8.对于任意的实数x,代数式x 2-5x +10的值是一个( ) A.非负数 B.正数 C.整数 D.不能确定的数 9.已知(1-m 2-n 2)(m 2+n 2)=-6,则m 2+n 2的值是( ) A.3 B.3或-2 C.2或-3 D. 210.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) (A )x 2+4=0 (B )4x 2-4x +1=0(C )x 2+x +3=0(D )x 2+2x -1=0 三、解下方程:(1)(x+5)(x-5)=7 (2)x(x-1)=3-3x (3)x 2-4x-4=0(4)x 2+x-1=0 (6)(2y-1)2 -2(2y-1)-3=0【课后作业】 一、选择题1.下列方程中是一元二次方程的是( )A .2x +1=0B .y 2+x =1C .x 2+1=0D . 2.用配方法解方程2250x x --=时,原方程应变形为( ) A .()216x += B .()216x -= C .()229x +=D .()229x -=3.三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为( ) A .14B .12C .12或14D .以上都不对4.方程2x =x 的解是 ( )A .x =1B .x =0C . x 1=1 x 2=0D . x 1=﹣1 x 2=0 5.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B . 1k >-且0k ≠C .1k <D .1k <且0k ≠6.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ) A .213014000x x +-= B .2653500x x +-= C .213014000x x --=D .2653500x x --=二、填空题7.若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是______. 8.某种品牌的手机经过四.五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x ,根据题意列出的方程是 .9.两圆的圆心距为3,两圆的半径分别是方程0342=+-x x 的两个根,则两圆的位置关系是 .10.若方程022=+-cx x 有两个相等的实数根,则c = .11.已知:m 是方程0322=--x x 的一个根,则代数式=-22m m . 三、解方程:12.(1)(2) (3)11=+x x 2410x x +-=0132=--x x )1(332+=+x x 第6题图13.如图,利用一面墙(墙长度不超过45m ),用80m 长的篱笆围一个矩形场地.⑴怎样围才能使矩形场地的面积为750m 2?⑵能否使所围矩形场地的面积为810m 2,为什么?14.试说明:不论m 为何值,关于x 的方程2)2)(3(m x x =--总有两个不相等的实数根.第8课时 方程的应用(一)【知识梳理】1. 方程(组)的应用;2. 列方程(组)解应用题的一般步骤;3. 实际问题中对根的检验非常重要. 【注意点】分式方程的检验,实际意义的检验.【例题精讲】例1. 足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分.某队打了14场,负5场,共得19分,那么这个队胜了( )A .4场B .5场C .6场D .13场 例2. 某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能正确计算出x 、y 的是( )A .⎩⎨⎧x –y= 49y=2(x+1) B .⎩⎨⎧x+y= 49y=2(x+1) C .⎩⎨⎧x –y= 49y=2(x –1) D .⎩⎨⎧x+y= 49y=2(x –1)例3. 张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意得到的方程是( )1515115151..12121515115151..1212A B x x x x C D x x x x -=-=++-=-=--例4.学校总务处和教务处各领了同样数量的信封和信笺,总务处每发一封信都只用一张信笺,教务处每发出一封信都用3张信笺,结果,总务处用掉了所有的信封,•但余下50张信笺,而教务处用掉所有的信笺但余下50个信封,则两处各领的信笺数为x 张,•信封个数分别为第21题图第13题图y 个,则可列方程组 .今有甲、乙两个旅行团,已知甲团人数少于50人,乙团人数不超过100人.若分别购票,两团共计应付门票费1392元,若合在一起作为一个团体购票,总计应付门票费1080元. (1)请你判断乙团的人数是否也少于50人. (2)求甲、乙两旅行团各有多少人?【当堂检测】1. 某市处理污水,需要铺设一条长为1000m 的管道,为了尽量减少施工对交通所造成的影响,实际施工时,每天比原计划多铺设10米,结果提前5天完成任务.设原计划每天铺设管道xm ,则可得方程 .2. ―鸡兔同笼‖是我国民间流传的诗歌形式的数学题,•―鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔?‖解决此问题,设鸡为x 只,兔为y 只,所列方程组正确的是( ) ⎩⎨⎧=+=+100236.y x y x A 3636..2410022100x y x y B C x y x y +=+=⎧⎧⎨⎨+=+=⎩⎩⎩⎨⎧=+=+1002436..y x y x D 3.为满足用水量不断增长的需求,某市最近新建甲、乙、•丙三个水厂,这三个水厂的日供水量共计11.8万m 3,•其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万m 3.(1)求这三个水厂的日供水量各是多少万立方米?(2)在修建甲水厂的输水管道的工程中要运走600t 土石,运输公司派出A 型,B •型两种载重汽车,A 型汽车6辆,B 型汽车4辆,分别运5次,可把土石运完;或者A 型汽车3辆,B 型汽车6辆,分别运5次,也可把土石运完,那么每辆A 型汽车,每辆B 型汽车每次运土石各多少吨?(每辆汽车运土石都以准载重量满载)4. 2009年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30km 远的郊区进行抢修.维修工骑摩托车先走,15min 后,抢修车装载所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5倍,求这两种车的速度.5. 某体育彩票经售商计划用45000•元从省体彩中心购进彩票20扎,每扎1000张,已知体。
实数(第1课时)-七年级数学下册讲练课件(人教版)
故选:C.
【点评】本题考查了实数的比较大小,绝对值,注意负数的绝对值等于它的相反数.
