函数及其图像练习题
专题:函数图像精选训练题(有答案)
专题:函数图像训练题精选一、选择题1.下列函数图象中,函数y a a a x =>≠()01且,与函数y a x =-()1的图象只能是( )y y y yO x O x O x O xA B C D11112.若函数()()22m xf x x m-=+的图象如图所示,则m 的取值范围是( )A.(),1-∞-B. ()1,2C. ()1,2-D. ()0,23.已知函数()y f x =的图象与ln y x =的图象关于直线y x =对称,则()2f =( )A .1B .eC .2eD .()ln 1e -4.函数()2cos ln f x x x =-⋅的部分图象大致是( )5.将()y f x =的图象的横坐标伸长为原来的3倍,纵坐标缩短为原来的13,则所得函数的解析式为( ) A .3(3)y f x = B .11()33y f x =C .1(3)3y f x =D .13()3y f x = 6.如图所示的四个容器高度都相同,将水从容器顶部一个小孔以相同的速度注入其中,注满为止.用下面对应的图像显示该容器中水面的高度h 和时间t 之间的关系,其中不正确的....是A .1个B .2个C .3个D .4个7.在同一坐标系中,函数1()x y a=与)(log x y a -=(其中0a >且1a ≠)的图象只可能是( )8.如图,函数()y f x =的图象为折线ABC ,设()()g x f f x =⎡⎤⎣⎦, 则函数()y g x =的图象为( )9.如图,函数y =f (x )的图像为折线ABC ,设f 1(x )=f (x ),f n+1(x )=f [f n+1(x )], n ∈N *,则函数y =f 4(x )的图像为yxo 1 1 yx o 1 1 yx o 1-1 yx o 1-1ABCD10.已知1a >,函数x y a =与log ()a y x =-的图像可能是( )11.若函数)1,0()1()(≠>--=-a a a a k x f x x 在R 上既是奇函数,又是减函数,则)(log )(k x x g a +=的图像是( )12.函数|1|||ln --=x e y x 的图象大致是 ( )13.),10(log )(,)(2≠>==-a a x x g a x f a x 且,0)4()4(<-⋅g f 若则)(),(x g y x f y ==在同一坐标系内的大致图象是第5题14.已知函数2()4f x x =-,()y g x =是定义在R 上的奇函数,当0x >时,2()log g x x =,则函数()()f x g x ⋅的大致图象为 ( )15.已知f (x )=a x ,g (x )=log a x (a >0且a ≠1),若f (3)g (3)<0,则f (x )与g (x )在同一坐标系里的图像是( )16.当0<a <1时,在同一坐标系中,函数x y a -=与log a y x =的图象是( )17.函数1||2)(+-=x x f 的图像大致为 ( ▲ )y xy yy xxxoo o-1 1-1 1 2-112 1 o-1 112 121 B A C D18.函数||2x y =的定义域为],[b a ,值域为]16,1[,则点),(b a 表示的图形可以是( ▲ )19.设A={|02x x ≤≤}, B={|02y y ≤≤}, 下列各图中能表示集合A 到集合B 的映射是20.二次函数bx ax y +=2与指数函数xab y )32(=的图象,只有可能是下列中的哪个选项21.已知函数bx ax y +=2和xbay =|)| || ,0(b a ab ≠≠在同一直角坐标系中的图象不可能... 是( )BC DAxy123123 B.xy123123 C.xy0123123 A.A .B .C .D .22.已知函数9()4,(0,4)1f x x x x =-+∈+,当x a =时,()f x 取得最小值b ,则函数b x )a ()x (g +=1的图象为( )23.已知0,1a a >≠,函数log ,,x a y x y a y x a ===+在同一坐标系中的图象可能是24.函数()112xf x =-的图像是1xy11xy11xy 1-01xy1-25.函数()()112122x x f x ⎡⎤=+--⎣⎦的图象大致为26.若直角坐标平面内的两个不同点M 、N 满足条件:① M 、N 都在函数()y f x =的图像上; ② M 、N 关于原点对称. 则称点对[,]M N 为函数()y f x =的一对“友好点对”. (注:点对[,]M N 与[,]N M 为同一“友好点对”)已知函数32log (0)()4(0)x x f x x x x >⎧=⎨-- ⎩≤,此函数的“友好点对”有A. 0对B. 1对C. 2对D. 3对27.已知定义在区间[0,2]上的函数=()y f x 的图象如图所示,则=(2-)y f x 的图象为28.已知函数x x x f sin 21)(2+=,则)('x f 的大致图象是( )29.下列函数图象中,正确的是30.已知函数32()(,0)f x ax bx x a b R ab =++∈≠且的图像如图,且12||||x x >,则有( )A .0,0a b >>B .0,0a b <<C .0,0a b <>D .0,0a b ><31.如下图,设点A 是单位圆上的一定点,动点P 从点A 出发在圆上按逆时针方向旋转一周,点P 所旋转过的弧AP 的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致是( )32.已知二次函数()x f 的图象如图1所示 , 则其导函数()x f '的图象大致形状是( )33.已知对数函数()log a f x x =是增函数,则函数(||1)f x +的图象大致是( )34.已知0lg lg =+b a ,则函数x a x f =)(与函数x x g b log )(-=的图象可能( )35.已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =+的图象可能是( )A .B . C. D.36.已知函数log (1)3,a y x =-+(01)a a >≠且的图像恒过点P ,若角α的终边经过点P ,则2sin sin2αα- 的值等于( )A.133 B.135 C. 133- D. 135- 37.已知函数的图象如图所示则函数的图象是( )38.如右图,一个直径为l 的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M 和N 是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M ,N 在大圆内所绘出的图形大致是( )39.已知在函数||y x =([1,1]x ∈-)的图象上有一点(,||)P t t ,该函数的图象与 x 轴、直线x =-1及 x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为( )40.函数|)1lg(|-=x y 的图象是( )41.函数2()log 2f x x =与1()2x g x -=在同一直角坐标系下的图象大致是( )42.已知,()()()a b f x x a x b >=--函数的图象如右图,则函数()log ()a g x x b =+的图象可能为43.函数lg ||x y x=的图象大致是二、填空题44.已知函数211x y x -=-的图像与函数2y kx =-的图像恰有两个交点,则实数k 的取值范围是 .45.当直线y kx =与曲线|ln ||2|x y e x =--有3个公共点时,实数k 的取值范围是 .46.已知函数8log (3)9a y x =+-(0,1a a >≠)的图像恒过定点A ,若点A 也在函数()3x f x b =+的图像上,则b = 。
一次函数的图象和性质专题练习题
专题19.2.2一次函数的图象和性质一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.在函数3y x =-的图象上的点是()A .(1,-3)B .(0,3)C .(-3,0)D .(1,-2)【答案】D【解析】A.1-3=-2≠-3,故本选项不在3y x =-的图象上,B.0-3=-3≠3,故本选项不在3y x =-的图象上,C.-3-3=-6≠0,故本选项不在3y x =-的图象上,D.1-3=-2,故本选项在3y x =-的图象上.故选:D .2.函数2y kx =-的图象经过点(3,1)p -,则k 的值为()A .3B .3-C .13D .13-【答案】C【解析】∵函数2y kx =-的图象经过点(3,1)p -,∴3k −2=-1,解得k =13.故选:C .3.若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是一次函数y =﹣x ﹣1图象上的点,并且y 1<y 2<y 3,则下列各式中正确的是()A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 3<x 2<x 1【答案】D【解析】解:∵一次函数y=﹣x ﹣1中k=﹣1<0,∴y 随x 的增大而减小,又∵y 1<y 2<y 3,∴x 1>x 2>x 3.故选:D .4.在平面直角坐标系中,将直线1:41l y x =--平移后,得到直线2:47l y x =-+,则下列平移作法正确的是()A .将1l 向右平移8个单位B .将1l 向右平移2个单位C .将1l 向左平移2个单位D .将1l 向下平移8个单位【答案】B【解析】A :将直线1:41l y x =--向右平移8个单位得到直线()481y x =---,即直线431y x =-+.B :将直线1:41l y x =--向右平移2个单位得到直线()421y x =---,即直线2:47l y x =-+.C :将直线1:41l y x =--向左平移2个单位得到直线()421y x =-+-,即直线49y x =--.D :将直线1:41l y x =--向下平移8个单位得到直线418y x =---,即直线49y x =--.故选B .5.一次函数35y x =-+的图象经过()A .第一、三、四象限B .第二、三、四象限C .第一、二、三象限D .第一、二、四象限【答案】D【解析】解: 一次函数35y x =-+中,30k =-<,50b =>,∴此一次函数的图象经过一、二、象限.故选:D6.下图为正比例函数()0y kx k =≠的图像,则一次函数y x k =+的大致图像是()A .B .C .D .【答案】B 【解析】解:∵正比例函数y=kx(k≠0)的图象经过二、四象限,∴k<0,∴一次函数y=x+k 的图象与y 轴交于负半轴且经过一、三象限.故选B.7.若一次函数y =(k -3)x -k 的图象经过第二、三、四象限,则k 的取值范围是()A .k <3B .k <0C .k >3D .0<k <3【答案】D【解析】∵一次函数y=(k-3)x-k 的图象经过第二、三、四象限,∴ ॰䃰< ॰,解得:0<k <3,故选:D .8.如图,已知一次函数y kx b =+,y 随着x 的增大而增大,且0kb <,则在直角坐标系中它的图象大致是()A .B .C .D .【答案】A【解析】∵y 随x 的增大而增大,∴0k >.又∵0kb <,∴0b <,∴一次函数过第一、三、四象限,故选A .9.对于次函数21y x =-,下列结论错误的是()A .图象过点()0,1-B .图象与x 轴的交点坐标为1(,0)2C .图象沿y 轴向上平移1个单位长度,得到直线2y x=D .图象经过第一、二、三象限【答案】D【解析】A 、图象过点()0,1-,不符合题意;B 、函数的图象与x 轴的交点坐标是1(,0)2,不符合题意;C 、图象沿y 轴向上平移1个单位长度,得到直线2y x =,不符合题意;D 、图象经过第一、三、四象限,符合题意;故选:D .10.直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是()A .B .C .D .【答案】C【解析】解:根据一次函数的系数与图象的关系依次分析选项可得:A 、由图可得,y 1=kx+b 中,k <0,b <0,y 2=bx+k 中,b >0,k <0,b 、k 的取值矛盾,故本选项错误;B 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b >0,k >0,b 的取值相矛盾,故本选项错误;C 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b <0,k >0,k 的取值相一致,故本选项正确;D 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b <0,k <0,k 的取值相矛盾,故本选项错误;故选:C .11.一次函数23y x =-的图像在y 轴的截距是()A .2B .-2C .3D .-3【答案】D【解析】∵23y x =-,即b=-3,∴图像与y 轴的截距为-3,故选:D.12.如果直线y=2x+m 与两坐标轴围成的三角形的面积是4,那么m 的值是()A .4-B .2C .2±D .4±【答案】D【解析】∵当x=0时,y=m ,当y=0时,x=2m -,∴直线y=2x+m 与x 轴和y 轴的交点坐标分别为(2m -,0)、(0,m ),∵直线y=2x+m 与两坐标轴围成的三角形的面积是4,∴12|2m -||m|=4,解得:m=±4,故选:D .13.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线l 的解析式为()A .35y x =B .910y x =C .34y x =D .y x=【答案】B【解析】解:设直线l 和八个正方形的最上面交点为A ,过A 作AB ⊥y 轴于B ,作AC ⊥x 轴于C ,∵正方形的边长为1,∴OB =3,∵经过原点的一条直线l 将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO 面积是5,∴12OB•AB =5,∴AB =103,∴OC =103,由此可知直线l 经过(103,3),设直线l 解析式为y =kx ,则3=103k ,解得:k =910,∴直线l 解析式为y =910x ,故选:B .14.在平面直角坐标系中,点()11,1A -在直线y x b =+上,过点1A 作11A B x ⊥轴于点1B ,作等腰直角三角形112A B B (2B 与原点O 重合),再以12A B 为腰作等腰直角三角形212A A B ;以22A B 为腰作等腰直角三角形223A B B …;按照这样的规律进行下去,那么2019A 的坐标为()A .()2018201821,2-B .()2018201822,2-C .()2019201921,2-D .()2019201922,2-【答案】B【解析】解:如上图,∵点B 1、B 2、B 3、…、B n 在x 轴上,且A 1B 1=B 1B 2,A 2B 2=B 2B 3,A 3B 3=B 3B 4,∵A 1(−1,1),∴A 2(0,2),A 3(2,4),A 4(6,8),…,∴A n (2n−1−2,2n−1).∴A 2019的坐标为(22018−2,22018).故选:B .二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.一次函数36y x =-+的图象与y 轴的交点坐标是________.【答案】(0,6)【解析】解:根据题意,令0x =,解得6y =,所以一次函数36y x =-+的图象与y 轴的交点坐标是(0,6).故答案为:(0,6).16.一次函数(3)2=-+y k x ,若y 随x 的增大而增大,则k 的取值范围是_________.【答案】3k >【解析】∵一次函数(3)2=-+y k x ,y 随x 的增大而增大,30k ∴->,3k ∴>.k .故答案为:317.已知A(2,1),B(2,4).(1)若直线l:y=x+b与AB有一个交点.则b的取值范围为_______________;(2)若直线l:y=kx与AB有一个交点.则k的取值范围为_______________.【答案】-1≤b≤2;0.5≤k≤2.【解析】解:(1)把A(2,1),代入直线l:y=x+b,得2+b=1,解得b=-1;把B(2,4)代入直线l:y=x+b,的2+b=4,解得b=2;所以:b的取值范围是:-1≤b≤2;(2)把A(2,1),代入直线l:y=kx,得2k=1,解得k=0.5;把B(2,4)代入直线l:y=kx,的2k=4,解得k=2;∴k的取值范围为:0.5≤k≤2.故答案为:-1≤b≤2;0.5≤k≤2.18.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第象限.【答案】一【解析】首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案.