(数学沪科版上册九年级二次函数总复习课件)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1:填空:
(1)抛物线y=x2-3x+2与y轴的交点坐 标是_____(0_,2_) _____,与x轴的交点
一、定义
二、图象特点 和性质
三、解析式的求法
四、图象位置与 a、b、c、 的 正负关系
返回 主页
一、定义
二、图象特点 和性质
一般地,如果
三、解析式的求法
y=ax2+bx+c(a,b,c
是常数,a≠0),那么,y
四、图象位置与 叫做x的二次函数。
a、b、c、 的
正负关系
返回目录
返回 主页
一、定义
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
b x=- 2a
y
0
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
(2)
a>0时,ymin=
4ac-b2 4a
a<0时,ymax=44aca-b2
返回目录
一、定义
使用
二、图象特点 和性质
一般式
三、解析式的求法
解析式
范围
y=ax2+bx+c
已知任意 三个点
四、图象位置与 a、b、c、 的 正负关系
返回 主页
已知顶点
顶点式 y=a(x-h)2+k (h,k)及
另一点
c=0 c<0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
y
b
x=- 2a
0
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
x
(3)a、b确定对称轴
b x=- 2a
a<0时,开口向下.
前进
图 26.2.4
(二) 函数性质:
(函1数)值ay>随0时x的,增对大称而轴减左小侧;(x对<-称2a轴),
右侧(x>增大 。
2a
),函数值y随x的增大而
a<0时,对称轴左侧(x<-2a),
函数值y随x的增大而增大 ;对称轴 右减侧小(。x>-2a ),函数值y随x的增大而
前进
图 26.2.1
(二) 函数性质:
(1) a>0时,y轴左侧,函
数值y随x的增大而减小 ; y 轴右侧,函数值y随x的增大而
增大 。
a<0时, y轴左侧,函
数值y随x的增大而增大 ; y轴 右侧,函数值y随x的增大而减
小。
(2) a>0时,ymin=0
a<0时,ymax=0
前进
一、定义
二、图象特点 和性质
二、图象特点 和性质
三、解析式的求法
1.特殊的二次函数
y=ax2 (a≠0)
的图象特点和函数性质
四、图象位置与 a、b、c、 的 正负关系
前进
返回 主页
图 26.2.1
(一) 图象特点:
(1)是一条抛物线; (2)对称轴是y轴; (3)顶点在原点; (4)开口方向: a>0时,开口向上; a<0时,开口向下.
y
•0 (0,c)
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
by x=- 2a
(1)a确定抛物线的开口方向:
a>0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
(1)a确定抛物线的开口方向:
a>0
a<0
y
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
0
•(x,0)
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
已知与x
交点式
y=a(x-x1)(x-x2)
轴的两个 交点及另
一个点
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
(1)a确定抛物线的开口方向:
y
0•
返回 主页
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Biblioteka Baidu
Δ>0
Δ=0 Δ<0
题型分析:
(一)抛物线与x轴、y轴的交点急所构成 的面积
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
y
•0 (0,0)
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
(1)a确定抛物线的开口方向:
a>0
a<0
y
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
• • 0
(x1,0)
x
(x2,0)
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
三、解析式的求法
2.一般二次函数
y=ax2+bx+c(a≠0)
的图象特点和函数性质
四、图象位置与 a、b、c、 的 正负关系
前进
返回 主页
图 26.2.4
(一) 图象特点:
(1)是一条抛物线;
(2)对称轴是:x=- 2a
(3)顶点坐标是:(-2a ,
4ac-b2 4a
)
(4)开口方向:
a>0时,开口向上;
0
x
(3)a、b确定对称轴x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
y
•(0,c)
0
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
a>0
a<0
y
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
(1)a确定抛物线的开口方向:
a>0
a<0
y
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
(1)抛物线y=x2-3x+2与y轴的交点坐 标是_____(0_,2_) _____,与x轴的交点
一、定义
二、图象特点 和性质
三、解析式的求法
四、图象位置与 a、b、c、 的 正负关系
返回 主页
一、定义
二、图象特点 和性质
一般地,如果
三、解析式的求法
y=ax2+bx+c(a,b,c
是常数,a≠0),那么,y
四、图象位置与 叫做x的二次函数。
a、b、c、 的
正负关系
返回目录
返回 主页
一、定义
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
b x=- 2a
y
0
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
(2)
a>0时,ymin=
4ac-b2 4a
a<0时,ymax=44aca-b2
返回目录
一、定义
使用
二、图象特点 和性质
一般式
三、解析式的求法
解析式
范围
y=ax2+bx+c
已知任意 三个点
四、图象位置与 a、b、c、 的 正负关系
返回 主页
已知顶点
顶点式 y=a(x-h)2+k (h,k)及
另一点
c=0 c<0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
y
b
x=- 2a
0
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
x
(3)a、b确定对称轴
b x=- 2a
a<0时,开口向下.
前进
图 26.2.4
(二) 函数性质:
(函1数)值ay>随0时x的,增对大称而轴减左小侧;(x对<-称2a轴),
右侧(x>增大 。
2a
),函数值y随x的增大而
a<0时,对称轴左侧(x<-2a),
函数值y随x的增大而增大 ;对称轴 右减侧小(。x>-2a ),函数值y随x的增大而
前进
图 26.2.1
(二) 函数性质:
(1) a>0时,y轴左侧,函
数值y随x的增大而减小 ; y 轴右侧,函数值y随x的增大而
增大 。
a<0时, y轴左侧,函
数值y随x的增大而增大 ; y轴 右侧,函数值y随x的增大而减
小。
(2) a>0时,ymin=0
a<0时,ymax=0
前进
一、定义
二、图象特点 和性质
二、图象特点 和性质
三、解析式的求法
1.特殊的二次函数
y=ax2 (a≠0)
的图象特点和函数性质
四、图象位置与 a、b、c、 的 正负关系
前进
返回 主页
图 26.2.1
(一) 图象特点:
(1)是一条抛物线; (2)对称轴是y轴; (3)顶点在原点; (4)开口方向: a>0时,开口向上; a<0时,开口向下.
y
•0 (0,c)
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
by x=- 2a
(1)a确定抛物线的开口方向:
a>0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
(1)a确定抛物线的开口方向:
a>0
a<0
y
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
0
•(x,0)
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
已知与x
交点式
y=a(x-x1)(x-x2)
轴的两个 交点及另
一个点
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
(1)a确定抛物线的开口方向:
y
0•
返回 主页
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Biblioteka Baidu
Δ>0
Δ=0 Δ<0
题型分析:
(一)抛物线与x轴、y轴的交点急所构成 的面积
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
y
•0 (0,0)
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
(1)a确定抛物线的开口方向:
a>0
a<0
y
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
• • 0
(x1,0)
x
(x2,0)
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
三、解析式的求法
2.一般二次函数
y=ax2+bx+c(a≠0)
的图象特点和函数性质
四、图象位置与 a、b、c、 的 正负关系
前进
返回 主页
图 26.2.4
(一) 图象特点:
(1)是一条抛物线;
(2)对称轴是:x=- 2a
(3)顶点坐标是:(-2a ,
4ac-b2 4a
)
(4)开口方向:
a>0时,开口向上;
0
x
(3)a、b确定对称轴x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
y
•(0,c)
0
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
a>0
a<0
y
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
(1)a确定抛物线的开口方向:
a>0
a<0
y
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0