感受中考
4.(3分)(2021•天津6/25)估计 17 的值在(
A.2和3之间
B.3和4之间
)
C.4和5之间
D.5和6之间
【解答】解:∵ 17 4.12 ,
∴ 17 的值在4和5之间.
故选:C.
)
典例分析
例1:将下列各数分别填入下列相应的括号内:
3
1
9 , , 7 , π, 16, 5, 3 8,
4
4
25, 0.3232232223
, 0,
9
无理数: 9,
3
7, π, 5, 0.3232232223
1
4
,
3
, 0, 25
有理数: 4 16, 8,
9
1
4
为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点 A,那么点 A 表示的数
是
.
(3)如图 3,网格中每个小正方形的边长为 1,若能把阴影部分剪拼成一个新的正方形,
求新的正方形的面积和边长.
解:
(1)设拼成的正方形的边长为 a,
则 a2=5,
a= 5,
即拼成的正方形的边长为 5,
故答案为: 5;
整数
有理数:
有限小数或无限循环小数
实
数
分数
含开方开不尽的数
无理数:
无限不循环小数
含有
π 的数
有规律但不循环的小数
(2)按性质分:
=﹣3 5 +3;
(4)| 6 − 2|+| 2 −1|﹣|3− 6|
第1课时 实数的概念及分类
6.2 实数第1课时 实数的概念及分类【教学目标】1.了解无理数和实数的概念,会对一组实数进行分类.2.知道实数与数轴上的点是一一对应的关系.【教学重点】无理数、实数的概念.【教学难点】无理数、实数的概念及实数与数轴上的点一一对应关系的理解. 教学过程一、组织教学,复习提问1.有理数是怎样分类的?有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数负整数零分类⎩⎪⎨⎪⎧正分数负分数或有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数零负有理数⎩⎪⎨⎪⎧负整数负分数2.把下列各数填在相应的括号里.-2,-34,-2.5,0,0.3·,1,43,227,34,12,-0.81··整数:{ }分数:{ }归纳:任何一个有理数,都可以化成有限小数或无限循环小数的形式.反之,任何一个有限小数或无限循环小数都可以写成一个分数的形式.因此,任何一个有理数都可以写成分数的形式.多媒体课件展示图1和图2及思考题:图1是由4条横线、5条竖线构成的方格网,它们相邻的行距、列距都是1.从这些纵横线相交得出的20个点(称为格点)中,我们可以选择其中4个格点作为顶点连接成一个正方形,叫做格点正方形.你能找出多少种面积互不相同的格点正方形?二、创设情境,引入新课1.创设情境.问题1:(1)有面积分别是1、4、9的格点正方形吗?分别有几个?边长是多少?(2)有面积是2的格点正方形吗?把它画出来,有几个?(3)有面积是5的格点正方形吗?把它画出来,有几个?师:请同学们认真观察、思考图1及思考题,可以互相讨论,然后回答问题.生1:面积是1的格点正方形有12个,边长是1;面积是4的格点正方形有6个,边长是2;面积是9的格点正方形有2个,边长是3.生2:如图2,四个边长为1的相邻正方形的对角线围成一个面积为2的格点正方形.师:为什么?生1:因为四个边长为1的相邻正方形的总面积为4,它们的对角线围成的格点正方形的面积是总面积的一半,所以四个边长为1的相邻正方形的对角线围成的格点正方形是一个面积为2的格点正方形.图1中有6个面积为2的格点正方形.生2:以一个面积为9的格点正方形相邻两边长的13点和23点的连线为边长依次围成的正方形是面积为5的格点正方形.师:为什么?生1:因为一个面积为9的格点正方形相邻两边长的13点和23点的连线为边长依次围成的正方形的面积等于9减去4个三角形的面积,而这4个三角形刚好拼成4个格点正方形,它们的面积为4,所以一个面积为9的格点正方形相邻两边长的13点和23点的连线为边长依次围成的正方形是面积为5的格点正方形.生2:我用面积为9的格点正方形纸,经过剪纸验证了这个格点正方形是面积为5的格点正方形.生3:可以画出4个面积为5的格点正方形.问题2:(1)一个面积为2的格点正方形边长是多少?(2)一个面积为5的格点正方形边长是多少?师:请同学们认真观察、思考,可以互相讨论,然后回答问题2.生1:正方形的面积等于边长的平方,我们已知正方形的面积,求边长,就是已知一个数的平方,求这个数.可以用开平方运算.生2:(1)设边长为x,则x2=2;因为x>0,所以x= 2.(2)设边长为x,则x2=5;因为x>0,所以x= 5.2.引入新课.问题3:2、5是怎样的数?师:请同学们结合问题1和问题2进行思考,可以互相讨论,然后回答问题3.2、5存在吗?2、5又是怎样的一个数?生:2、5分别是面积为2、5的格点正方形的边长,应当是存在的.师:下面我们来共同探究2是怎样的一个数.首先,请同学们想一想,2介于哪两个整数之间?生:因为1<2<4,所以1<2<4,即1<2<2.这说明2不能是整数.师:1和2之间的一位小数有1.1,1.2,…,1.9,那么2是其中的哪个小数呢?如何确定?生:在这九个数中找出平方最接近2的那两个小数,这两个小数是1.4和1.5.因为1.42=1.96,1.52=2.25,1.96<2<2.25,所以 1.96<2< 2.25,即1.4<2<1.5.师:这又有什么意义?生:2是介于1.4和1.5之间的一个两位小数.师:1.4和1.5之间的两位小数有1.41,1.42,…,1.49,那么2是其中的哪个小数呢?如何确定?生:同样是在这九个数中找出平方最接近2的那两个小数,这两个小数是1.41和1.42.因为1.412=1.988 1,1.422=2.016 4,1.988 1<2<2.016 4,所以 1.988 1<2< 2.016 4,即1.41<2<1.42.师:这又有什么意义?生:2是介于1.41和1.42之间的一个三位小数.