∵点M(k﹣1,k+1)关于y轴的对称点在第四象限内,∴点M(k﹣1,k+1)位于第三象限,∴k﹣1<0且k+1<0,解得:k<﹣1,∴y=(k﹣1)x+k经过第二、三、四象限,不经过第一象限三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.先完成下列填空,再在同一直角坐标系中画出以下函数的图象(不必再列表)(1)正比例函数2y x =过(0,)和(1,);(2)一次函数3y x =-+(0,)(,0).【答案】(1)0,2;(2)3,3,作图见解析【解析】解:(1)当x=0时,y=2x=0,∴正比例函数y=2x 过(0,0);当x=1时,y=2x=1,∴正比例函数y=2x 过(1,2).故答案为:0;2.(2)当x=0时,y=-x+3=3,∴一次函数y=-x+3过(0,3);当y=0时,有-x+3=0,解得:x=3,∴一次函数y=-x+3过(3,0).故答案为:3;3.20.已知一次函数()226y k x k =--+.(1)k 满足何条件时,y 随x 的增大而减小;(2)k 满足何条件时,图像经过第一、二、四象限;(3)k 满足何条件时,它的图像与y 轴的交点在x 轴的上方.【答案】(1)k>2;(2)2<k<3;(3)k<3且k≠2.【解析】(1)∵一次函数y=(2−k)x−2k+6的图象y 随x 的增大而减小,∴2−k<0,解得k>2;(2)∵该函数的图象经过第一、二、四象限,∴2−k<0,且−2k+6>0,解得2<k<3;(3)∵y=(2−k)x −2k+6,∴当x=0时,y=−2k+6,由题意,得−2k+6>0且2−k≠0,∴k<3且k≠2.21.如图,已知正比例函数y kx =(0)k ≠经过点(2,4)P .(1)求这个正比例函数的解析式;(2)该直线向上平移4个单位,求平移后所得直线的解析式.【答案】(1)2y x =;(2)24y x =+【解析】解:(1)把(2,4)P 代入y kx =,得42k =,∴2k =,∴这个正比例函数的解析式是2y x =.(2)设平移后所得直线的解析式是y =2x +b ,把(0,4)代入得:4=b ,∴y =2x +4.答:平移后所得直线的解析式是y =2x +4.22.已知一次函数的图象与正比例函数23y x =-的图象平行,且经过点()04,.(1)求一次函数的解析式;(2)若点()8M m -,和()5N n ,在一次函数的图象上,求m ,n 的值.【答案】(1)243y x =-+;(2)283m =;32n =-.【解析】设一次函数的解析式为y=kx+b ,∵一次函数的图象与正比例函数23y x =-的图象平行,∴k=23-,∵一次函数图象经过点(0,4),∴b=4,∴一次函数的解析式为y=23-x+4.(2)∵点()8M m -,和()5N n ,在一次函数的图象上,∴m=23-×(-8)+4=283,5=23-n+4,解得:m=283,n=32-.23.已知一次函数y =-x +3与x 轴,y 轴分别交于A ,B 两点.(1)求A ,B 两点的坐标.(2)在坐标系中画出一次函数y =-x +3的图象,并结合图象直接写出y <0时x 的取值范围.【答案】(1)()3,0A ,()0,3B (2)作图见解析,3x >【解析】(1)令0x =,则3y =,故()0,3B 令0y =,则03x =-+,故()3,0A .(2)如图所示,即为所求,根据图象可得y <0时,3x >.24.如图,直线AB 与x 轴相交于点(3,0)A ,与y 轴相交于点(0,4)B ,点C 是直线AB 上的一个动点.(1)求直线AB 的函数解析式;(2)若AOC ∆的面积是3,求点C 的坐标.【答案】(1)443y x =-+;(2)点C 的坐标为3,22⎛⎫ ⎪⎝⎭或9,22⎛⎫- ⎪⎝⎭.【解析】解:(1)设直线AB 的解析式为y kx b =+.∵直线过点(3,0)A 和点(0,4)B ,∴30,4.k b b +=⎧⎨=⎩解得4,34.k b ⎧=-⎪⎨⎪=⎩∴直线AB 的解析式为443y x =-+.(2)∵(3,0)A ,∴3AO =,∵AOC ∆的面积是3,∴AOC ∆边OA 上的高为2,∴点C 的纵坐标为2或-2,∵点C 为直线AB 上的点,当4423x -+=时,解得32x =;当4423x -+=-时,解得92x =.∴当AOC ∆的面积是3时,点C 的坐标为3,22⎛⎫ ⎪⎝⎭或9,22⎛⎫- ⎪⎝⎭.25.在平面直角坐标系中,一次函数122y x =-+的图象交x 轴、y 轴分别于A B 、两点,交直线y kx =于P 。
初二数学函数概念与图像练习题及答案
初二数学函数概念与图像练习题及答案函数是数学中非常重要的概念,在初二数学中也是学习的重点之一。
理解函数的概念以及掌握函数图像的绘制对于学习数学非常关键。
下面将为大家提供一些初二数学函数概念与图像的练习题及答案,以帮助大家更好地掌握这一知识点。
练习题一:给出以下函数,判断它们是否为函数,并画出它们的图像。
1. 函数f(x) = 2x + 12. 函数g(x) = √x3. 函数h(x) = x^2 + 14. 函数k(x) = |x|答案一:1. 函数f(x) = 2x + 1 是函数。
它的图像为一条直线,斜率为2,截距为1.2. 函数g(x) = √x 是函数。
它的图像为一条抛物线,开口向上,过点(0,0).3. 函数h(x) = x^2 + 1 是函数。
它的图像为一条抛物线,开口向上,顶点为(0,1).4. 函数k(x) = |x| 是函数。
它的图像为以原点为对称中心的一条直线段.练习题二:给出以下函数的图像,写出它们的解析式。
1.图像描述:一条斜率为1,截距为2的直线段。
解析式:f(x) = x + 22.图像描述:一条横纵坐标均为正的对数曲线。
解析式:g(x) = ln(x)3.图像描述:一个顶点在坐标原点的开口向下的抛物线。
解析式:h(x) = -x^24.图像描述:一条横坐标为负的直线段。
解析式:k(x) = -2答案二:1. 图像描述所给出的直线的斜率为1,截距为2,因此解析式为f(x) = x +2.2. 图像描述所给出的曲线是对数曲线,横纵坐标均为正,因此解析式为g(x) = ln(x).3. 图像描述所给出的抛物线是一个顶点在坐标原点的开口向下的抛物线,因此解析式为h(x) = -x^2.4. 图像描述所给出的直线段横坐标为负,因此解析式为k(x) = -2.练习题三:根据函数的图像,判断它们的性质。
1. 以下函数图像是否为奇函数?图像描述:一条关于y轴对称的曲线。
答案:是奇函数。
一次函数的图像与性质基础练习
一.选择题(共10小题)1.一次函数y1=ax+b与y2=bx+a在同一直角坐标系中的图象可能式()A.B.C.D.2.如图,同一直角坐标系中,能表示一次函数y=x+kb和y=kx+b(k、b为常数,且k≠0)的图象是()A.B.C.D.3.若k>0,b>0,则函数y=kx+b的图象大致是()A.B.C.D.4.直线y1=mx+n2+1和y2=﹣mx﹣n的图象可能是()A.B.C.D.5.在同一直角坐标系中,一次函数y=kx+b与y=bx+k(b≠k)的图象可能是()A.B.C.D.6.将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系中,则下列图象中正确的是()A.B.C.D.7.在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是()A.B.C.D.8.直线l1:y=kx﹣b和l2:y=﹣2kx+b在同一直角坐标系中的图象可能是()A.B.C.D.9.若实数a、c满足a+c=0且a>c,则关于x的一次函数y=cx﹣a的图象可能是()A.B.C.D.10.若式子+(k﹣2)0有意义,则一次函数y=(k﹣2)x+2﹣k的图象可能是()A.B.C.D.二.解答题(共10小题)11.如图,已知直线y=kx+b经过点B(1,4),与x轴交于点A(5,0),与直线y=2x﹣4交于点C(3,m).(1)求直线AB的函数表达式及m的值;(2)根据函数图象,直接写出关于x的不等式组2<kx+b<4的解集:;(3)现有一点P在直线AB上,过点P作PQ∥y轴交直线y=2x﹣4于点Q,若点C到线段PQ的距离为1,求点P的坐标和点Q的坐标.12.如图,在平面直角坐标系中,一次函数y1=﹣2x+10的图象与x轴交于点A,与一次函数y2=x+2的图象交于点B.(1)求点B的坐标;(2)结合图象,当y1>y2时,请直接写出x的取值范围;(3)C为x轴上点A右侧一个动点,过点C作y轴的平行线,与一次函数y1=﹣2x+10的图象交于点D,与一次函数y2=x+2的图象交于点E.当CE=3CD时,求DE的长.13.如图,直线l1:y=2x﹣4与x轴交于点A,与y轴交于点B,直线l2与x轴交于点D,与y轴交于点C,BC=6,OD=3OC.(1)求直线CD的解析式;(2)点Q为直线AB上一动点,若有S△QCD=2S△OCD,请求出Q点坐标;(3)点M为直线AB上一动点,点N为直线x轴上一动点,是否存在以点M,N,C为顶点且以MN为直角边的三角形是等腰直角三角形,若存在,请直接写出点M的坐标,并写出其中一个点M求解过程,若不存在,请说明理由.14.如图,在平面直角坐标系中,直线l经过点A(0,2)、B(﹣3,0).(1)求直线l所对应的函数表达式.(2)若点M(3,m)在直线l上,求m的值.(3)若y=﹣x+n过点B,交y轴于点C,求△ABC的面积.15.如图,已知点A(3,0),B(0,2).(1)求直线AB所对应的函数解析式;(2)若C为直线AB上一点,当△OBC的面积为6时,求点C的坐标.16.如图,直线经过点A(1,6)和点B(﹣3,﹣2).(1)求直线a的函数表达式;(2)求△ABO的面积.17.如图,在平面直角坐标系xOy中,点A在y轴的正半轴上,点B在x轴的正半轴上,OA=OB=10.(1)求直线AB的解析式;(2)若点P是直线AB上的一点,且P的横坐标为4,C(6,0),求△OPC的面积.18.如图,在直角坐标系中,直线AB过点A(0,3)和B(6,﹣3),且与x轴相交于点C.(1)求直线AB所对应的函数表达式;(2)求△OAC的面积.19.如图,过点A(4,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=2.(1)求点B的坐标;(2)若△ABC的面积为20,求直线l2的解析式.20.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求一次函数的解析式;(2)求点C和点D的坐标;(3)求△AOB的面积.。
初一数学函数及其图像试题
初一数学函数及其图像试题1.(11·永州)如图所示,在矩形ABCD中,垂直于对角线BD的直线,从点B开始沿着线段BD匀速平移到D.设直线被矩形所截线段EF的长度为y,运动时间为t,则y关于t的函数的大致图象是()【答案】A【解析】略2.(6分)学校需要到印刷厂印刷x份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费.(1)两印刷厂的收费各是多少元?(用含x的代数式表示)(2)学校要印刷2400份材料,若不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.【答案】(1)甲印刷厂收费表示为:(0.2x+500)元,乙印刷厂收费表示为:0.4x元.(2)选择乙印刷厂.【解析】(1)甲印刷厂收费表示为:甲厂每份资料印发费×材料的份数x+制版费,乙印刷厂收费表示为:乙厂每份材料印刷费×材料份数x;(2)先把x=2400代入(1)中所求的代数式,分别计算出此时甲、乙两印刷厂的收费,然后比较即可.试题解析:解:(1)甲印刷厂收费表示为:(0.2x+500)元,乙印刷厂收费表示为:0.4x元.(2)选择乙印刷厂.理由:当x=2400时,甲印刷费为0.2x+500=980(元),乙印刷费为0.4x=960(元).因为980>960,所以选择乙印刷厂比较合算.【考点】列代数式,求代数式的值3.A、B两仓库分别有水泥15吨和35吨,C、D两工地分别需要水泥20吨和30吨.已知从A、B仓库到C、D工地的运价如表:到C工地到D工地(1)若从A仓库运到C工地的水泥为x吨,则用含x的代数式表示从A仓库运到D工地的水泥为吨,从B仓库将水泥运到D工地的运输费用为元;(2)求把全部水泥从A、B两仓库运到C、D两工地的总运输费(用含x的代数式表示并化简);(3)如果从A仓库运到C工地的水泥为10吨时,那么总运输费为多少元?【答案】(1)15-x;9x+180;(2)(2x+515)元;(3)535元.【解析】(1)A仓库原有的20吨去掉运到C工地的水泥,就是运到D工地的水泥;首先求出B仓库运到D仓库的吨数,也就是D工地需要的水泥减去从A仓库运到D工地的水泥,再乘每吨的运费即可;(2)用x表示出A、B两个仓库分别向C、D运送的吨数,再乘每吨的运费,然后合并起来即可;(3)把x=10代入(2)中的代数式,求得问题的解.试题解析:(1)从A仓库运到D工地的水泥为:(15-x)吨,从B仓库将水泥运到D工地的运输费用为:[35-(15-x)]×9=(9x+180)元;(2)总运输费:15x+12×(15-x)+10×(15-x)+[35-(15-x)]×9=(2x+515)元;(3)当x=10时,2x+515=535.答:总运费为535元.【考点】1.列代数式;2.代数式求值.4.重庆某餐饮集团公司将沙坪坝下属一个分公司对外招商承包,有符合条件的两个企业甲、乙,分别拟定上缴利润方案如下:甲:每年结算一次上缴利润,第一年上缴利润5万元,以后每年比前一年增加5万元;乙:每半年结算一次上缴利润,第一个半年上缴利润1.5万元,以后每半年比前一半年增加1.5万元;(1)如果企业乙承包一年,则需上缴的总利润为万元.(2)如果承包4年,你认为应该承包给哪家企业,总公司获利多?为什么?(3)如果承包n年,请你用含n的代数式分别表示两企业上缴利润的总金额(单位:万元).【解析】(1)4.5;(2)该承包给企业乙,总公司获利多,理由见解析;(3)企业甲承包n年上缴的利润为:(万元),企业乙承包n年上缴的利润为:1.5n(2n+1)(万元).(1)企业乙承包一年:上半年上缴利润1.5万元,下半年上缴利润(1.5+1.5)万元;(2)根据两企业的利润方案计算即可;(3)归纳总结,根据题意列出两企业上缴利润的总金额即可.试题解析:(1)1.5+(1.5+1.5)=4.5(万元);(2)由题意,企业甲承包4年上缴的利润为:5+10+15+20=50(万元),企业乙承包4年上缴的利润为:1.5+1.5×2+1.5×3+1.5×4+1.5×5+1.5×6+1.5×7+1.5×8=1.5×(1+2+3+4+5+6+7+8)=54(万元),54-50=4(万元),即企业乙比企业甲上缴利润多4万元,所以该承包给企业乙,总公司获利多;(3)企业甲承包n年上缴的利润为:5+10+15+20+…+5n=5×(1+2+3+…+n)=(万元), 企业乙承包n年上缴的利润为:.5+1.5×2+1.5×3+1.5×4+…+1.5×2n=1.5×(1+2+3+…+2n)=1.5×=1.5n(2n+1)(万元).【考点】①列代数式;②有理数的混合运算.5.下列说法正确的是()A.若y<2x,则y是x的函数B.正方形面积是周长的函数C.变量x,y满足y2=2x,y是x的函数D.温度是变量【答案】B【解析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可判断各选项.解:A、若y<2x,则y是x的函数,不符合函数的定义,故本选项错误;B、设正方形的周长为L,面积为S,用L表示S的函数关系式为:S=L2,故本选项正确;C、变量x,y满足y2=2x,y是x的函数,不符合函数的定义,故本选项错误;D、在不同的情况下,温度不一定是变量,故本选项错误;故选B.【考点】函数的概念.6.(2015秋•乳山市期末)利群超市经销某品牌童装,单价为每件40元时,每天销量为60件,当从单价每件40元降了20元时,一天销量为100件,设降x元时,一天的销量为y千克.已知y是x的一次函数.(1)求y与x之间的关系式;(2)若某天销售童装80件,则该天童装的单价是多少?【答案】(1)y与x之间的关系式为y=2x+60;(2)该天童装的单价是每件30元.【解析】(1)设y=kx+b,把(0,60)和(20,100)代入解答即可;(2)根据题意得出方程80=2x+60,进而解答即可.解:(1)y=kx+b,由题意知,当x=0时,y=60,可得:b=60,所以解析式为y=kx+60,当x=20时,y=100,可得:100=20k+60,解得:k=2,所以y与x之间的关系式为y=2x+60;(2)由80=2x+60,解得x=10,所以40﹣10=30(元),所以该天童装的单价是每件30元.【考点】一次函数的应用.7.函数y=ax2+a与(a≠0),在同一坐标系中的图象可能是()A.B.C.D.【答案】D【解析】应分a>0和a<0两种情况分别讨论,逐一排除.解:当a>0时,二次函数y=ax2+a的图象开口向上,且对称轴为x=0,顶点坐标为(0,a),故A、C都可排除;当a<0时,二次函数y=ax2+a的图象开口向下,且对称轴为x=0,顶点坐标为(0,a),故排除A,C,函数的图象在二、四象限,排除B,则D正确.故选D.【考点】二次函数的图象;反比例函数的图象.8.如图,已知直线y=﹣2x+8与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式;(3)在(2)的条件下,坐标平面内是否存在点P(除点B外),使得△APC与△ABC全等?若存在,直接写出符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)A(4,0),C(0,8);(2)y=﹣x+8;(3)满足条件的点P有三个,分别为:(0,0),(,),(﹣,).【解析】(1)已知直线y=﹣2x+8与x轴、y轴分别交于点A、C,即可求得A和C的坐标;(2)根据题意可知△ACD是等腰三角形,算出AD长即可求得D点坐标,最后即可求出CD的解析式;(3)将点P在不同象限进行分类,根据全等三角形的判定方法找出所有全等三角形,找出符合题意的点P的坐标.解:(1)令y=0,则﹣2x+8=0,解得x=4,∴A(4,0),令x=0,则y=8,∴C(0,8);(2)由折叠可知:CD=AD,设AD=x,则CD=x,BD=8﹣x,由题意得,(8﹣x)2+42=x2,解得x=5,此时AD=5,∴D(4,5),设直线CD为y=kx+8,把D(4,5)代入得5=4k+8,解得k=﹣,∴直线CD的解析式为y=﹣x+8;(3)①当点P与点O重合时,△APC≌△CBA,此时P(0,0)②当点P在第一象限时,如图1,由△APC≌△CBA得∠ACP=∠CAB,则点P在直线CD上.过P作PQ⊥AD于点Q,在Rt△ADP中,AD=5,AP=BC=4,PD=BD=8﹣5=3,由AD×PQ=DP×AP得:5PQ=3×4,∴PQ=,∴x=4+=,把x=代入y=﹣x+8得y=,P此时P(,)③当点P在第二象限时,如图2,同理可求得:PQ=,在RT△PCQ中,CQ===,∴OQ=8﹣=,此时P(﹣,),综上,满足条件的点P有三个,分别为:(0,0),(,),(﹣,).【考点】一次函数综合题.9.抚州市正在争创省文明城市,为了美化城市,改善人们的居住环境,我市深入开展绿化彩化美化工程,通过植草、种树、修建公园及树阵式停车位等多项措施,使城区绿地面积不断增加.请根据图中所提供的信息,回答下列问题:(1)2014年底的公园绿地面积为________公顷,比2012年底增加了________公顷;(2)在2013年,2014年,2015年这三年中,绿地面积增加最多的是________年;(3)为满足城市发展的需要,计划到2017年底使城区公园绿地总面积达到1200公顷,试求2017年底公园绿地面积对2015年底的增长率.【答案】(1)850;310;(2)2014;(3)20%.【解析】(1)观察折线图即可得出结论;(2)通过计算比较即可得出结论;(3)利用求增长率的计算公式:(增加后的-增加前的)÷增加前的,即可得出结论.试题解析:(1)观察折线图得知,2014年底的公园绿地面积为850公顷,比2012年底增加了850-540=310公顷.故答案为850;310;(2)通过计算2013年增加:650-540=110公顷,2014年增加:850-650=200公顷,2015年增加:1000-850=150公顷,故绿地面积增加最多的是2014年;(3)由题意可得,2017年底公园绿地面积对2015年底的增长率是(1200-1000)÷1000=20%.【考点】1.折线统计图分析与计算;2.增长率计算.10.如图,均匀地向此容器注水,直到把容器注满.在注水的过程中,下列图象能大致反映水面高度h随时间t变化规律的是()A.B.C.D.【答案】A【解析】由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.解:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短,故选A.。
函数的图像经典例题
函数的图象一、典型例题例1 设函数2()45f x x x =-- (1)在区间[2,6]-上画出函数()f x 的图像;(2)设集合{}()5,(,2][0,4][6,)A x f x B =≥=-∞-+∞ ,试判断集合A 和B 之间的关系,并给出证明;(3)当2k >时,求证:在区间[1,5]-上,3y kx k =+的图像位于函数()f x 图像的上方。
例2(1)若把函数()y f x =的图像作平移,可以使图像上的点()1,0P 变换成点()2,2Q ,则函数()y f x =的图像经此变换后所得图像对应的函数为 ( )A .(1)2y f x =-+ B.(1)2y f x =--C . (1)2y f x =++D . (1)2y f x =+-(2)己知函数33(),()232x f x x x -=≠-,若(1)y f x =+的图像是1C ,它关于直线y x =对称图像是22,C C 关于原点对称的图像为33,C C 则对应的函数解析式是__________(3)作出下列函数的大致图象: ①()21y x x =-+;② 21x y x -=+; ③ lg 1y x =-④ 11xy x -=-例3 (1)设函数()x f 的定义域为R ,它的图像关于直线1x =对称,且当1≥x 时()13-=x x f 则( ) ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛322331A.f f f ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛312332B.f f f ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛233132C.f f f ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛313223D.f f f (2)已知()f x 是定义域为(-∞,0)∪(0,+∞)的奇函数,在区间(0,+∞)上单调递增, ()f x 的图象如图所示,若[]()()0x f x f x --<,则x 的取值范围是__________________例3 已知函数()()()()1212()211xx f x x x x ⎧⎛⎫-≤-⎪ ⎪=⎝⎭⎨⎪-->-⎩,如果方程()f x a =有四个不同的实根,求实数a 的取值范围。
(完整版)函数图像练习题
函数图像练习题 1、小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文章,录入一段时间后因事暂停,过了一会儿,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,下面能反映y 与x 的函数关系的大致图象是( )2、某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离与时间的关系的大致图象是( )3、如图,扇形OAB 动点P 从点A 出发,沿线段B0、0A 匀速运动到点A ,则0P 的长度y 与运动时间t 之间的函数图象大致是( )4、某人进行登山活动,从山脚到山顶,休息一会儿又沿原路返回。
若用横轴表示时间t ,纵轴表示与山脚距离h ,那么反映全程h 与t 的关系的图是( )5.甲、乙两人在一次赛跑中,路程s (米)与所用时间t (秒)的关系如图所示,则下列说法正确的是( )A .甲比乙先出发 B .乙比甲跑的路程多C .甲先到达终点D .甲、乙两人的速度相同6.“龟兔赛跑”讲述了这样一个故事:“领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当醒来时,发现乌龟快到达终点了,于是,急忙追赶,但为时已晚,乌龟还是先到达了终点.……”用s 1,s 2分别表示乌龟和兔子的行程,t 为时间,则下列图象中与故事情节相吻合的图象是( )7. 如图是古代计时器----“漏壶”的示意图在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间。
用x 表示时间,y 表示壶底到水面的高度,下面的哪个图象适合表示一小段时间内y 与x 的函数关系?8、如图所示的曲线,哪个表示y是x 的函数( )y x y x y xy x9.如图所示,一枝蜡烛上细下粗,设这枝蜡烛点燃后剩下的长度为h,点燃时间为t,则能大致刻画出h与t之间函数关系的图象是()10.柿子熟了,从树上落下来,可以大致刻画出柿子下落过程中的速度变化情况的图象是()11.小明家距学校m千米,一天他从家上学,先以a千米/时的速度跑步,后以b千米/时的速度步行,到达学校共用n小时。
一次函数的图像和性质练习题
一次函数的图像和性质练习题一、填空题1.正比例函数一定经过 点,经过,一次函数(0)y kx k =≠(1), 经过点,点. (0)y kx b k =+≠(0), (0) ,2.直线与轴的交点坐标是 ,与y 轴的交点26y x =-+x 坐标是。
与坐标轴围成的三角形的面积是。
3.若一次函数的图象过原点,则的值为 .(44)y mx m =--m4.如果函数的图象经过点,则它经过轴上的点的坐标为 y x b =-(01)P ,x .5.一次函数的图象经过点( ,5)和(2,)3+-=x y 6.已知一次函数y=x+m 和y=-x+n 的图像都经过点A(-2,0), 且与y 轴分别2321交于B,C 两点,求△ABC 的面积。
7.某函数具有下面两条性质:(1)它的图象是经过原点的一条直线;(2)随的增大而减小.请你写出一个满足上述条件的函数 y x 8.在同一坐标系内函数y=2x 与y=2x+6的图象的位置关系是 .9.若直线y=2x+6与直线y=mx+5平行,则m=____________.10.在同一坐标系内函数y=ax+b 与y=3x+2平行,则a, b 的取值范围是 .11.将直线y= -- 2x 向上平移3个单位得到的直线解析式是 ,将直线y= -- 2x 向下移3个单得到的直线解析式是 .将直线y= -- 2x+3向下移2个单得到的直线解析式是 .12.一次函数的图象经过一、三、四象限,则的取值范围是 (2)4y k x k =-+-k .13.已知点A(-4, a),B(-2,b)都在一次函数y=x+k(k 为常数)的图像上,则a21与b 的大小关系是a____b(填”<””=”或”>”)14.直线经过一、二、三象限,则 0, 0,经过二、三、四象y kx b =+k b 限,则有 0, 0,经过一、二、四象限,则有 0, 0.k b k b 15.如果直线与轴交点的纵坐标为,那么这条直线一定不经过第 3y x b =+y 2-------------象限.16、直线与轴的交点坐标是_______,与轴的交点坐标是_______.152y x =-17、直线可以由直线沿轴_______而得到;直线可以23y x =-2y x =32y x =-+由直线轴_______而得到.3y x =-18、已知一次函数.()()634y m x n =++-(1)当m______时,y 随x 的增大而减小;(2)当m______,n______时,函数图象与y 轴的交点在x 轴的下方;(3)当m______,n______时,函数图象过原点.二、选择题1.已知函数,要使函数值随自变量的增大而减小,则的取(3)2y m x =+-y x m 值范围是( )A.B.C.D.3m -≥3m >-3m -≤3m <-2.一次函数中,的值随的减小而减小,则的取值范围是( (1)5y m x =++y x m )A.B.C.D.1m >-1m <-1m =-1m <3.已知直线,经过点和点,若,且,y kx b =+11()A x y ,22()B x y ,0k <12x x <则与的大小关系是( )1y 2y A.B.C.D.不能确定12y y >12y y <12y y =4. 若直线经过第二、三、四象限,则的取值范围是( )23y mx m =--m A.B.C.D.32m <32m -<<32m >0m >5.一次函数的图象不经过( )31y x =-A.第一象限B.第二象限 C.第三象限D.第四象限6.如果点P(a,b)关于x 轴的对称点p ,在第三象限,那么直线y=ax+b 的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7.若一次函数y=kx+b 的图像经过(-2,-1)和点(1,2),则这个函数的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限 8.(m 9.两个一次函数与,它们在同一直角坐标系中的图象可能1y ax b =+2y bx a =+D.C.B .A .是( )10、下列一次函数中,y 的值随x 值的增大而减小的是( )A 、y=x -8 B 、y=-x+3 C 、y=2x+5D 、y=7x -63211、在一次函数中,的值随值的增大而减小,则的取值范围是( ()15y m x =++)A 、B 、C 、D 、1m <-1m >-1m =-1m <12、若一次函数的图象经过一、二、三象限,则应满足的条件是:( b kx y +=b k ,)A.B.C.D.0,0>>b k 0,0<>b k 0,0><b k 0,0<<b k 13、将直线y=2x 向上平移两个单位,所得的直线是 ( )A 、y=2x+2B 、y=2x -2C 、y=2(x -2)D 、y=2(x+2)14.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )15.李老师骑自行车上班,最初以某一速度匀速行进, 中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )三、解答题1、在同一个直角坐标系中,画出函数与的图象,并判断点21y x =-34y x =-+A (1,1)、B (-2,10)是否在所画的图象上?在哪一个图象上?2.已知一次函数y=(3-k)x-2k+18,(1) k 为何值时,它的图像经过原点; (2) k 为何值时,它的图像经过点(0,-2);(3) k 为何值时,它的图像与y 轴的交点在x 轴的上方;(4) k 为何值时,它的图像平行于直线y=-x;(5) k 为何值时,y 随x 的增大而减小.3、已知一次函数y=kx+b (k 、b 为常数且k≠0)的图象经过点A (0,﹣2)和点B (1,0),求此函数的解析式4、求函数与x 轴、y 轴的交点坐标,并求这条直线与两坐标轴围成323-=x y 的三角形的面积.5、根据下列条件,确定函数关系式:(1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).6、某摩托车的油箱最多可存油5升,行驶时油箱内的余油量y (升)与行驶的路程x(km)成一次函数关系,其图象如图。
函数的图像练习题
函数的图像练习题一、选择题1. 函数f(x) = 2x + 3的图像是一条直线,其斜率k等于:A. 2B. 3C. 1D. 02. 函数g(x) = x^2的图像是一个:A. 直线B. 抛物线C. 双曲线D. 圆3. 函数h(x) = 1/x的图像在第一象限和第三象限是:A. 单调递增B. 单调递减C. 先增后减D. 先减后增4. 若函数f(x) = |x|的图像是V形,其顶点坐标为:A. (0, 1)B. (0, 0)C. (1, 0)D. (-1, 0)5. 函数y = sin(x)的图像在x=π/2处的值是:A. 1B. -1C. 0D. π/2二、填空题6. 函数f(x) = x^3 - 3x^2 + 2x + 1的图像是一个______,其拐点坐标为______。
7. 函数y = cos(x)的图像在x=0处的值为______,并且其图像是______对称的。
8. 若函数y = ln(x)的图像在x=1处的值是0,那么其图像在x=e处的值为______。
9. 函数y = tan(x)的图像在x=π/4处的值是______,并且其图像在每一个周期内都有______。
10. 函数y = e^x的图像是一条______的曲线,并且随着x的增大,y 值______。
三、简答题11. 描述函数y = x^2 + 1的图像特征,并说明其顶点坐标。
12. 解释函数y = 1/(1+e^(-x))的图像为什么被称为S型曲线,并简述其性质。
13. 说明函数y = log_a(x)(a>0,a≠1)图像的渐近线,并讨论a的取值对图像的影响。
14. 函数y = sqrt(x)的图像在x轴的正半轴上是单调递增的,请解释原因。
15. 函数y = sin(x) + cos(x)的图像有哪些特征?请列出至少三个。
四、计算题16. 给定函数f(x) = 3x - 2,求其在x=1时的值,并绘制其图像的大致形状。
九年级数学函数图像练习题及答案