师:类似地,可得1.414<2<1.415,……像上面这样逐步逼近,我们可以得到:2=1.414 213 5…它可以根据需要,想算到哪位,就可以算到哪位,即可无限继续算下去.因此,2是一个无限不循环小数,它不是有理数.同样5也是一个无限不循环小数,它也不是有理数,同学们课后可以用课本上同样的方法去探究.3.无理数的概念师:有理数包括哪些数?生:有理数包括整数和分数.师:整数和分数可以统一写成什么形式?生:整数可以看作分母为1的分数.因此,整数和分数可以统一写成分数的形式.师:这就是说,有理数总可以写成nm(m、n是正整数,且m≠0)的形式.分数能化成小数的形式吗?请同学们举例说明.有理数呢?生:3=31=3.0,12=0.5,13=0.3·,911=0.81··.分数都可以化为有限小数或无限循环小数.因此,任何有理数都可以化为有限小数或无限循环小数. 师:2=1.4142135…是无限循环小数吗?是有理数吗? 生:2不是无限循环小数,不是有理数,2是无限不循环小数. 师:今天引入一个新概念,我们把无限不循环小数叫做无理数.因此,2是无理数.此外,3=1.732050808…,33=1.44224957…,π=3.14159265…这些数都是无限不循环小数.许多开方开不尽的数都是无限不循环小数.圆周率π以及以后要学的自然对数的底等数虽然不用根号的形式表示,但它们也是无限不循环小数,它们都是无理数.师:有同学说无理数就是开方开不尽的数,对不对?生1:不对.如圆周率π不是开方开不尽的数,但它是无理数.生2:只能说开方开不尽的数是无理数,但不能说无理数就是开方开不尽的数,因为所有无限不循环小数都是无理数,不仅仅是开方开不尽的数才是无理数.师:类似的,无理数可分为正无理数与负无理数.如2、3、π是正无理数,-2、-3、-π是负无理数.4.实数的概念.师:有理数和无理数统称为实数.这样,我们认识的数的范围又扩大了.5.实数的分类.师:我们可以将实数按如下方式分类.(多媒体展示实数分类表)实数⎩⎪⎨⎪⎧有理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫正有理数零负有理数有限小数或无限循环小数无理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫正无理数负无理数无限不循环小数三、例题分析1.教师出示课本第12页练习题.师:π、64、-38都是无理数吗?生:π是无理数,64=8、-38=-2都是有理数.师:因此,用根号形式表示的数并非都是无理数,必须先认真观察计算,不能一看见用根号形式表示的数就盲目认为是无理数.师:用根号形式表示的数与无理数是怎样的关系?生:用根号形式表示的数,不一定是无理数,无理数不一定是用根号形式表示的数.师:0.213··如何写成分数的形式?生:0.213··=213-2990=211990. 2.按大小对实数进行分类.(多媒体展示分类表)师:实数还可以如何分类?为什么?生:因为有理数、无理数都有正、负之分,所以实数也可以有正、负之分,可分为正实数、负实数和零.师:有同学说实数可分为正实数、负实数.对不对?为什么?生:不对,将0遗漏了.师:请同学们注意,实数按大小分类时,不能将0遗漏.3.思考,每一个有理数都可用数轴上的一个点来表示,那无理数也能用数轴上的点表示吗?如2呢?用多媒体展示:师:以数轴上的单位长度为边作一个正方形,以原点为圆心,这个正方形对角线长为半径画弧,以数轴正半轴的交点记作A,与数轴负半轴的交点记作A′,图中点A、点A′两点分别表示什么数?生1:因为图中正方形可以看成是面积为1的格点正方形,它的对角线长就是面积为2的格点正方形的边长,因此,对角线长应是2,也就是点A表示的数是 2.生2:因为A′点在数轴负半轴上,OA′的长也是对角线长,所以A′点表示的数是- 2.师:通过以上演示,同学们发现了什么?生:无理数2、-2都能用数轴上的点来表示.师:一般地,与有理数一样,每个无理数也都可以用数轴上的一个点来表示;反过来,数轴上的点不是表示无理数就是表示有理数.所以实数和数轴上的点一一对应.四、提升练习问题:直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点A由原点到达A′,点A′表示的是什么数?师:要求出点A′表示的是什么数,同学们是怎么想的?生1:要求出点A′表示的是什么数,只要求出点A从原点沿数轴向右滚动一周到点A′的路程长度就行了.生2:我知道,就是圆的周长,圆的周长等于直径乘以π.生3:点A′表示的数是π.师:由此,无理数π也可以用数轴上的点来表示.五、课堂小结1.无理数与有理数的区别是什么?2.实数可以怎样分类?3.实数与数轴上的点有怎样的对应关系?学生回答,教师评价.。
第1课时实数的有关概念01
第1课时 实数的有关概念【知识点】有理数、无理数、实数、非负数、相反数、倒数、数的绝对值【学习目标】1.复习巩固有理数、实数的有关概念.2.了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。
3.会求一个数的相反数和绝对值,会比较实数的大小4.画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。
【学习重难点】1.有理数、无理数、实数、非负数概念;2.相反数、倒数、数的绝对值概念;3.在已知中,以非负数a 2、|a|、 a (a ≥0)之和为零作为条件,解决有关问题。