九年级数学函数图像练习题及答案练习题一:函数图像综合练习1. 给出函数 y = x^2 的图像,请写出下列函数图像的方程和图像的特点:(1) y = -x^2(2) y = (x + 1)^2(3) y = -(x - 2)^22. 给出函数 y = |x| 的图像,请写出下列函数图像的方程和图像的特点:(1) y = |x - 1|(2) y = -|x + 2|(3) y = 2|x|练习题二:函数图像的平移与伸缩1. 给出函数 y = x^3 的图像,请写出下列函数图像的方程和图像的特点:(1) y = (x - 1)^3(2) y = (x + 2)^3(3) y = -2(x - 2)^32. 给出函数 y = |x| 的图像,请写出下列函数图像的方程和图像的特点:(1) y = |x - 1|(2) y = 2|x + 2|(3) y = -0.5|x|答案:练习题一:1. (1) y = -x^2,图像特点:开口向下的抛物线,顶点在原点。
(2) y = (x + 1)^2,图像特点:开口向上的抛物线,顶点在 (-1, 0) 处。
(3) y = -(x - 2)^2,图像特点:开口向下的抛物线,顶点在 (2, 0) 处。
2. (1) y = |x - 1|,图像特点:折线,折点在 (1, 0) 处。
(2) y = -|x + 2|,图像特点:折线,折点在 (-2, 0) 处。
(3) y = 2|x|,图像特点:折线,折点在原点。
练习题二:1. (1) y = (x - 1)^3,图像特点:开口向上的尖顶抛物线,顶点在 (1, 0) 处。
(2) y = (x + 2)^3,图像特点:开口向上的钝顶抛物线,顶点在 (-2, 0) 处。
(3) y = -2(x - 2)^3,图像特点:开口向下的尖顶抛物线,顶点在 (2, 0) 处。
2. (1) y = |x - 1|,图像特点:折线,折点在 (1, 0) 处。
二次函数的图像与性质经典练习题(11套)附带详细答案
练习一1.二次函数的图像开口向____,对称轴是____,顶点坐标是____,图像有最___点,x ___时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小。
2.关于,,的图像,下列说法中不正确的是( ) A .顶点相同 B .对称轴相同 C .图像形状相同 D .最低点相同 3.两条抛物线与在同一坐标系内,下列说法中不正确的是( ) A .顶点相同 B .对称轴相同 C .开口方向相反 D .都有最小值 4.在抛物线上,当y <0时,x 的取值范围应为( ) A .x >0 B .x <0 C .x ≠0 D .x ≥0 5.对于抛物线与下列命题中错误的是( ) A .两条抛物线关于轴对称 B .两条抛物线关于原点对称 C .两条抛物线各自关于轴对称 D .两条抛物线没有公共点 6.抛物线y=-b +3的对称轴是___,顶点是___。
7.抛物线y=--4的开口向___,顶点坐标___,对称轴___,x ___时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小。
8.抛物线的顶点坐标是( )A .(1,3)B .(1,3)C .(1,3)D .(1,3)9.已知抛物线的顶点为(1,2),且通过(1,10),则这条抛物线的表达式为( ) A .y=3-2 B .y=3+22y ax =213y x =2y x =23y x =2y x =2y x =-2y x =-2y x =2y x =-x y 2x 21(2)2x +22(1)3y x =+-------2(1)x -2(1)x +C .y=3-2D .y=-3-210.二次函数的图像向左平移2个单位,向下平移3个单位,所得新函数表达式为( )A .y=a +3B .y=a -3C .y=a +3D .y=a -3 11.抛物线的顶点坐标是( )A .(2,0)B .(2,-2)C .(2,-8)D .(-2,-8)12.对抛物线y=-3与y=-+4的说法不正确的是( ) A .抛物线的形状相同 B .抛物线的顶点相同 C .抛物线对称轴相同 D .抛物线的开口方向相反13.函数y=a +c 与y=ax +c(a ≠0)在同一坐标系内的图像是图中的( )14.化为y=为a 的形式是____,图像的开口向____,顶点是____,对称轴是____。
函数图像练习题
函数图像练习题1. 定义域判断题:给定函数 \( f(x) = \frac{1}{x - 2} \),判断其定义域并解释原因。
2. 值域求解题:若函数 \( g(x) = x^2 - 4x + 4 \),求其值域。
3. 图像特征分析题:考虑函数 \( h(x) = |x - 3| \),描述其图像的基本特征,包括对称轴、顶点坐标等。
4. 渐近线确定题:对于函数 \( k(x) = \frac{2}{x} + 3x \),确定其水平渐近线和垂直渐近线。
5. 单调性判断题:判断函数 \( l(x) = -x^3 + 2x \) 在 \( (-\infty, +\infty) \) 上的单调性,并给出证明。
6. 极值点求解题:对于函数 \( m(x) = x^3 - 6x^2 + 9x \),求其一阶导数,并找出其极值点。
7. 图像变换题:已知函数 \( n(x) = x^2 \),求经过平移和伸缩变换后得到的函数 \( n(2x - 1) \) 的图像。
8. 函数零点求解题:给定函数 \( o(x) = \sin(x) + \cos(x) \),求其在 \( [0, 2\pi] \) 区间内的零点。
9. 函数图像对称性题:分析函数 \( p(x) = x^3 - 3x \) 的图像,并确定其是否存在对称性,如果有,请指出对称轴或对称中心。
10. 复合函数图像题:考虑函数 \( q(x) = \sqrt{x + 1} \) 和\( r(x) = 2^x \),绘制 \( q(r(x)) \) 的图像,并描述其主要特征。
11. 函数图像交点题:若 \( s(x) = x^2 - 4 \) 和 \( t(x) = 2x \),求这两个函数图像的交点坐标。
12. 函数图像凹凸性题:对于函数 \( u(x) = x^4 - 4x^2 \),判断其凹凸性,并求出拐点坐标。
13. 函数图像周期性题:分析函数 \( v(x) = \tan(x) \) 的周期性,并说明其周期。
二次函数的图像和性质练习题
二次函数的图像和性质练习题1. 画出二次函数 \(y = 2x^2 - 4x + 3\) 的图像,并标出顶点坐标。
2. 给定二次函数 \(y = -3x^2 + 6x - 2\),求出它的顶点坐标和对称轴。
3. 判断下列函数是否为二次函数,并说明理由:- \(y = x^2 + 2x + 1\)- \(y = x^3 - 4x\)- \(y = 5\)4. 已知二次函数 \(y = ax^2 + bx + c\) 的图像经过点 (1, 2) 和(2, 5),求 a、b、c 的值。
5. 给定二次函数 \(y = 4x^2 - 12x + 9\),求出它的开口方向、顶点坐标、对称轴以及与x轴的交点坐标。
6. 已知二次函数 \(y = 2x^2 - 4x + 1\) 的图像与x轴相交于点 A和 B,求 A 和 B 的坐标。
7. 判断二次函数 \(y = -x^2 + 4x - 3\) 的图像是否在x轴上方,解释原因。
8. 给定二次函数 \(y = 3x^2 - 6x + 2\),求出它在x轴下方的区间。
9. 已知二次函数 \(y = x^2 - 6x + 8\) 的图像与y轴相交于点 C,求 C 的坐标。
10. 给定二次函数 \(y = -2x^2 + 4x + 1\),求出它的顶点坐标和对称轴,并判断其开口方向。
11. 判断二次函数 \(y = x^2 - 2x - 3\) 的图像是否经过原点,说明理由。
12. 给定二次函数 \(y = 5x^2 - 10x + 1\),求出它的图像与x轴的交点坐标。
13. 已知二次函数 \(y = -3x^2 + 12x - 8\) 的图像与x轴相交于点D 和 E,求 D 和E 的坐标。
14. 给定二次函数 \(y = 2x^2 + 4x + 1\),求出它的图像与y轴的交点坐标。
15. 判断二次函数 \(y = -x^2 + 6x - 8\) 的图像是否经过第一象限,解释原因。
函数图像练习题及答案
函数图像练习题及答案一、选择题1. 函数f(x)=2x^2-3x+1的图像是开口向上的抛物线,其顶点坐标为:A. (1,0)B. (-1,2)C. (3/4,-1/8)D. (0,1)2. 若函数f(x)=x^3-3x^2+2x+1的导数为f'(x)=3x^2-6x+2,求f'(1)的值:A. 2B. 3B. 4D. 53. 函数y=|x|的图像是:A. 一条直线B. V形曲线C. 一条抛物线D. 一条双曲线4. 若函数f(x)=x^2+2x+1的图像与x轴相交于点(-1,0),则该点也是:A. 极大值点B. 极小值点C. 拐点D. 无特殊点5. 函数y=sin(x)的图像是:A. 一条直线B. 一条周期曲线C. 一条抛物线D. 一条双曲线二、填空题1. 函数y=x^2的导数是________。
2. 函数y=cos(x)的周期是________。
3. 若函数f(x)=x^3-6x^2+11x-6的极小值点为x=2,则其极小值是________。
4. 函数y=1/x的图像在第一象限和第三象限是________。
5. 函数y=ln(x)的定义域是________。
三、解答题1. 已知函数f(x)=x^3-6x^2+11x-6,求其导数,并找出其极值点及对应的极值。
2. 函数y=x^2-4x+4的图像与y=0相交于哪两点?并说明这两点的性质。
3. 函数f(x)=x^2+4x+4的图像与直线y=k相交于两点,求k的取值范围。
4. 函数y=x^2-2x+1的图像关于直线x=1对称,求证。
5. 若函数f(x)=x^3-3x^2+4x-12的图像在点(2,-4)处的切线方程,求出该切线方程。
答案:一、选择题1. C2. A3. B4. A5. B二、填空题1. 2x2. 2π3. -34. 向下5. (0,+∞)三、解答题1. 导数f'(x)=3x^2-12x+11,令f'(x)=0得x=(12±√(144-132))/6=2或x=(12-√(144-132))/6,检验得x=2为极小值点,极小值为f(2)=-3。
第17章 函数及其图象【真题训练】(解析版)
第17章 函数及其图象[真题训练](解析版)一、选择题1.(2020湖北黄冈)在平面直角坐标系中,若点A(a,-b)在第三象限,则点B(-ab,b)所在的象限是( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】A解:∵点(,)A a b -在第三象限,∴0a <,, ∴0b >,∴,∴点B 在第一象限, 故选:A .2.(2020四川遂宁)函数12-+=x x y 中,自变量x 的取值范围是( ) A .x >﹣2 B .x ≥﹣2C .x >﹣2且x ≠1D .x ≥﹣2且x ≠1【答案】D .【解答】解:根据题意得:{x +2≥0x −1≠0解得:x ≥﹣2且x ≠1. 故选:D .3.(2020湖北武汉)一个容器有进水管和出水管,每分钟的进水和出水是两个常数.从某时刻开始4min 内只进水不出水,从第4min 到第24min 内既进水又出水,从第24min 开始只出水不进水,容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则图中a 的值是( ) A. 32 B. 34C. 36D. 38【答案】C.解:设每分钟的进水量为bL ,出水量为cL 由第一段函数图象可知,205()4b L == 由第二段函数图象可知, 即201251235c +⨯-= 解得15()4c L =则当24x =时, 因此,解得36(min)a = 故选:C .4.(2020·安徽)已知一次函数y =kx +3的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( ) A .(-1,2) B .(1,-2)C .(2,3)D .(3,4)【答案】B解:由一次函数的解析式,得:k =3y x -≠0,则y ≠3.∵一次函数y 随x 的增大而减小,∴k <0,即3y x-<0,故x >0、y <3或x <0、y >3,故选B.5.(2020·乐山)直线y =kx +b 在平面直角坐标系中的位置如图所示,则不等式kx +b ≤2的解集是( )A .x ≤-2B .x ≤-4C .x ≥-2D .x ≥-4【答案】C解析:先根据图像用待定系数法求出直线的解析式,然后根据图像可得出解集.因为直线y =kx +b 经过(0,1),(2,0)两点,所以⎩⎨⎧b =1,2k +b =0,解得⎩⎪⎨⎪⎧k =-12,b =1,故直线的解析式为y =-12x +1;将y =2代入得2=-12x +1,解得x =-2,由图像得到不等式kx +b ≤2的解集是x ≥-2.6.(2020·济宁)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b,相交于点P,根据图象可知,方程x+5=ax+b 的解是( )A. x=20B.x=5C.x= 25D.x=15 【答案】A解析:由函数图象知,当x=20时,y=x+5=25,y=ax+b=25,所以方程x+5=ax+b 的解是x=20.7.(2020·湖北荆州)在平面直角坐标系中,一次函数1y x 的图象是( )A. B. C. D. 【答案】C解析:此题考查了一次函数的图象,熟练掌握一次函数的图象与性质是解本题的关键. 观察一次函数的解析式,确定出k 与b 的符号,利用一次函数图象及性质判断即可.一次函数1yx 中,其中k =1,b =1,其图象为,故选C.8.(2020·凉山州)若一次函数y =(2m +1)x +m -3的图象不经过第二象限,则m 的取值范围是( ) A .m >-12 B .m <3 C .-12<m <3 D .-12<m ≤3 【答案】D解析:由题意得,解得-12<m ≤3,故选D . 9.(2020河南)若点A(-1,1y ), B(2,2y ),C(3,3y )在反比例函数xy 6-=的图像上,则1y , 2y ,3y 的大小关系为( ) A. 123y y y >> B. 231y y y >>C. 132y y y >>D. 321y y y >>【答案】C【详解】解:∵点在反比例函数6y x=-的图象上,∴1661y =-=-,2632y =-=-,3623y =-=-, ∵326--<<, ∴132y y y >>, 故选:C .10. (2020内蒙古呼和浩特)在同一坐标系中,若正比例函数y =k 1x 与反比例函数y =的图象没有交点,则k 1与k 2的关系,下面四种表述①k 1+k 2≤0;②|k 1+k 2|<|k 1|或|k 1+k 2|<|k 2|;③|k 1+k 2|<|k 1﹣k 2|;④k 1k 2<0.正确的有( ) A .4个 B .3个 C .2个 D .1个【答案】B解:∵同一坐标系中,正比例函数y =k 1x 与反比例函数y =的图象没有交点,若k 1>0,则正比例函数经过一、三象限,从而反比例函数经过二、四象限, 则k 2<0,若k 1<0,则正比例函数经过二、四象限,从而反比例函数经过一、三象限, 则k 2>0,综上:k 1和k 2异号,①∵k 1和k 2的绝对值的大小未知,故k 1+k 2≤0不一定成立,故①错误; ②|k 1+k 2|=||k 1|﹣|k 2||<|k 1|或|k 1+k 2|=||k 1|﹣|k 2||<|k 2|,故②正确; ③|k 1+k 2|=||k 1|﹣|k 2||<||k 1|+|k 2||=|k 1﹣k 2|,故③正确; ④∵k 1和k 2异号,则k 1k 2<0,故④正确; 故正确的有3个, 故选:B . 二、填空题11.(2020齐齐哈尔)在函数23-+=x x y 中,自变量x 的取值范围是 . 【答案】x ≥﹣3且x ≠2. 解:由题可得,{x +3≥0x −2≠0,解得{x ≥−3x ≠2,∴自变量x 的取值范围是x ≥﹣3且x ≠2, 故答案为:x ≥﹣3且x ≠2.12.(2020重庆B 卷)周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A 地出发前往B 地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85继续骑行,经过一段时间,甲先到达B 地,乙一直保持原速前往B 地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚__________分钟到达B 地.【答案】12.解析:由图及题意易乙的速度为300米/分,甲原速度为250米/分,当x=25后,甲提速为400米/分,当x=86时,甲到达B地,此时乙距B地为250(25-5)+400(86-25)-300×86=3600.13.(2020·黔西南州)如图,正比例函数的图象与一次函数y=-x+1的图象相交于点P,点P到x轴的距离是2,则这个正比例函数的解析式是________.【答案】y=-2x解析:本题考查了一次函数的性质、正比例函数的性质、点的坐标意义.∵点P到x轴的距离为2,∴点P的纵坐标为2,∵点P在一次函数y=-x+1上,∴2=-x+1,解得x=-1,∴点P的坐标为(-1,2).设正比例函数解析式为y=kx,把P(-1,2)代入得2=-k,解得k=-2,∴正比例函数的解析式为y=-2x,因此本题答案为y=-2x.14.(2020·黔东南州)把直线y=2x﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为__________ .【答案】y=2x+3解析:利用一次函数图象的平移规律“左加右减,上加下减”来解.∴把直线y=2x﹣1向左平移1个单位长度,得到y=2(x+1)﹣1;再向上平移2个单位长度,得到y=2(x+1)﹣1+2=2x+3.15.(2020·宿迁)已知一次函数y=2x-1的图像经过点A(x1,1),B(x2,3)两点,则x1_______x2(填“>”、“<”或“=”).【答案】<.解析:∵k=2>0,∴y随x的增大而增大.∵1<3,∴x1<x2.故答案为<.16.(2020·南京)将一次函数y=-2x+4的图象绕原点O逆时针旋转90°,所得到的图象对应的函数表达式是________.【答案】y=12x+2解析:直线y=-2x+4与x、y轴的交点分别为(2,0)、(0,4),该两点逆时针旋转90°后的对应点分别是(0,2)、(-4,0).设旋转后的直线解析式为y=k x+b,代入点(0,2)、(-4,0),得:,解得:故旋转后的直线解析式为y=12x+2.17.(2020·毕节)一次函数y=ax+b(a≠0)的图象与反比例函数y=kx(k≠0)的图象的两个交点分别是A(-1,-4),B(2,m),则a+2b=_________.【答案】-2,解析:本题考查一次函数与反比例函数的交点.解:把A (-1,-4)代入y =k x ,得-4=1k-,∴k =4.∴反比例解析式为y =4x.把B (2,m )代入,得m =42,∴m =2,∴B (2,2).把A (-1,-4),B (2,2)代入y =ax +b , 得解得∴a +2b =2+2×(-2)=-2. 故答案为-2.18.(2020北京)在平面直角坐标系xOy 中,直线y x =与双曲线my x=交于A ,B 两点.若点A ,B 的纵坐标分别为12,y y ,则12y y +的值为_________. 【答案】0【解析】由于正比例函数和反比例函数均关于坐标原点O 对称,∴正比例函数和反比例函数的交点亦关于坐标原点中心对称,∴021=+y y19.(2020成都)在平面直角坐标系中,已知直线与双曲线交于,两点(点在第一象限),直线与双曲线交于,两点.当这两条直线互相垂直,且四边形的周长为时,点的坐标为 .【答案】或. 【解答】解:联立与并解得:,故点的坐标为,, 联立与同理可得:点,这两条直线互相垂直,则,故点,,则点,则,同理可得:, 则,解得:或, 故点的坐标为或, 故答案为:或.xOy 4y x=A C A 1y x=-B D ABCD A 4y x =A 1y x=-D 1mn =-D (B 2255AB m AD m=+=14AB =⨯225552AB m m==+2m =12A20.(2020河北)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作m T (m 为1~8的整数).函数ky x=(0x <)的图象为曲线L .(1)若L 过点1T ,则k =_________;(2)若L 过点4T ,则它必定还过另一点m T ,则m =_________;(3)若曲线L 使得这些点分布在它的两侧,每侧各4个点,则k 的整数值有_________个. 【答案】 (1)-16 (2)5 (3)7 【详解】解:(1)由图像可知T 1(-16,1) 又∵.函数ky x=(0x <)的图象经过T 1 ∴116k=-,即k=-16; (2)由图像可知T 1(-16,1)、T 2(-14,2)、T 3(-12,3)、T 4(-10,4)、T 5(-8,5)、T 6(-6,6)、T 7(-4,7)、T 8(-2,8) ∵L 过点4T ∴k=-10×4=40观察T 1~T 8,发现T 5符合题意,即m=5;(3)∵T 1~T 8的横纵坐标积分别为:-16,-28,-36,-40,-40,-36,-28,-16 ∴要使这8个点为于L 的两侧,k 必须满足-36<k <-28 ∴k 可取-29、-30、-31、-32、-33、-34、-35共7个整数值. 故答案为:(1)-16;(2)5;(3)7. 三、解答题21.(2020·宁波)A ,B 两地相距200千米.早上8:00货车甲从A 地出发将一批物资运往B 地,行驶一段路程后出现故障,即刻停车与B 地联系.B 地收到消息后立即派货车乙从B 地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B 地,两辆货车离开各自出发....地的路程y (千米)与时间x (小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y 关于x 的函数表达式.(2)因实际需要,要求货车乙到达B 地的时间比货车甲按原来的速度正常到达B 地的时间最多晚1个小时,问货车乙返回B 地的速度至少为每小时多少千米?分析:本题考查了一次函数的图象和性质及实际应用.(1)根据函数图象中两点的坐标由待定系数法求得函数表达式;(2)计算出货车乙与货车甲相遇时间,货车甲正常到达B 地的时间,货车乙按要求到达B 地时间,根据速度、路程、时间关系列不等式求得最低速度.【答案】解:(1)设函数表达式为y =kx +b(k ≠0),把(1.6,0),(2.6,80)代入y =kx +b ,得,解得.∴y 关于x 的函数表达式为y =80x -128(1.6≤x≤3.1)(注:x 的取值范围对考生不作要求)(2)当y=200-80=120(千米)时,120=80x-128,解得x=3.1.因为货车甲的行驶速度为80÷1.6=50(千米/小时),所以货车甲正常到达B地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),5-3.1-0.3=1.6(小时) .设货车乙返回B地的车速为v千米/小时,则1.6v≥120,解得v≥75.答:货车乙返回B地的车速至少为75千米小时.22.(2020·绵阳)4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y关于x 的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?分析:(1)根据甲书店按标价8折出售,利用标价总额乘以0.8即为应支付金额y;在乙书店购书,若x≤100,则标价总额即为应支付金额;若x>100,则应支付金额y为100+0.6(x-100).(2)求出甲、乙两个书店应付金额相同的标价总额,当购书金额小于这个值时,则去甲书店省钱,购书金额大于这个值时,则去乙书店省钱.解:(1)甲书店应支付金额为:y1=0.8x;乙书店:当x≤100时,y=x;当x>100时,y=100+0.6(x-100).∴乙书店应支付金额为:y2=(2)当x>100时,若y1=y2,则0.8x=40+0.6x,解得x=200.∴当x<200时,去甲书店省钱,x=200时,去甲乙两家书店购书应付金额相同金额,当x>200时,去乙书店省钱.23.(2020·北京)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x>1时,对于x的每一个值,函数y=mx(m≠0)值大于一次函数y=kx+b的值,直接写出m的取值范围.分析:(1)根据一次函数y=kx+b(k≠0)由y=x平移得到可得出k值,然后将点(1,2)代入y=x+b可得b值即可求出解析式;(2)由题意可得临界值为当x=1时,两条直线都过点(1,2),即可得出当x>1,m>2时,y=mx(m≠0)都大于y=x+1,根据x>1,可得m可取值2,可得出m的取值范围.解:(1)∵一次函数y=kx+b(k≠0)由y=x平移得到,∴k=1,将点(1,2)代入y=x+b可得b=1,∴一次函数的解析式为y=x+1;(2)当x>1时,函数y=mx(m≠0)的函数值都大于y=x+1,即图象在y=x+1上方,由下图可知:临界值为当x =1时,两条直线都过点(1,2), ∴当x >1,m >2时,y =mx (m ≠0)都大于y =x +1, 又∵x >1,∴m 可取值2,即m =2, ∴m 的取值范围为m ≥2.24.(2020·南通)如图,直线l 1:y =x +3与过点A (3,0)的直线l 2交于点C (1,m )与x 轴交于点B . (1)求直线l 2的解析式;(2)点M 在直线l 1上,MN ∥y 轴,交直线l 2于点N ,若MN =AB ,求点M 的坐标.分析:(1)由已知先求出C 点坐标,再用待定系数法求出直线解析式.(2)由MN ∥y 轴可得M 、N 两点的横坐标相等,再由6MN AB ==,求出a 的值即可求出M 点坐标. 解:在y =x +3中,令x =0,得y =-3;∴B (-3,0), 把x =1代入y =x +3,得y =4,∴C (1,4), 设直线l 2的解析式为y =kx +b , ,解得. ∴y =-2x +6. (2)AB =3-(-3)=6,设(,3)M a a +,由MN ∥y 轴,得N (a,-2a +6),3(26)6MN a a AB =+--+==,解得3a =或1a =-, ∴M (3,6)或M (-1,2).25.(2020·抚顺本溪辽阳)超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y (瓶)与每瓶售价x (元)之间满足一次函数关系(其中10≤x ≤15,且x 为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶. (1)求y 与x 之间的函数关系式;(2)设超市销售该品牌洗手液每天销售利润为w 元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元?分析:(1)将两组y 与x 的值代入解析式中,即可得解;(2)根据题意可以得到w 与x 之间的函数关系式,然后利用二次函数的性质,将其化成顶点式,然后在规定的取值范围内求出最大值.解:(1)设y 与x 之间的函数关系式为:y =kx +b (k≠0),根据题意,得 ,解得∴y 与x 之间的函数关系式为y =-5x +150. (2)根据题意,可得w =(x -10)(-5x +150) 整理得-5x2+200 x -1500=-5(x -20)2+500∵a=-5<0,开口向下,w 有最大值∴当x <20时,w 随x 的增大而增大,∵10≤x≤15,且x 为整数,∴当x =15时,w 有最大值,最大值=-5×(15-20)2+500=375 答:当每瓶洗手液的售价定为15元时利润最大,最大利润为375元. 26.(2020·滨州)如图,在平面直角坐标系中,直线112y x =--与直线22y x =-+相交于点P ,并分别与x 轴相交于点A 、B . (1)求交点P 的坐标; (2)求△PAB 的面积;(3)请把图象中直线22y x =-+在直线112y x =--上方的部分描黑加粗,并写出此时自变量x 的取值范围.分析:本题考查了两条直线相交及面积,(1)把解析式联立,解方程组求出交点P 的坐标;(2)先求出A 、B 的坐标,然后根据三角形面积公式来求;(3)根据图象即可得出x 的取值范围. 解:(1)由直线112y x =--与直线22y x =-+得x=2,y=-2,∴P(2,-2); (2)直线112y x =--与直线22y x =-+中,令y=0,则- 12x-1=0与-2x+2=0,解得x=-2与x=1, ∴A(-2,0),B (1,0),∴AB=3,∴S△PAB= 12AB•|yP|=12×3×2=3; (3)如图所示:自变量x 的取值范围是x <2.27.(2020·吉林)某种机器工作前先将空油箱加满,然后停止加油立即开始工作,当停止工作时,油箱中油量为5L .在整个过程中,油箱里的油量y (单位:L )与时间x (单位:min )之间的关系如图所示.(1)机器每分钟加油量为_____L ,机器工作的过程中每分钟耗油量为_____L . (2)求机器工作时y 关于x 的函数解析式,并写出自变量x 的取值范围. (3)直接写出油箱中油量为油箱容积的一半时x 的值.分析:(1)根据10min 加油量为30L 即可得;根据60min 时剩余油量为5L 即可得;(2)根据函数图象,直接利用待定系数法即可得;(3)先求出机器加油过程中的y 关于x 的函数解析式,再求出15y =时,两个函数对应的x 的值即可. 【详解】(1)由函数图象得:机器每分钟加油量为 机器工作的过程中每分钟耗油量为3050.5()6010L -=-故答案为:3,0.5;(2)由函数图象得:当10min x =时,机器油箱加满,并开始工作;当60min x =时,机器停止工作 则自变量x 的取值范围为1060x ≤≤,且机器工作时的函数图象经过点 设机器工作时y 关于x 的函数解析式y kx b =+ 将点代入得: 解得则机器工作时y 关于x 的函数解析式1352y x =-+; (3)设机器加油过程中的y 关于x 的函数解析式y ax = 将点(10,30)代入得:1030a = 解得3a =则机器加油过程中的y 关于x 的函数解析式3y x = 油箱中油量为油箱容积的一半时,有以下两种情况: ①在机器加油过程中 当30152y ==时,315x =,解得5x = ②在机器工作过程中 当30152y ==时,135152x -+=,解得40x = 综上,油箱中油量为油箱容积的一半时x 的值为5或40.28.(2020北京)在平面直角坐标系xOy 中,一次函数的图象由函数y x =的图象平移得到,且经过点(1,2). (1)求这个一次函数的解析式;(2)当1x >时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,直接写出m 的取值范围.【解析】(1)∵一次函数由x y =平移得到,∴1=k将点(1,2)代入b x y +=可得1=b ,∴一次函数的解析式为1+=x y .(2)当1>x 时,函数的函数值都大于1+=x y ,即图象在1+=x y 上方,由下图可知:临界值为当1=x 时,两条直线都过点(1,2),∴当2,1>>m x 时.都大于1+=x y .又∵1>x ,∴m 可取值2,即2=m ,∴m 的取值范围为2≥m29.(2020成都)在平面直角坐标系中,反比例函数的图象经过点,过点的直线与轴、轴分别交于,两点.(1)求反比例函数的表达式; (2)若的面积为的面积的2倍,求此直线的函数表达式.【解答】解:(1)反比例函数的图象经过点, , 反比例函数的表达式为; (2)直线过点,,过点的直线与轴、轴分别交于,两点,,,, 的面积为的面积的2倍,,,当时,, 当时,,直线的函数表达式为:,. 30.(2020乐山)如图,已知点A (-2,-2)在双曲线xk y =上,过点A 的直线与双曲线的另一支交于点B(1,a). (1)求直线AB 的解析式; (2)过点B 作BC x ⊥轴于点C ,连结AC ,过点C 作CD AB ⊥于点D .求线段CD 的长.解:(1)将点()22A --,代入k y x =,得4k =,即4y x=, 将(1)B a ,代入4y x=,得4a =,即(14)B ,, 设直线AB 的解析式为y mx n =+,将()22A --,、(14)B ,代入y mx n =+,得 ,解得∴直线AB 的解析式为22y x =+.(2)∵()22A --,、(14)B ,, xOy (0)m y x x=>(3,4)A A y kx b =+x y B C AOB ∆BOC ∆(0)m y x x=>(3,4)A 3412k ∴=⨯=12y x=y kx b =+A 34k b ∴+=A y kx b =+x y B C (b B k∴-0)(0,)C b AOB ∆BOC ∆2b ∴=±2b =23k =2b =-2k =223y x =+22y x =-∵BC x ⊥轴, ∴BC=4,∵,∴3BC CD AB ⨯===.。
一次函数及其图像练习(含答案详解)