【知识梳理】一、实数1、实数:有理数和无理数统称为实数.2、无理数在理解无理数时,要抓住“无限不循环”这一时之,它包含两层意思:一是无限小数;二是不循环.二者缺一不可.归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等0 实数 负数 整数 分数 无理数有理数 正数 整数 分数 无理数 有理数 实数 无理数(无限不循环小数) 有理数 正分数负分数正整数0 负整数 (有限或无限循环小数) 整数 分数 正无理数 负无理数注意:判断一个实数的属性(如有理数、无理数),应遵循:一化简,二辨析,三判断.要注意:“神似”或“形似”都不能作为判断的标准.3、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个正数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
4、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥0注意:算术平方根与绝对值① 联系:都是非负数,2a =│a │②区别:│a │中,a 为一切实数;a 中,a 为非负数。
1.第1课时 实数的相关概念(PPT)
5. 如图,数轴上有a、b、c、d四个点,其中表示绝对值最大 的点是( D ) A. 点a B. 点b C. 点c D. 点d 第5题图
基础点巧练妙记 数学文化讲堂
安徽5年真题面对面 练习册
基础点 3
科学记数法(10年9考,仅2009年未考查)
± 1 数是它本身的数是⑪ ______ .
(2)实数a、b互为倒数⇔ab=⑫____ 1 ;
基础点巧练妙记 数学文化讲堂
安徽5年真题面对面 练习册
提分必练
2. 0的相反数是_____ 0 ,绝对值是_____ 0 . 4.
1 3. -3的相反数是______ ,倒数是______ 3 . 3 ,绝对值是______ 3
2. 相反数 (2017.1,2012.1)
(1)非零实数a的相反数为④______ -a ,0的相反数为⑤____ 0 ;
(2)实数a,b互为相反数⇔a+b=⑥____ 0 ;
(3)互为相反数的两个数分别位于数轴上原点的两侧,且到原
点的距离⑦_____ 相等 .
基础点巧练妙记 数学文化讲堂
安徽5年真题面对面 练习册
安徽5年真题面对面 练习册
提分必练
6. 把下列各数用科学记数法表示出来:
1820000=___________ 1.82×106 ;
312000000=___________ 3.12×108 ;
169.5千米=1.695 __________ ×105 米; 4640万=_________ 4.64×103 万; 5百万=__________ ; 5×106 1.03×109 . 10.3亿=____________
实数第1课时实数的有关概念教案新版华东师大版
11.2 实数第1课时 实数的有关概念1.理解无理数与实数的概念.2.知道实数与数轴上的点的一一对应关系,进一步培养数形结合的思想.3.会比较两个实数的大小.重点实数的概念.难点实数与数轴上的点一一对应的关系.一、创设情境教师多媒体课件展示、引出问题.如图,将两个边长为1的正方体分别沿对角线剪开、得到四个等腰直角三角形,即可拼成一个大正方形,容易知道,这个大正方形的面积是2,所以大正方形的边长为 2.通过观察教材第8页的计算你发现了什么?它是一个什么数?二、探究新知1.无理数与实数的概念用计算器计算:2=________,它与上面问题中的数化成小数后的形式是否一样?2既不是有限小数,也不是无限________小数,我们把它叫做无理数.在数学上已经证明,没有一个有理数的平方等于2,也就是说,2不是一个有理数.2.383 383 338…与2的数值是否类似?________,它也是一个________数.我们熟悉的圆周率π=________,它是一个________数.从上述题目中,你有什么发现?你能把数进行适当的分类吗?请在讨论交流后举手回答,不断补充完善,达成共识.最后教师予以点评讲解.(1)我们把无限不循环小数叫做无理数,例如:2,π,2.383 383 338…等都是无理数.有理数与无理数统称为实数.(2)分类:实数⎩⎪⎨⎪⎧有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数0负整数分数⎩⎪⎨⎪⎧正分数负分数无理数⎩⎪⎨⎪⎧正无理数负无理数也可以这样分:实数⎩⎪⎨⎪⎧正实数⎩⎪⎨⎪⎧正有理数正无理数0负实数⎩⎪⎨⎪⎧负有理数负无理数2.实数与数轴上的点一一对应按照计算器显示的结果,你能想象出2在数轴上的位置吗?利用教材第9页的“试一试”,让学生在讨论、合作的基础上动手操作.在数轴上能画出表示2的点,说明了一个什么问题?数轴上的任意一点必定表示一个实数;反过来,每一个实数(有理数或无理数)也都可以用数轴上的点来表示,换句话说,实数与数轴上的点一一对应.三、练习巩固1.在数1.44,-5,227,3-3,3.14,81中,无理数有( )个. A .1 B .2 C .3 D .42.与数轴上的点一一对应的数是( )A .有理数B .无理数C .实数D .整数3.实数a 在数轴上的位置如图:化简:|a -1|+(a -2)2=________.四、小结与作业小结这节课你学到了什么?有什么收获?有何疑问?与同伴交流,在学生交流发言的基础上,教师归纳总结.作业教材第11页练习第1~3题.波利亚认为,“头脑不活动起来,是很难学到什么东西的,也肯定学不到更多的东西”、“学东西最好的途径是亲自去发现它”、“学生在学习中寻求欢乐”.在本节课的教学设计中注意从学生的认知水平和亲身感受出发,创设学习情境,提高学生的积极性和学习兴趣,设计系列活动让学生经历不同的学习过程.在活动过程中让学生动手试一试,说说自己的发现并与同学交流结论,从而得出数轴上的点与实数是一一对应的关系.注意类比思考,以旧迎新.。
第1课时实数的有关概念
拓展2 在A. 1个 C. 3个
2 3
, 0, -(-5),-|-3|中,负数的 B. 2个 D. 4个
个数有( B )
2 【解析】- <0,故是负数;0不是正数, 3
也不是负数;-(-5)=5>0,故不是负数;
-|-3|=-3<0,故是负数.所以是负数的共有2个.
5.倒数 (1)定义:如果两个数的乘积等于1,我们把 其中一个数叫做另一个数的倒数.
1 (2)性质:实数a(a≠0)的倒数为 ,特别地,0 a
没有倒数,倒数是其本身的数是1或-1.
【归纳总结】A.若a、b互为倒数,则ab=1; a B.一个非零数 或a颠倒分子、分母的位置得 b b 1 到的数 或 是原数的倒数.如-4的倒数是⑨ a a 1 _______. 4
∴-2015的相反数是2015.
类型二 科学记数法 用科学记数法表示一个数时,关键是确定a和n 的值.
1.a值的确定:1≤a<10;
2.n值的确定: (1)当原数大于或等于10时,n等于原数的整 数位数减1; (2)当原数大于0小于1时,n是负整数,它的
绝对值等于原数左起第一个非零数字前所有零
的个数(含小数点前的零);
B.几个非负数的和为0,则这几
个非负数各自为0. (3)常见的非负数题目的四种类型 A.若|a|+|b|=0,则a=0,b=0; B.若a+b=0, 则a=0,b=0;
C.若a2+|b|=0,则a=0,b=0;
D.若a2+b=0,则a=0,b=0.
如何巧用绝对值的非负性求值
常考类型剖析
典例精讲 类型一 实数的相关概念 -2015 ,绝对值是______ 例1 -2015的倒数是______ 2015 , 2015 相反数_______.
第1课时 实数的有关概念(含答案)
c a 第1课时《 实数的有关概念》◆知识讲解 1.实数的分类实数⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎨⎩⎪⎪⎪⎧⎫⎨⎪⎨⎬⎪⎪⎩⎭⎩⎪⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正整数整数零负整数有理数正分数分数有限小数或无限循环小数负分数正无理数无理数无限不循环小数负无理数 实数还可分为⎧⎧⎧⎪⎪⎨⎨⎪⎩⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎪⎨⎪⎨⎩⎪⎪⎪⎩⎩正整数正有理数正实数正分数正无理数零负整数负有理数负实数负分数负无理数 2.数轴(1)数轴的三要素:原点、正方向和单位长度. (2)数轴上的点与实数一一对应.3.相反数 实数a 的相反数是-a ,零的相反数是零. (1)a 、b 互为相反数⇔a+b=0.(2)在数轴上表示相交数的两点关于原点对称.4.倒数 乘积是1的两个数互为倒数,零没有倒数. a 、b 互为倒数⇔ab=1.5.绝对值 │a│=(1)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩6.非负数像│a│、a 2a≥0)形式的数都表示非负数.7.科学记数法 把一个数写成a×10n的形式(其中1≤│a│<10,n 为整数),•这种记数法叫做科学记数法.(1)当原数大于或等于1时,n 等于原数的整数位数减1.(2)当原数小于1时,n 是负整数,•它的绝对值等于原数中左起第一个非零数字前零的个数(含小数点前的零). 8.近似数与有效数字一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到精确的数位止,所有的数字,都叫做这个数的有效数字. ◆经典例题 例1在实数-23,03.14,2π0.1010010001…(每两个1之间依次多1个0),sin30°这8个实数中,无理数有( ) A .1个 B .2个 C .3个 D .4个 例2 (1)已知a 、b 互为相反数,c 、d 互为倒数,e a+b )+12cd -2e 0的值; (2)实数a,b ,c 在数轴上的对应点如图所示,化简a+│a+b││b -c│.例3 (2007,枣庄)2007年4月,全国铁路进行了第六次大提速,•提速后的线路速度达200km/h ,共改造约6000km 的提速线路,总投资约296亿元人民币.那么,平均每千米提速线路的投资约为________亿元人民币(用科学记数法表示,保留两个有效数字).例4 已知x 、y (y 2-6y+9)=0,若axy -3x=y ,则实数a 的值是( ) A .14 B .-14 C .74 D .-74◆强化训练一、选择题 1..0.31,3π,17,0.80108中,无理数的个数为( ) A .1个 B .2个 D .3个 D .4个2.据2005年6月9日中央电视台东方时空栏目报道:•由于人类对自然资源的不合理开发与利用,严重破坏了大自然的生态平衡,目前地球上大约每45min •就有一个物种灭绝.照此 速度,请你预测,再过10年(每年以365天计算)将有大约多少个物种灭绝( ) A .5.256×106 B .1.168×105 C .5.256×105 D .1.168×1043.近似数0.03020的有效数字的个数和精确度分别是( )A .四个,精确到万分位 B .三个,精确到十万分位 C .四个,精确到十万分位 D .三个,精确到万分位4.(2006,哈尔滨)下列命题正确的是( )A .4的平方根是2B .a 的相反数是-aC .任何数都有倒数D .若│x│=2,则x=2 5.若│a│=-a ,则a 的取值范围是( )A .a>0 B .a<0 C .a≥0 D .a ≤06.(2007,乐山)如下左图所示,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若C 表示的数为1,则点A 表示的数为( ) A .7 B .3 C .-3 D .-27.已知实数a ,b 在数轴上的对应点的位置如上右图所示,且│a│>│b│,则│a│-│a+b│-│b -a│化简后得( ) A .2b+a B .2b -a C .a D .b8.