一次函数及其图象一、选择题1.关于一次函数y =-x +1的图象,下列所画正确的是(C )【解析】 由一次函数y =-x +1知:图象过点(0,1)和(1,0),故选C.2.在同一平面直角坐标系中,若一次函数y =-x +3与y =3x -5的图象交于点M ,则点M 的坐标为(D )A .(-1,4)B .(-1,2)C. (2,-1)D. (2,1)【解析】 一次函数y =-x +3与y =3x -5的图象的交点M 的坐标即为方程组⎩⎪⎨⎪⎧y =-x +3,y =3x -5的解, 解方程组,得⎩⎪⎨⎪⎧x =2,y =1,∴点M 的坐标为(2,1). 3.已知直线y =kx +b ,若k +b =-5,kb =6,则该直线不经过(A )A .第一象限B .第二象限C. 第三象限D. 第四象限【解析】 由kb =6,知k ,b 同号.又∵k +b =-5,∴k <0,b <0,∴直线y =kx +b 经过第二、三、四象限,∴不经过第一象限.4.直线y =-32x +3与x 轴,y 轴所围成的三角形的面积为(A )A .3B .6C.34D.32【解析】直线y=-32x+3与x轴的交点为(2,0),与y轴的交点为(0,3),所围成的三角形的面积为12×2×3=3.5.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1),B(x2,y2),且x1<x2,则下列不等式中恒成立的是(C)A.y1+y2>0 B.y1+y2<0C. y1-y2>0D. y1-y2<0【解析】∵正比例函数y=kx中k<0,∴y随x的增大而减小.∵x1<x2,∴y1>y2,∴y1-y2>0.(第6题)6.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20 km.设他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象提供的信息,下列说法正确的是(C) A.甲的速度是4 km/h B.乙的速度是10 km/hC.乙比甲晚出发1 h D.甲比乙晚到B地3 h【解析】根据图象知:甲的速度是204=5(km/h),乙的速度是202-1=20(km/h),乙比甲晚出发1-0=1(h),甲比乙晚到B地4-2=2(h),故选C.7.丁老师乘车从学校到省城去参加会议,学校距省城200 km,车行驶的平均速度为80 km/h.若x(h)后丁老师距省城y(km),则y与x之间的函数表达式为(D)A. y=80x-200B. y=-80x-200C. y=80x+200D. y=-80x+200【解析】∵丁老师x(h)行驶的路程为80x(km),∴x(h)后距省城(200-80x)km.8.如果一次函数y=kx+b的函数值y随x的增大而减小,且图象与y轴的负半轴相交,那么下列对k和b的符号判断正确的是(D)A.k>0,b>0 B.k>0,b<0C .k <0,b >0D .k <0,b <0【解析】 ∵y 随x 的增大而减小,∴k <0.∵图象与y 轴交于负半轴,∴b <0.(第9题)9.张师傅驾车从甲地到乙地,两地相距500km ,汽车出发前油箱有油25L ,途中加油若干升,加油前、后汽车都以100km/h 的速度匀速行驶,已知油箱中剩余油量y (L)与行驶时间t (h)之间的函数关系如图所示,则下列说法错误的是(C )A .加油前油箱中剩余油量y (L)与行驶时间t (h)的函数表达式是y =-8t +25B .途中加油21LC. 汽车加油后还可行驶4hD. 汽车到达乙地时油箱中还剩油6L【解析】 A .设加油前油箱中剩余油量y (L)与行驶时间t (h)的函数表达式为y =kt +b .将点(0,25),(2,9)的坐标代入,得⎩⎪⎨⎪⎧b =25,2k +b =9,解得⎩⎪⎨⎪⎧k =-8,b =25,∴y =-8t +25,故本选项正确.B .由图象可知,途中加油30-9=21(L),故本选项正确.C .由图象可知,汽车每小时用油(25-9)÷2=8(L),∴汽车加油后还可行驶30÷8=334(h)<4h ,故本选项错误.D .∵汽车从甲地到乙地所需时间为500÷100=5(h),又∵汽车油箱出发前有油25L ,途中加油21L ,∴汽车到达乙地时油箱中还剩油25+21-5×8=6(L),故本选项正确.故选C.二、填空题10.写出一个图象经过第一、三象限的正比例函数y=kx(k≠0)的表达式:y =2x.【解析】∵图象经过第一、三象限,∴k>0,∴k可以取大于0的任意实数.答案不唯一,如:y=2x.11.已知一次函数y=(2-m)x+m-3,当m>2时,y随x的增大而减小.【解析】由一次函数的性质可知:当y随x的增大而减小时,k=2-m<0,∴m>2.12.如图是一个正比例函数的图象,把该图象向左平移一个单位长度,得到的函数图象的表达式为y=-2x-2.【解析】设原函数图象的表达式为y=kx.当x=-1时,y=2,则有2=-k,∴k=-2,∴y=-2x.设平移后的图象的表达式为y=-2x+b.当x=-1时,y=0,则有0=2+b,∴b=-2,∴y=-2x-2.(第12题)(第13题)13.如图所示是某工程队在“村村通”工程中修筑的公路长度y(m )与时间x(天)之间的函数关系图象.根据图象提供的信息,可知该公路的长度是504m .【解析】 当2≤x ≤8时,设y =kx +b.把点(2,180),(4,288)的坐标代入,得⎩⎪⎨⎪⎧180=2k +b ,288=4k +b ,解得⎩⎪⎨⎪⎧k =54,b =72.∴y =54x +72.当x =8时,y =504.14.直线y =kx +b 经过点A(-2,0)和y 轴正半轴上的一点B ,如果△ABO(O 为坐标原点)的面积为6,那么b 的值为__6__.【解析】 S △ABO =12×2·b =6,∴b =6.(第15题)15.如图,矩形ABCD 的边AB 在x 轴上,AB 的中点与原点重合,AB =2,AD =1,过定点Q(0,2)和动点P(a ,0)的直线与矩形ABCD 的边有公共点,则a 的取值范围是-2≤a ≤2.【解析】 当QP 过点C 时,点P(2,0);当QP 过点D 时,点P(-2,0).∴-2≤a ≤2.16.一次越野跑中,当小明跑了1600 m 时,小刚跑了1400 m ,小明、小刚在此后所跑的路程y (m)与时间t (s)之间的函数关系如图所示,则这次越野跑的全程为2200m.,(第16题))【解析】 设小明的速度为a (m/s),小刚的速度为b (m/s),由题意,得 ⎩⎪⎨⎪⎧1600+100a =1400+100b ,1600+300a =1400+200b ,解得⎩⎪⎨⎪⎧a =2,b =4.∴这次越野跑的全程为1600+300×2=2200(m).17.已知直线y =k 1x +b 1(k 1>0)与y =k 2x +b 2(k 2<0)交于点A (-2,0),且两直线与y 轴围成的三角形的面积为4,那么b 1-b 2等于__4__.【解析】 如解图,设直线y =k 1x +b 1(k 1>0)与y 轴交于点B ,直线y =k 2x +b 2(k 2<0)与y 轴交于点C ,则OB =b 1,OC =-b 2.(第17题解)∵△ABC 的面积为4,∴12OA·OB +12OA·OC =4,∴12×2·b 1+12×2·(-b 2)=4,∴b 1-b 2=4.三、解答题(第18题)18.A ,B 两城相距600 km ,甲、乙两车同时从A 城出发驶向B 城,甲车到达B 城后立即返回.如图是它们离A 城的距离y (km)与行驶时间x (h)之间的函数图象.(1)求甲车行驶过程中y 与x 之间的函数表达式,并写出自变量x 的取值范围.(2)当它们行驶7 h 时,两车相遇,求乙车的速度.【解析】 (1)①当0≤x ≤6时,易得y =100x .②当6<x ≤14时,设y =kx +b .∵图象过点(6,600),(14,0),∴⎩⎪⎨⎪⎧6k +b =600,14k +b =0,解得⎩⎪⎨⎪⎧k =-75,b =1050.∴y =-75x +1050.∴y =⎩⎪⎨⎪⎧100x (0≤x ≤6),-75x +1050(6<x ≤14).(2)当x =7时,y =-75×7+1050=525,∴v 乙=5257=75(km/h).19.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留了一段相同的时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x (h),两车之间的距离为y (km),如图中的折线表示y 与x 之间的函数关系.(第19题)请根据图象解决下列问题:(1)甲、乙两地之间的距离为__560__km.(2)求快车和慢车的速度.(3)求线段DE 所表示的y 关于x 的函数表达式,并写出自变量x 的取值范围.【解析】 (1)由图象可得:甲、乙两地之间的距离为560 km.(2)由图象可得:慢车往返分别用了4 h ,慢车行驶4 h 的距离,快车3 h 即可行驶完,∴可设慢车的速度为3x (km/h),则快车的速度为4x (km/h).由图象可得:4(3x +4x )=560,解得x =20.∴快车的速度为4x =80(km/h),慢车的速度为3x =60(km/h).(3)由题意可得:当x =8时,慢车距离甲地60×(4-3)=60(km),∴点D (8,60).∵慢车往返一次共需8h ,∴点E (9,0).设直线DE 的函数表达式为y =kx +b ,则⎩⎪⎨⎪⎧9k +b =0,8k +b =60,解得⎩⎪⎨⎪⎧k =-60,b =540.∴线段DE 所表示的y 关于x 的函数表达式为y =-60x +540(8≤x ≤9).20.小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天后全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y (kg)与上市时间x (天)的函数关系如图①所示,樱桃价格z (元/kg)与上市时间x (天)的函数关系如图②所示.(第20题)(1)观察图象,直接写出日销售量的最大值.(2)求小明家樱桃的日销售量y 与上市时间x 之间的函数表达式.(3)第10天与第12天的销售金额哪天多?请说明理由.【解析】 (1)日销售量的最大值为120 kg.(2)当0≤x ≤12时,设日销售量y 与上市时间x 之间的函数表达式为y =kx . ∵点(12,120)在y =kx 的图象上,∴120=12k ,∴k =10,∴函数表达式为y =10x .当12<x ≤20时,设日销售量y 与上市时间x 之间的函数表达式为y =k 1x +b 1.∵点(12,120),(20,0)在y =k 1x +b 1的图象上,∴⎩⎪⎨⎪⎧12k 1+b 1=120,20k 1+b 1=0,解得⎩⎪⎨⎪⎧k 1=-15,b 1=300.∴函数表达式为y =-15x +300.∴小明家樱桃的日销售量y 与上市时间x 之间的函数表达式为y =⎩⎪⎨⎪⎧10x (0≤x ≤12),-15x +300(12<x ≤20).(3)当5<x ≤15时,设樱桃价格z 与上市时间x 之间的函数表达式为z =k 2x +b 2.∵点(5,32),(15,12)在z =k 2x +b 2的图象上,∴⎩⎪⎨⎪⎧5k 2+b 2=32,15k 2+b 2=12,解得⎩⎪⎨⎪⎧k 2=-2,b 2=42.∴函数表达式为z =-2x +42.当x =10时,y =10×10=100,z =-2×10+42=22,∴销售金额为100×22=2200(元).当x =12时,y =10×12=120,z =-2×12+42=18,∴销售金额为120×18=2160(元).∵2200>2160,∴第10天的销售金额多.。
初二数学函数及其图像试题答案及解析
初二数学函数及其图像试题答案及解析1.定义新运算:,则函数的图象大致是().【答案】B【解析】先根据新定义运算列出y的关系式,再根据此关系式及x的取值范围画出函数图象即可.解答:解:根据新定义运算可知,=,(1)当x≥3时,此函数解析式为y=2,函数图象在第一象限,以(3,2)为端点平行于x轴的射线,故可排除C、D;(2)当x<3时,此函数是反比例函数,图象在二、四象限,可排除A.故选B.2.已知一次函数图象经过点(3 , 5) , (–4,–9)两点.【1】求一次函数解析式.【答案】y=2x-1【2】求图象和坐标轴交点坐标.【答案】(0,-1)(,0)【3】求图象和坐标轴围成三角形面积.【答案】【4】点(a , 2)在图象上,求a的值.【答案】a=3.(本小题满分8分)星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在右面的平面直角坐标系中,画出符合他们行驶的路程S(千米)与行驶时间t(时)之间的函数图象.【答案】【解析】略4.函数的自变量的取值范围是.【答案】>1【解析】依题意可得,解得,所以函数的自变量的取值范围是5.在反比例函数的图像上,到轴和轴的距离相等的点有A.1个B.2个C.4个D.无数个【答案】B.【解析】根据k=xy求值即可.试题解析:∵到x轴和y轴的距离相等∴x2=9解得:x=3或x=3.故选B.【考点】函数图象上点的坐标特征.6.写出同时具备下列两个条件的一次函数表达式(写出一个即可).(1)y随着x的增大而减小;(2)图像经过点(0,-3)【答案】y=-x-3.【解析】满足第一条k小于0,满足第二条b=-3,,所以可以是y=-x-3.(k值不唯一,解析式也不唯一)【考点】确定一次函数解析式.7.(10分)如图,四边形ABCD为菱形,A(0,4),B(﹣3,0).(1)求点D的坐标(2)求经过C点的反比例函数解析式.【答案】(1)D(0,﹣1).(2)y=.【解析】(1)根据A,B点坐标用勾股定理把AB边求出,因为是菱形,所以AD=AB,用AD 长减去A的纵坐标即可求出D点坐标.(2)先求出C点坐标,因为BC=AB,CB∥AD,∴CB⊥x轴,C点纵坐标的绝对值是CB的长,而C的横坐标和B的横坐标相同,从而求出经过C点的反比例函数解析式.试题解析:(1)∵A(0,4),B(﹣3,0),∴OB=3,OA=4,∴AB=5.在菱形ABCD中,AD=AB=5,∴OD=1,∴D(0,﹣1).(2)∵BC∥AD,BC=AB=5,∴C(﹣3,﹣5).设经过点C的反比例函数解析式为y=.把(﹣3,﹣5)代入解析式得:k=15,∴经过点C的反比例函数解析式为y=.【考点】菱形性质与反比例函数综合题.8.直线的图象经过第()象限A.二、三、四B.一、二、四C.一、三、四D.一、二、三【答案】C.【解析】一次函数解析式中的K,b值决定过哪些象限,K=1>0过一,三象限,b=-1<0,与y轴交于负半轴,所以图像过1,3,4象限,故选C.【考点】一次函数性质.9.(本小题满分8分)如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H,连接BM.(1)求直线AC的解析式;(2)动点P从点A出发,沿折线ABC的方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)动点P从点A出发,沿线段AB方向以2个单位/秒的速度向终点B匀速运动,当∠MPB与∠BCO互为余角时,试确定t的值.【答案】(1)y=-x+.(2)S=-t+(0≤t<).S=-(<t≤5)(3).【解析】(1)要求出AC的解析式,需要知道两点坐标,A点坐标是已知的,由A点坐标可知AO的长,因为是菱形,OA=OC,这样C点坐标就知道了,于是求出直线AC的解析式;(2)分两个时间段建立函数关系,①当0≤t<时,P在AB上,由直线AC解析式求出M点坐标,再求出M,用t表示出PB,建立S△PMB与t之间的函数关系式;②当<t≤5时,P在BC上,可证△MOC≌△MBC(SAS),∴∠MBP=90°,BM=MO,用t表示出PB的长,建立S△PMB与t之间的函数关系式;(3)此题关键是求出PA的长度,由题意可得到∠AOM=∠ABM,∠BAO=∠BCO,∠BAO+∠AOM=90°,又∵∠MPB与∠BCO互为余角∴∠MPB=∠AOM,∴∠MPB =∠ABM.△PMB是等腰三角形,PH=BH,,可求出PH长度,于是求出PA长度,t值就求出来了.试题解析:(1)如图1,过点A作AE⊥x轴,垂足为E.∵A(-3,4),∴AE=4,OE=3,∴OA==5.∵四边形ABCO是菱形,∴OC=CB=BA=OA=5,∴C(5,0).设直线AC的解析式为y=kx+b,将A(-3,4),C(5,0)代入得:,解得,∴直线AC的解析式为y=-x+.(2)由(1)得点M的坐标为(0,),∴OM=.如图1,当点P在AB边上运动时.由题意得OH=4,∴HM=.∴S=BP·MH=(5-2t)×,∴S=-t+(0≤t<).如图2,当点P在BC边上运动时.∵∠OCM=∠BCM,OC=BC,MC=MC.∴△MOC≌△MBC.∴BM=OM=,∠MBC=∠MOC=90°,∴S=BP·BM=(2t-5)×,∴S=-(<t≤5).(3)∵∠AOC=∠ABC,∠MOC=∠MBC,∴∠AOM=∠ABM.∵∠MPB+∠BCO=90°,∠BAO=∠BCO,∠BAO+∠AOM=90°,∴∠MPB=∠AOM,∴∠MPB=∠ABM.如图3,当点P在AB边上运动时,∵∠MPB=∠ABM,∴PM=BM,∵MH⊥PB,∴PH=HB=5-3=2,∴PA=3-2=1.∴t=.【考点】1.一次函数的实际应用;2.图形的动点问题;3.与三角形有关的知识;3.菱形性质.10.在平面直角坐标系中,若直线经过第一、三、四象限,则直线不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.由题意知k>0,b<0,因此可得的图像过一二四象限,不经过三象限.故选C【考点】一次函数的图像与性质11.如图,直线PA是一次函数y=x+1的图象,直线PB是一次函数y=﹣2x+2的图象.(1)求A、B、P三点的坐标;(2)求四边形PQOB的面积.