如图所示,以数轴的单位长线段为边作一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A ,则点A 表示的数是( )A .112B .1.4 CD二、填空题9.已知实数a ,b 在数轴上对应的点在原点两旁,且│a│=│b│,那么a a+b =_____. 10.已知│x│=3,│y│=2,且xy<0,则x+y 的值等于______.11.(2008,山东)在2008年北京奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为4.581亿Pa 的钢材.4.581亿Pa 用科学记数法表示为______Pa (保留两位有效数字)12.(2007,烟台)如图所示,在数轴上点A 和点B 之间表示整数的点有_____个. 13.若│a -b+1│a -b )2008=_______. 14.(2006,四川乐山)若2x -3与-13互为倒数,则x=______. 15.(2007,陕西)小说《达·芬奇密码》中的一个故事里出现了一串神秘排列的数,将这串令人费解的数按从小到大的顺序排列为:1,1,2,3,5,8,…,•则这列数的第8个数是_______.16.如图是一个正方体纸盒的展开图,在其中的四个正方形内标有数字1,2,3和-3,要在其余正方形内分别填上-1,-2,按虚线折成正方形,相对而上的两数互为相反数,则A 处应填_________. 17.有若干个数,第一个数记为a 1,第2个数记为a 2,第3个数记为a 3,…,第n 个数记为a n ,若a 1=-12,从第2个数起,每个数都等于“1与前面的那个数的差的倒数”. (1)试计算:a 2=_______,a 3=________,a 4=______.(2)根据以上计算结果,请你写出:a 2008=_______,a 2010=________. 三、解答题18.已知a ,b 互为相反数,c ,d互为倒数,求2222a b a b-+19和│8b -3│互为相反数,求(ab )-2-27的值.20.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2.试求:x 2-(a+b+cd )x+(a+b )2003+(-cd )2003的值.c a第1课时《 实数的有关概念》(答案)◆例题解析 例1在实数-23,03.14,2π0.1010010001…(每两个1之间依次多1个0),sin30°这8个实数中,无理数有( ) A .1个 B .2个 C .3个 D.4个【分析】 2π,-0.1010010001…这三个数是无理数,其他五个数都是有理数.【解答】C【点拨】 对实数分类,不能只为表面形式迷惑,而应从最后结果去判断.一般来说,用根号表示的是有理数,关键在于这个形式上带根号的数的最终结果是不是无限不循环小数.同样,用三角符号表示的数也不一定就是无理数,如sin30°、tan45°等.而-0.1010010001…尽管有规律,•但它是无限不循环小数,是无理数.2π是无理数,而不是分数. 例2 (1)已知a 、b 互为相反数,c 、d 互为倒数,e a+b )+12cd -2e 0的值; (2)实数a,b ,c 在数轴上的对应点如图所示,化简a+│a+b││b -c│. 【解答】(1)依题意,有a+b=0,cd=1,e≠0a+b )+12cd -2e 0=0+12-2=-32.(2)由图知a>0,b<c<0,且│b│>│a│,∴a+b<0,b -c<0,∴a+│a+b││b -c│=a -a -b -│c│-(c -b )=a -a -b+c -c+b=0.【点评】 相反数、倒数、绝对值都是主要的概念,解答时应从概念蕴含着的数学关系式入手.含有绝对值的代数式的化简,首先要确定绝对值符号内的数或式的值是正、负还是零,然后再根据绝对值的意义把绝对值的符号去掉,第(2)•题是数形结合的题目,解题的关键在于通过观察数轴,弄清数轴上各点所表示的正负性及各实数之间的大小关系,从而才能正确地去掉绝对值符号,达到化简的目的.例3 (2007,枣庄)2007年4月,全国铁路进行了第六次大提速,•提速后的线路速度达200km/h ,共改造约6000km 的提速线路,总投资约296亿元人民币.那么,平均每千米提速线路的投资约为________亿元人民币(用科学记数法表示,保留两个有效数字).【分析】 本题既考查有理数的除法运算,又考查近似数和科学记数法以及分析问题的能力. 【解答】 296÷6000≈4.9×10-2例4 已知x 、y (y 2-6y+9)=0,若axy -3x=y ,则实数a 的值是( ) A .14 B .-14 C .74 D .-74【分析】 y -3)2均为非负数,它们的和为零,只有3x+4=0,且y -3=0,由此可求得x ,y 的值,将其代入axy -3x=y 中,即求得a 的值.【解答】(y -3)2=0∴3x+4=0,y -3=0 ∴x=-43,y=3. ∵axy -3x=y , ∴-43×3a -3×(-43)=3 ∴a=14∴选A 【点拨】 若几个非负数之和等于零,则每个非负数均等于零.这是非负数具有的一个重要性质. ◆◆强化训练答案:1.B 2.B 3.C 4.B 5.D 6.D 7.C 8.C 9.1 10.1或-1 11.4.6•×108 •12.4 13.1 14.0 15.21 16.-2 17.(1)23 3 -12 (2)-123 18.-1 19.•由已知得a=13,b=38,原式的值为37 20.1或5。
1.1实数的概念及运算
(8)、下列说法中,错误的个数是
(C )
①无理数都是无限小数;②无理数都是开方开不尽的数; ③带根号的都是无理数;④无限小数都是无理数。 A.1个; B.2个; C.3个; D.4个。
9观察下列等式
,
1 1 1 1 2 2
1 1 1 23 2 3
1 1 1 3 4 3 4
.