【答案】(1)A(﹣1,0),B(1,0),P();(2)【解析】(1)令y=x+1=0求出点A的坐标,令y=﹣2x+2 =0可求出B的坐标,再解方程组可求出点P的坐标;(2)根据四边形PQOB的面积=即可求解.试题解析:(1)∵一次函数y=x+1的图象与x轴交于点A,∴A(﹣1,0),一次函数y=﹣2x+2的图象与x轴交于点B,∴B(1,0),由,解得,∴P().(2)设直线PA与y轴交于点Q,则Q(0,1),直线PB与y轴交于点M,则M(0,2),∴四边形PQOB的面积==×1×2﹣×1×= .【考点】一次函数综合题.12.已知过点(2,﹣3)的直线y=ax+b(a≠0)不经过第一象限,设s=a+2b,则s的取值范围是()A.﹣5≤s≤﹣B.﹣6<s≤﹣C.﹣6≤s≤﹣D.﹣7<s≤﹣【答案】B.【解析】由直线y=ax+b(a≠0)不经过第一象限可得a<0,b≤0,又因直线y=ax+b(a≠0)经过点(2,﹣3),可得2a+b=—3,所以,b=—2a—3,因此 s=a+2b=a+2(—2a—3)=—3a—6,由a<0可得s>—6, s=a+2b=+2b=,由b≤0可得s≤—,所以s的取值范围是﹣6<s≤﹣.故答案选B.【考点】一次函数图象与系数的关系.13.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是()A.a≤b B.a<b C.a≥b D.a>b【答案】D【解析】根据一次函数的图像与性质可知:当k<0时,y随x的增大而减小,可知a>b.故选D【考点】一次函数的图像与性质14. (本题满分8分)直线y=kx+b 交坐标轴于A (-2,0),B (0,3)两点,求不等式kx+b >0的解集. 【答案】x>-2.【解析】先把两点坐标代入y=kx+b ,将直线y=kx+b 解析式求出来,再解不等式kx+b>0,求解集.试题解析:先把两点坐标代入y=kx+b ,解得b=3,k=,∴y=x+3,解不等式x+3>0,得:x>-2.【考点】1.用代入法求一次函数解析式;2.解一元一次不等式.15. 如图的四个图象中,不表示某一函数图象的是( )【答案】B .【解析】根据函数的定义,对于自变量x 的某一取值,函数y 都有唯一值与之对应,可知选项A 、C 、D 的图象满足函数的定义,选项B 的图象中,对于自变量x 的某一取值,y 有两个值与之对应,不是函数图象. 故答案选B .【考点】函数的图象;函数的概念.16. 一次函数y=2x ﹣6的图象经过( ) A .第一、二、三象限 B .第一、三、四象限 C .第一、二、四象限 D .第二、三、四象限【答案】B【解析】对于一次函数y=kx+b 而言,当k >0,b <0时,图象经过一、三、四象限.本题中k >0,b <0.先根据一次函数的性质判断出此函数图象所经过的象限,再进行解答即可. 【考点】一次函数图象与系数的关系.17. 直线l 1:y=k 1x+b 与直线l 2:y=k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x >k 1x+b 的解集为( ) A .x >3 B .x <3 C .x >﹣1 D .x <﹣1【答案】D .【解析】当k 2x >k 1x+b 时,y=k 2x 的图象应位于y=k 1x+b 图象的上方;观察图象可得,当x <﹣1时,直线y=k 2x 图象在直线y=k 1x+b 图象的上方,所以不等式k 2x >k 1x+b 的解集为x <﹣1,故答案选D .【考点】一次函数与一元一次不等式的关系.18. 根据表中一次函数的自变量x 与函数y 的对应值,可得p 的值为( )A .1B .-1C .3D .-3【答案】A .【解析】:一次函数的解析式为y=kx+b (k≠0), ∵x=-2时y=3;x=1时y=0, ∴, 解得,∴一次函数的解析式为y=-x+1, ∴当x=0时,y=1,即p=1. 故选A .【考点】一次函数图象上点的坐标特征.19. 正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2…按如图所示的方式放置,点A 1,A 2,A 3,…在直线y=x+1,点C 1,C 2,C 3,…在x 轴上,则B 6的坐标是 .【答案】(63,32).【解析】已知点A 1在直线y=x+1,可得OA 1=1,又因正方形A 1B 1C 1O ,所以C 1坐标为(1,0),B 1的坐标(1,1);已知A 2在直线y=x+1图象上,所以A 2坐标为(1,2),A 2B 2C 2C 1是正方形,可得C 2坐标为(1,0),点B 2的坐标为(3,2),A 3在直线y=x+1图象上,可得点A 3的坐标为(3,4),以此类推可得点B 3的坐标为(7,4),所以B 1的纵坐标是:1=20,B 1的横坐标是:1=21﹣1;B 2的纵坐标是:2=21,B 2的横坐标是:3=22﹣1;B 3的纵坐标是:4=22,B 3的横坐标是:7=23﹣1;…B n 的纵坐标是:2n ﹣1,横坐标是:2n ﹣1,则B n (2n ﹣1,2n ﹣1).所以B 6的坐标是:(26﹣1,26﹣1),即(63,32).【考点】一次函数图象上点的坐标特征;正方形的性质;规律探究题.20. (8分)如图,直线AC 是一次函数y=2x+3的图象,直线BC 是一次函数y=﹣2x ﹣1的图象.(1)求A、B、C三点的坐标;(2)求△ABC的面积.【答案】(1)A(0,3),B(0,﹣1),C(﹣1,1);(2)2.【解析】(1)在两个一次函数解析式中,令x=0,求得y的值,即可得到A和B的坐标,把两个一次函数的解析式组成的方程组,解方程组,方程组的解即为点C的坐标;(2)根据A和B的坐标求出AB的长,利用三角形面积公式即可求解.(3)试题解析:(1)在y=2x+3中,令x=0,解得:y=3,则A点的坐标为(0,3),同理,B点的坐标为(0,﹣1),∵解得.∴C点的坐标为(﹣1,1);(2)∵AB=4,∴.【考点】一次函数与二元一次方程组.21.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;=2,求点C的坐标.(2)若直线AB上的点C在第一象限,且S△BOC【答案】(1)直线AB的解析式为y=2x﹣2;(2)点C的坐标是(2,2).【解析】(1)设直线AB的解析式为y=kx+b,根据直线AB过点A(1,0)、点B(0,﹣2),列出方程组,解方程组求得k、b的值,即可得直线AB的解析式;(2)设点C的坐标为(x,y),根据三角形面积公式可得•2•x=2,解得x的值再代入直线即可求出y的值,即可得点C的坐标.试题解析:解:(1)设直线AB的解析式为y=kx+b(k≠0),∵直线AB过点A(1,0)、点B(0,﹣2),∴,解得,∴直线AB的解析式为y=2x﹣2.(2)设点C的坐标为(x,y),∵S=2,△BOC∴•2•x=2,解得x=2,∴y=2×2﹣2=2,∴点C的坐标是(2,2).【考点】待定系数法求一次函数解析式.22.一次函数y=﹣2x+4的图象与y轴的交点坐标是()A.(0,4)B.(4,0)C.(2,0)D.(0,2)【答案】A【解析】本题考查了一次函数与坐标轴的交点坐标的求法,是一个基础题,掌握y轴上点的横坐标为0是解题的关键.令x=0,得y=﹣2×0+4=4,则函数与y轴的交点坐标是(0,4).【考点】一次函数图象上点的坐标特征23.直线y=kx+2过点(1,﹣2),则k的值是()A.4B.﹣4C.﹣8D.8【解析】B本题考查了用待定系数法求解析式,是基础知识要熟练掌握.将点(1,﹣2)代入y=kx+2,求出k的值.∵直线y=kx+2过点(1,﹣2),∴k+2=﹣2,解得k=﹣4,【考点】待定系数法求一次函数解析式24.如图,直线y=﹣2x+2与x轴y轴分别相交于点A、B,四边形ABCD是正方形,曲线y=在第一象限经过点D.则k= .【答案】3.【解析】如图,过点D作DE⊥x轴,垂足为E,连OD.由题意可知∠DAE+∠BAO=90°,∠OBA+∠BAO=90°,根据同角的余角相等可得∠DAE=∠OBA,根据正方形的性质可得∠BOA=∠AED,AB=DA,根据AAS可证出△BOA≌△AED,得到AE=BO,AO=DE,所以=•OE•DE=×3×1=,,根据反比例函数k的几何意义,即可得S△DOEk=3..【考点】反比例函数综合题.25.关于x的一次函数y=3kx+k-1的图象无论k怎样变化,总经过一个定点,这个定点的坐标是.【答案】(-,-1).【解析】∵y=3kx+k-1,∴(3x+1)k=y+1,∵无论k怎样变化,总经过一个定点,即k有无数个解,∴3x+1=0且y+1=0,∴x=-,y=-1,∴一次函数y=3kx+k-1过定点(-,-1).【考点】一次函数图象上点的坐标特征.26.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则方程2x=ax+4的解集为()A.x=B.x=3C.x=﹣D.x=﹣3【答案】A【解析】可先求得A点坐标,再结合函数图象可知方程的解即为两函数图象的交点横坐标,可求得方程的解.∵A点在直线y=2x上,∴3=2m,解得m=,∴A点坐标为(,3),∵y=2x,y=ax+4,∴方程2x=ax+4的解即为两函数图象的交点横坐标,∴方程2x=ax+4的解为x=,【考点】一次函数与一元一次方程27.已知直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),则方程组解是.【答案】.【解析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此点P的横坐标与纵坐标的值均符合方程组中两个方程的要求,因此方程组的解应该是.【考点】一次函数与二元一次方程(组).28.已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.【答案】(1)直线AB的解析式为:y=﹣x+5;(2)点C(3,2);(3)x>3.【解析】(1)利用待定系数法把点A(5,0),B(1,4)代入y=kx+b可得关于k、b得方程组,再解方程组即可;(2)联立两个函数解析式,再解方程组即可;(3)根据C点坐标可直接得到答案.试题解析:(1)∵直线y=kx+b经过点A(5,0),B(1,4),∴,解得,∴直线AB的解析式为:y=﹣x+5;(2)∵若直线y=2x﹣4与直线AB相交于点C,∴.解得,∴点C(3,2);(3)由图象可得x>3.【考点】 1.待定系数法;2.一次函数与一元一次不等式;3.两条直线相交或平行问题.29.将长为20cm,宽为10cm的长方形白纸,按如图所示的方法粘贴起来,粘合部分的宽为2cm.设x张白纸粘合后的纸条总长度为ycm,(1)求y与x之间的函数关系式,并画出函数图象,(2)若x=20,求纸条的面积.【答案】(1)y=18x+2;(2) 3620cm2.【解析】(1)根据白纸粘合后的总长度=x张白纸的长-(x-1)个粘合部分的宽,列出函数解析式即可;(2)根据长方形的面积计算公式,把相关数值代入即可求解.试题解析:(1)由题意得:y=20x-(x-1)×2=18x+2;(2)当x=20时,y=18x+2=362(cm),纸条的面积=362×10=3620(cm2).【考点】一次函数的应用.30.小文家与学校相距1000米.某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校.下图是小文与家的距离y(米)关于时间x(分钟)的函数图象.请你根据图象中给出的信息,解答下列问题:(1)小文走了多远才返回家拿书?(2)求线段AB所在直线的函数解析式;(3)当x=8分钟时,求小文与家的距离.【答案】(1)200米.(2) y=200x-1000;(3) 小文离家600米.【解析】从图象可以知道,2分钟时小文返回家,在家一段时间后,5分钟又开始回学校,10分钟到达学校.试题解析:(1)200米(2)设直线AB的解析式为:y=kx+b由图可知:A(5,0),B(10,1000)∴解得∴直线AB的解析式为:y=200x-1000;(3)当x=8时,y=200×8-1000=600(米)即x=8分钟时,小文离家600米.【考点】一次函数的应用.31.如果是方程组的解,则一次函数y=mx+n的解析式为()A.y="-x+2"B.y="x-2"C.y="-x-2"D.y=x+2【答案】D.【解析】根据题意,将代入方程组,得,即,①×2得,6m-2n=2…③,②-③得,3m=3,∴m=1,把m=1代入①,得,3-n=1,∴n=2,∴一次函数解析式为y=x+2.故选D.【考点】一次函数与二元一次方程(组).32.已知函数是正比例函数,且图象在第二、四象限内,则m的值是()A.2B.-2C.±2D.【答案】B.【解析】∵函数是正比例函数,且图象在第二、四象限内,∴m2-3=1,m+1<0,解得:m=±2,则m的值是-2.故选B.【考点】1.正比例函数的定义;2.正比例函数的性质.33.下列描述一次函数y=-2x+5图象性质错误的是()A.y随x的增大而减小B.直线经过第一、二、四象限C.直线从左到右是下降的D.直线与x轴交点坐标是(0,5)【答案】D【解析】A,B,C都符合一次函数的定义;D直线与y轴的交点为(0,5),故错误.【考点】一次函数34.下列图象不能表示y是x的函数的是()A.B.C.D.【答案】D.【解析】根据函数的定义可知:对于x的任何值y都有唯一的值与之相对应,分析图象可知只有D不能表示函数关系.故选D.【考点】函数的图象.35.如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b<ax+3的解集为.【答案】x>1.【解析】由图知:当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b>ax+3成立;由于两直线的交点横坐标为:x=1,观察图象可知,当x>1时,x+b>ax+3;故答案为:x>1.【考点】一次函数与一元一次不等式.36.将直线向下平移1个单位长度后得到的图像的函数解析式是【答案】y=2x-1.【解析】根据一次函数图象与几何变换得到直线y=2x向下平移1各单位得到函数解析式y=2x-1.【考点】一次函数的图象与几何变换37.若一次函数的图象经过点(,),则的值为.【答案】4.【解析】把点(,)代入可得10=2k+2,解得k=4.【考点】一次函数图象上点的特征.38.(本小题满分8分)如图,已知一次函数与正比例函数图像相交于点A,与轴交于点B.(1)求出m、n的值;(2)求出的面积.【答案】(1)n=4,m=2;(2)4.【解析】(1)把A(2,n)代入可求得n的值,再把A点的坐标代入求得m 的值即可;(2)求得与轴的交点B的坐标,利用即可求得的面积.试题解析:解:(1)∵点A(2,n)在函数的图象上,∴∴A(2,4)∵点A(2,4)也在函数的图象上,∴解得:(2)∵与轴交于点B ,∴令,则∴B (-2,0)∴【考点】一次函数.39. (10分)如图,在△ABC 中,∠BAC=90°,AB=AC=6,D 为BC 的中点.(1)若E 、F 分别是AB 、AC 上的点,且AE=CF ,求证:△AED ≌△CFD ;(2)当点F 、E 分别从C 、A 两点同时出发,以每秒1个单位长度的速度沿CA 、AB 运动,到点A 、B 时停止;设△DEF 的面积为y ,F 点运动的时间为x ,求y 与x 的函数关系式;(3)在(2)的条件下,点F 、E 分别沿CA 、AB 的延长线继续运动,求此时y 与x 的函数关系式.【答案】(1)详见解析;(2);(3).【解析】(1)利用等腰直角三角形的性质得到∠BAD=∠DAC=∠B=∠C=45°,进而得到AD=BD=DC ,再利用SAS 可判定△AED ≌△CFD ; (2)利用S 四边形AEDF =S △AED +S △ADF =S △CFD +S △ADF =S △ADC ="9" 即可得到y 与x 之间的函数关系式;(3)依题意有:AF=BE=x-6,AD=DB ,∠ABD=∠DAC=45°得到∠DAF=∠DBE=135°,从而得到△ADF ≌△BDE ,利用全等三角形面积相等得到S △ADF =S △BDE 从而得到S △EDF =S △EAF +S △ADB 即可确定两个变量之间的函数关系式.试题解析:(1)证明:∵∠BAC="90°" AB=AC=6,D 为BC 中点∴∠BAD=∠DAC=∠B=∠C=45° ∴AD=BD=DC ∵AE=CF ∴△AED ≌△CFD(2)解:依题意有:FC=AE=x ,∵△AED ≌△CFD ∴S 四边AEDF =S △AED +S △ADF =S △CFD +S △ADF =S △ADC =9S △EDF =S 四边AEDF -S △AEF =9-=;∴ (3)解:依题意有:AF=BE=x ﹣6,AD=DB ,∠ABD=∠DAC=45°∴∠DAF=∠DBE=135° ∴△ADF ≌△BDE ∴S △ADF =S △BDE∴S △EDF =S △EAF +S △ADB=+9=;∴. 【考点】等腰直角三角形的性质;全等三角形的判定与性质.40. (本题8分)如图,在平面直角坐标系中,O 是坐标原点,点A 坐标为(2,0),点B 坐标为(0,b )(b >0),点P 是直线AB 上位于第二象限内的一个动点,过点P 作PC 垂直于x 轴于点C,记点P关于y轴的对称点为Q,设点P的横坐标为a.