1 n(n, 1)
.
1 1 1 1 1 2 2 3 3 4 . n( n 1)
(3)探究并计算:
1 1 1 1 2 4 4 6 68 2006 2008
• 搞清实数的分类标准,尤其要弄懂无理数的 三种常见形式:① ;②无限不循环小数, 如0.1010010001……;③开方开不尽的数, 如 等。 2 ; tg 60 0 • 绝对值的性质——要注意正确区分数的三种 情况,尤其是负数去掉绝对值应变为其相反 数。 • 实数的大小比较应重点掌握作差法和作商法, 才能更好地有的放矢。
将以上三个等式两边分别相加得:
1 1 1 1 1 1 1 1 1 3 1 1 1 2 2 3 3 4 2 2 3 3 4 4 4
,
(1)猜想并写出:
1 1 1 1 (2)直接写出下列各式的计算结果: 1 2 2 3 3 4 2006 2007
无理数集合:{
8
;-π;0.100110001…
1
3.2
}。
中考时刻
(10上海)1.下列实数中,是无理数的为( C )
A. 3.14
1 B. 3
C.
3
D. 9
数轴、相反数、绝对值、倒数 例2 1.如图,矩形ABCD的顶点A,B在数轴上, CD = 6,点 A对应的数为-1,则点B所对应的数为 5 .
1.第1课时 实数的有关概念
A. 3
B. 4
C. 5
D. 6
11. (2019贵港14题3分)将实数3.18×10-5用小数表示为___0_.0_0_0_0_3_1_8__.
第1课时 实数的有关概念
命题点 4 平方根、算术平方根、立方根
12. (2017桂林2题3分)4的算术平方根是( B )
A. 4
B. 2 C. -2
D. ±2
A. 1
B. 2 C. -3
1
D.
3
2. (2020河池1题3分)如果收入10元记作+10元,那么支出10元记作( C )
A. +20元 B. +10元 C. -10元 D. -20元
3. (2018河池1题3分)在-2,0,1,2这四个数中,为负数的是( A )
A. -2
B. 0
C. 1
D. 2
第1课时 实数的有关概念
返回 目录
【对接教材】人教:七上第一章P1-P11,P44-P46,七下第六章P39-P62, 八上第十五章P145-P146
湘教:七上第1章P1-P14,八上第1章P18,第3章P104-P118 沪科:七上第1章P1-P13,七下第6章P1-P21
第1课时 实数的有关概念
返回思 维导图
返回 目录
第1课时 实数的有关概念
返回思 维导图
返回 目录
4. 把下列数用科学记数法表示出来.
(1)670000=_6_.7_×___1_0_5 ;
(2)0.00067=_6_.7_×__1_0_-_4 ;
(3)-0.001=__-__1_×__1_0_-_3_;
(4)423万=4_._2_3_×__1_0_6;
(5)1027亿=_1_.0_2_7_×__1_0_1_1_;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一单元 数与式
第1课时 实 数
点对点·课时内考点巩固40分钟
1. (2019河北)规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作( )
A. +3
B. -3
C. -13
D. +13
2. (2019十堰)下列实数中,是无理数的是( )
A. 0
B. -3
C. 13
D. 3
3. (2019湘潭)下列各数中是负数的是( )
A. |-3|
B. -3
C. -(-3)
D. 13
4. (2019内江)-16的相反数是( )
A. 6
B. -6
C. 16
D. -16
5. (2019深圳)-15的绝对值是( )
A. -5
B. 15
C. 5
D. -15
6. (2019徐州)-2的倒数是( )
A. -12
B. 12
C. 2
D. -2
7. (2019甘肃省卷)如图,数轴的单位长度为1,如果点A 表示的数是-1,那么点B 表示的数是(
)
第7题图
A. 0
B. 1
C. 2
D. 3
8. (2019包头)实数a、b在数轴上的对应点的位置如图所示,下列结论正确的是()
第8题图
A. a>b
B. a>-b
C. -a>b
D. -a<b
9. 2019年9月25日,北京大兴国际机场正式投入运营,其航站楼总面积约1430000平方米,其中数据1430000用科学计数法表示为()
A. 1.43×107
B. 1.43×106
C. 1.43×105
D. 143×104
10. (2019天水)自然界中的数学不胜枚举,如蜜蜂建造的蜂房既坚固又省料,其厚度为0.000073米,将0.000073用科学记数法表示为()
A. 73×10-6
B. 0.73×10-4
C. 7.3×10-4
D. 7.3×10-5
11.(2019德州)据国家统计局统计,我国2018年国民生产总值(GDP)为900300亿元.用科学记数法表示900300亿是()
A. 9.003×1012
B. 90.03×1012
C. 0.9003×1014
D. 9.003×1013
12. (2019重庆A卷)下列各数中,比-1小的数是()
A. 2
B. 1
C. 0
D. -2
13. (2019安徽)在-2,-1,0,1这四个数中,最小的数是()
A. -2
B. -1
C. 0
D. 1
14. (2019成都)比-3大5的数是()
A. -15
B. -8
C. 2
D. 8
15. (2019天津)计算(-3)×9的结果等于()
A. -27
B. -6
C. 27
D. 6
16. (2019福建)计算22+(-1)0的结果是( )
A. 5
B. 4
C. 3
D. 2
17. 实数a , b 在数轴上的对应点的位置如图所示,则a -b ________0(填“>”“<”或“=”).
第17题图
18. (2019绥化)某年一月份,哈尔滨市的平均气温约为-20 ℃,绥化市的平均气温约为-23 ℃,则两地的温差为________℃.
19. (2019陕西黑马卷)比较大小:4________13.(填“<”、“=”或“>”)
20. (2019河南)计算:4-2-1=________.
21. (2019重庆A 卷)计算:(π-3)0+(12
)-1=________. 22. 在实数-2,-5,0,π,7中,最大的一个数是________.
23. (2019临沂)计算:12
×6-tan45°=________. 24. (2019十堰)计算:(-1)3+|1-2|+38.
25.计算:25-|4-20|+(-1 5)0.
26.计算:27-|2-tan60°|+(1 2)-3.
27.计算:(-6)×(-8)-3-2-|1-3|.
28.计算:8-|4-32|+(π-3.14)0.
29.计算:-3×6-|2-2|+(π-3)0.
30.计算:8×2-2-|2-3|-4 3.
31. 计算:(-12)-2+|2-5|-3×15.
32. 计算:(-1)2020+(13)-1+|3-3|+3tan30°.
点对线·板块内考点衔接2分钟
1. (2019郴州)如图,数轴上表示-2的相反数的点是( )
第1题图
A. M
B. N
C. P
D. Q
2. (2019攀枝花)在0,-1,2,-3这四个数中,绝对值最小的数是( )
A. 0
B. -1
C. 2
D. -3
关注“初中教师园地”公众号
各科最新教学资料陆续推送中
快快告诉你身边的小伙伴们吧~
参考答案
第一节 实数
点对点·课时内考点巩固
1. B 【解析】∵向右移动记作+,∴向左移动记作-.∴向左移动3记作-3.
2. D 【解析】0、-3、13是有理数,3是无理数,故选D .
3. B 【解析】比0小的数是负数.∵|-3|=3>0,-3<0,-(-3)=3>0,13
>0,∴-3是负数. 4. C 【解析】∵只有符号不同的两个数互为相反数,∴-16的相反数是16
. 5. B
6. A 【解析】乘积为1的两个数互为倒数,∴-2的倒数为-12
. 7. D 【解析】∵A 表示的数是-1,B 在A 右侧,且间距为4个单位长度,∴B 点表示的数是-1+4=3.
8. C 【解析】由数轴得,-3<a <-2,1<b <2.∴2<-a <3,-2<-b <-1,∴-a >b ,故选C .
9. B
10. D 【解析】用科学记数法把一个绝对值大于0且小于1的数表示为a ×10n 的形式,其中1≤|a |<10,n 为负整数,其绝对值等于原数变为a 时,小数点移动的位数.∴0.000073=7.3×10-
5.
11. D 【解析】900300亿=9.003×105×108=9.003×105+8=9.003
12. D 【解析】两个负数的比较大小,绝对值大的反而小,|-2|=2,|-1|=1,2>1,∴-2<-1.
13. A 【解析】根据有理数比较大小原则,正数>0>负数,两负数比较大小,绝对值大的反而小,可知A 选项正确.
14. C 【解析】比-3大5的数是-3+5=-(3-5)=2.
15. A
16. A【解析】原式=4+1=5.
17.<【解析】由题图可知,-1<a<0,1<b<2,∴a-b<0.
18. 3【解析】由(-20)-(-23)=3可得两地的温差为3 ℃.
19.>【解析】∵4=16,16>13,∴4>13.
20.3
2【解析】原式=2-
1
2=
3
2.
21. 3【解析】原式=1+2=3.
22. π【解析】根据正数>0>负数,最大的数为π或者7,∵7<3<π,∴这组数中最大的数为π.
23.3-1【解析】原式=1
2×6-1=3-1.
24.解:原式=-1+2-1+2= 2.
25.解:原式=5-(25-4)+1=6-25+4
=10-2 5.
26.解:原式=33-(2-3)+8=33-2+3+8
=43+6.
27.解:原式=43-1
9-(3-1)
=43-1
9-3+1
=8
9+3 3.
28.解:原式=22-(32-4)+1=22-32+4+1
=5- 2.
29. 解:原式=-32-(2-2)+1
=-32-2+2+1
=-22-1.
30. 解:原式=8×14-(2-3)-233
=2-2+3-
233 =
33. 31. 解:原式=4+(5-2)-35
=4+5-2-35
=2-2 5.
32. 解:原式=1+3+3-3+3×
33
=7-3+3
=7.
点对线·板块内考点衔接
1. D
2. A 【解析】∵|0|=0,|-1|=1,|2|=2,|-3|=3,∴0的绝对值最小.。