=4时,求点P的坐标;(1)当b=3时:①求直线AB相应的函数表达式;②当S△QOA(2)是否同时存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有满足条件的a、b的值;若不存在,请说明理由.【答案】(1)①y=-1.5x+3 ②P(,4)(2)或【解析】(1)①利用待定系数法求解即可;由①知点P坐标为(a,-a+3),可求出点P坐标,再利用求出a的值,即可得出点P的坐标;(2)分两种情况①当∠QAC=90°,且AQ=AC时,QA∥y轴,②当∠AQC=90°,且QA=QC时,过点Q作QH⊥x轴于点H,分别求解即可.试题解析:解:(1)①设直线AB的函数表达式为:y=kx+b(k≠0),将A(2,0),B(0,3)代入得,解得所以直线AB的函数表达式为y=-x+3,由①知点P坐标为(a,-a+3),∴点Q坐标为(-a,-a+3),∴=×2×==-a+3=4,解得a=-∴P点的坐标为(-,4)(2)设P点的坐标为(a,n),(a<0,n>0),则点C,Q的坐标分别为C(a,0),Q(-a,n),①如图1,当∠QAC=90°且AQ=AC时,QA∥y轴,∴-a=2,解得a=-2∴AC=4,从而AQ=AC=4,即=4,由n>0得n=4∴P点的坐标为(-2,4)设直线AB的解析式为y=cx+b(c≠0),将P(-2,4),A(2,0)代入得,解得∴a=-2,b=2②如图2,当∠AQC=90°,且QA=QC时,过点Q作QH⊥x轴于点H,∴QH=CH=AH=AC,由Q(-a,n)知H(-a,0)Q的横坐标为-a=,解得a=-,Q的纵坐标为QH=∴Q(,),P(-,)由P(-,),点A坐标为(2,0),可得直线AP的解析式为y=-x+1,∴b=1,∴a=-,b=1综上所述,当△QAC是等腰三角形时,a=-2,b=2或a=-,b=1.【考点】待定系数法,一次函数的图像与性质41.若点A(0,2)和点B(-2,8)在一次函数y=kx+b的图像上,则该函数关系式为.【答案】y=-3x+2【解析】根据待定系数法可知,解得,因此该函数的解析式为y=-3x+2.【考点】待定系数法42.某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:(1)设商场购进A型节能台灯为x盏,销售完这批台灯时可获利为y元,求y关于x的函数解析式;(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?【答案】(1);(2)x=25时,y取得最大值为1875.【解析】(1)根据题意列出方程即可;(2)根据一次函数的增减性求解即可.试题解析:解:(1)y=(45﹣30)x+(70﹣50)(100﹣x)=15x+2000﹣20x=﹣5x+2000;(2)∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,∴x=25时,y取得最大值为﹣5×25+2000=1875(元).【考点】一次函数的应用.43.如图1所示,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图2为列车离乙地路程y(千米)与行驶时间x(小时)时间的函数关系图象.(1)填空:甲、丙两地距离千米.(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.【答案】(1)900.(2)y=.【解析】(1)根据函数图形可得,甲、丙两地距离为:900+150=1050(千米);(2)分两种情况:当0≤x≤3时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=kx+b,把(0,900),(3,0)代入得到方程组,即可解答;根据确定高速列出的速度为300(千米/小时),从而确定点A的坐标为(3.5,150),当3<x≤3.5时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=k1x+b1,把(3,0),(3.5,150)代入得到方程组,即可解答.试题解析:解:(1)根据函数图形可得,甲、丙两地距离为:900+150=1050(千米),故答案为:900.(2)当0≤x≤3时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=kx+b,把(0,900),(3,0)代入得:,解得:,∴y=﹣300x+900,高速列出的速度为:900÷3=300(千米/小时),150÷300=0.5(小时),3+0.5=3.5(小时)如图2,点A的坐标为(3.5,150)当3<x≤3.5时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=k1x+b1,把(3,0),(3.5,150)代入得:,解得:,∴y=300x﹣900,∴y=.【考点】一次函数的应用.44.已知A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s(千米),甲行驶的时间为t(小时),则下图中正确反映s与t之间函数关系的是【答案】A【解析】∵A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A,∴两人同时出发,2小时两人就会相遇,甲6小时到达B地,乙3小时到达A地,故两人之间的距离为s(千米),甲行驶的时间为t(小时),则正确反映s与t之间函数关系的是A.故选:A.【考点】函数的图像.45.已知点M(2,1)和点N(1,-2)在直线l:y=kx+b上,则直线l与x轴的交点坐标是()A.(0,-5)B.(-5,0)C.(0,)D.(,0)【答案】D.【解析】试题解析:∵点M(2,1)和点N(1,-2)在直线y=kx+b上,∴,解得,∴直线l的解析式为y=3x-5.∵当y=0时,x=,∴直线l与x轴的交点坐标是(,0).故选D.【考点】一次函数图象上点的坐标特征.46.对于一次函数y=x+6,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)【答案】D.【解析】试题解析:A、∵一次函数y=x+6中k=1>0,∴函数值随自变量增大而增大,故A选项正确;B、∵一次函数y=x+6与x、y轴的交点坐标分别为(-6,0),(0,6),∴此函数与x轴所成角度的正切值==1,∴函数图象与x轴正方向成45°角,故B选项正确;C、∵一次函数y=x+6中k=1>0,b=6>0,∴函数图象经过一、二、三象限,故C选项正确;D、∵令y=0,则x=-6,∴一次函数y=x+6与x、y轴的交点坐标分别为(-6,0),故D选项错误.故选D.【考点】一次函数的性质.47.如图,点A的坐标为(-2,0),点B在直线y=x上运动,当线段AB最短时点B的坐为()A.(-1,-1)B.(-2,-2)C.(-,-)D.(0,0)【答案】A.【解析】试题解析:过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,∵垂线段最短,∴当点B与点D重合时线段AB最短.∵直线OB的解析式为y=x,∴△AOD是等腰直角三角形,∴OE=OA=1,∴D(-1,-1).故选A.【考点】1.一次函数图象上点的坐标特征;2.垂线段最短.48.如图①,已知直线y=-2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1) (1)A(2,0);C(0,4);(2) 直线CD解析式为y=-x+4.(3)P1(0,0);P2(,);P3(-,).【解析】(1)已知直线y=-2x+4与x轴、y轴分别交于点A、C,即可求得A和C的坐标;(2)根据题意可知△ACD是等腰三角形,算出AD长即可求得D点坐标,最后即可求出CD的解析式;(3)将点P在不同象限进行分类,根据全等三角形的判定方法找出所有全等三角形,找出符合题意的点P的坐标.试题解析:(1)A(2,0);C(0,4)(2)由折叠知:CD=AD.设AD=x,则CD=x,BD=4-x,根据题意得:(4-x)2+22=x2解得:x=此时,AD=,D(2,)设直线CD为y=kx+4,把D(2,)代入得=2k+4解得:k=-∴该直线CD解析式为y=-x+4.(3)①当点P与点O重合时,△APC≌△CBA,此时P(0,0)②当点P在第一象限时,如图,由△APC≌△CBA得∠ACP=∠CAB,则点P在直线CD上.过P作PQ⊥AD于点Q,在Rt△ADP中,AD=,PD=BD=4-=,AP=BC=2由AD×PQ=DP×AP得:PQ=3∴PQ=∴xP=2+=,把x=代入y=-x+4得y=此时P(,)(也可通过Rt△APQ勾股定理求AQ长得到点P的纵坐标)③当点P在第二象限时,如图同理可求得:CQ=∴OQ=4-=此时P(-,)综合得,满足条件的点P有三个,分别为:P1(0,0);P2(,);P3(-,).【考点】一次函数综合题.49.将直线y=2x﹣1的图象向上平移3个单位长度所得的函数表达式.【答案】y=2x+2【解析】函数图象的平移法则为:上加下减,左减右减.【考点】函数图象的平移50.已知:y-1与x+2成正比例,且x=1时,y=4.(1)写出与之间的函数关系式;(2)在图中画出此函数的图像;(3)求此直线与坐标轴围成的三角形的面积.(4)观察图像,直接写出时的取值范围.【答案】(1)y="x+3" ;(2)详见解析;(3)4.5;(4)x<-3.【解析】(1)根据题意设y-1=k(x+2),将x与y的值代入求出k的值,即可确定出y与x关系式;(2)求出直线与x轴、y轴的交点坐标,连接即可;(3)根据三角形的面积公式即可解答;(4)观察图象,可得时的取值范围.试题解析:(1)根据题意得:y-1=k(x+2),将x=1,y=4代入得:3=3k,即k=1,则y-1=x+2,即y=x+3;直线y=x+3与x轴的交点坐标为(-3,0),与y轴的交点坐标为(0,3),函数图象如图,直线y=x+3与坐标轴围成的三角形的面积为×3×3=4.5;观察图象可得时的取值范围为)x<-3.【考点】一次函数的图象及性质.51.在一次蜡烛燃烧试验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)之间的关系如图所示,请根据图象所提供的信息解答下列问题:。
函数图像练习题
函数图像练习题
1. 函数f(x) = x^2 - 4x + 3的图像如下:
[插入图像1]
从图像中我们可以观察到,该函数是一个二次函数,开口朝上,并
且经过点(1, 0)和(3, 0)。
2. 函数g(x) = -2x + 5的图像如下:
[插入图像2]
从图像中我们可以观察到,该函数是一个一次函数,斜率为-2,与
y轴交点为5。
3. 函数h(x) = |x - 2|的图像如下:
[插入图像3]
从图像中我们可以观察到,该函数是一个绝对值函数。
当x < 2时,h(x) = 2 - x;当x > 2时,h(x) = x - 2。
并且在x = 2处存在一个转折点。
4. 函数k(x) = sin(x)的图像如下:
[插入图像4]
从图像中我们可以观察到,该函数是一个正弦函数,周期为2π,振幅为1。
函数的波峰和波谷分别在x = 0, x = π, x = 2π等处。
5. 函数m(x) = e^x的图像如下:
[插入图像5]
从图像中我们可以观察到,该函数是一个指数函数,底数为e。
函数随着x的增大而不断增长。
通过以上的练习题,我们对一些常见函数的图像有了一定的了解。
在解决实际问题中,函数图像的形状和特点对我们理解函数的性质和作用非常重要。
因此,我们应当多进行练习和观察,以提高对函数图像的认识和理解能力。
二次函数的图像和性质练习(含答案)
二次函数的图像和性质一、选择题(每题3分)1.下列四个函数中,一定是二次函数的是( )A .21y x x=+ B .y=ax 2+bx+c C .y=x 2﹣(x+7)2 D .y=(x+1)(2x ﹣1)【答案】D【解析】试题分析:因为形如y=ax 2+bx+c (0a ≠)的函数叫二次函数,所以选项A 、B 、C 错误,D 正确,故选:D .考点:二次函数的概念.2.若函数y=-2(x-1)2+(a-1)x 2为二次函数,则a 的取值范围为( ) A.a≠0 B.a≠1 C.a≠2 D.a≠3【答案】D .【解析】试题分析:根据二次函数的定义化成一般式为()2342y a x x =-+-, 则30a -≠3a ≠故选D .考点:二次函数的定义.3.下列函数中,不是二次函数的是( )A .y =1-x 2B .y =2(x -1)2+4C .y =(x -1)(x +4)D .y =(x -2)2-x 2【答案】D .【解析】试题分析:选项A ,y=1-x 2=-x 2+1,是二次函数,选项A 正确;选项B ,y=2(x-1)2+4=2x 2-4x+6,是二次函数,选项B 正确;选项C ,y=(x-1)(x+4)=x 2+x-2,是二次函数,选项C 正确;选项 D ,y=(x-2)2-x 2=-4x+4,是一次函数,选项D 错误.故答案选D .考点:二次函数的定义.二、填空题(每题3分)4.若函数y =(m -3)是二次函数,则m =______. 【答案】5.【解析】试题分析:已知函数y =(m -3)是二次函数,可得且m -3≠0,解得m=-5. 考点:二次函数的定义.5..一个圆柱的高等于底面半径,写出它的表面积S 与底面半径r 的函数关系式为_________.【答案】S=4π2r【解析】试题分析:根据题意可得h=2r ,则S=2πrh=4π2r .考点:二次函数的实际应用(时间:15分钟,满分25分)班级:___________姓名:___________得分:___________一、选择题(每题3分)1.下列函数中,不属于二次函数的是( )A .y=(x ﹣2)2B .y=﹣2(x+1)(x ﹣1)C .y=1﹣x ﹣x 2D .y=211x 【答案】D【解析】试题分析:整理一般形式后根据二次函数的定义判定即可:A 、整理为y=x 2﹣4x+4,是二次函数,不合题意;B 、整理为y=﹣2x 2+2,是二次函数,不合题意;C 、整理为y=﹣x 2﹣x+1,是二次函数,不合题意;D 、不是整式方程,符合题意.故选:D .考点:二次函数的定义2.下列函数中属于二次函数的是( )A .12-=x yB .12-=ax yC .222)1(2x x y --=D .)2)(1(π+-=x x y【答案】D .【解析】试题分析:A .12-=x y 是一次函数,故本选项错误;B .当0a =时,12-=ax y 不是二次函数,故本选项错误;C .222)1(2x x y --==42x -+是一次函数,故本选项错误;D )2)(1(π+-=x x y 是二次函数,故本选项正确.故选D .考点:二次函数的定义.3.若函数222(1)(1)y x a x =--+-为二次函数,则a 的取值范围为( )A .0a ≠B .1a ≠C .2a ≠D .3a ≠【答案】D .【解析】试题分析:由原函数解析式得到:222(1)(1)y x a x =--+-=2(3)42a x x -+-.∵函数 222(1)(1)y x a x =--+-为二次函数,∴30a -≠,解得3a ≠.故选D .考点:二次函数的定义.二、填空题(每题3分)4.在边长为16cm 的正方形铁皮上剪去一个圆,则剩下的铁皮的面积S (cm 2)与圆的半径r (cm )之间的函数表达式为 (不要求写自变量的取值范围).【答案】2256r S π-=【解析】试题分析:剩下的面积为:正方形的面积-圆的面积=162-πr 2=256-πr 2故答案为:2256r S π-=考点:函数的表达式.5..用长为8米的铝合金制成如图所示的窗框,若设窗框的宽为x 米,窗户的透光面积为S 平方米, 则S 关于x 的函数关系式 .【答案】S=x x 4232+-【解析】试题分析:设窗框的宽为x 米,则长为238x -米 ∴S=x x x x 4232382+-=⨯- 考点:实际问题抽象二次函数三、计算题(每题10分)6.已知,若函数2(1)3m y m x =-+是关于x 的一次函数.(1)求m 的值,并写出解析式;(2)若函数是关于x 的二次函数,求m 的值,.【答案】(1)1m =-;(2)m =.【解析】试题分析:(1)先根据一次函数的定义求出m 的值;(2)由22m =可得出m =试题解析:(1)∵函数2(1)3m y m x =-+是一次函数,∴21m =,解得1m =或1m =-,又∵10m -≠,∴1m ≠,∴1m =-,∴函数为:23y x =-+;m=可得出m=(2)由22考点:1.一次函数的定义;2.二次函数的定义.。
高一下函数与图像练习题
高一下函数与图像练习题一、单项选择题1.椭圆4x2+y2=k上任意两点间的最大距离为8,则k的值为()A.4B.8C.16D.32x2的准线方程是()2.抛物线y=14A.y=-1B.y=-116C.x=-1D.=-1163.双曲线x2-y2=-4的顶点坐标是()A.(0,±1)B.(0,±2)C.(±1,0)D.(±2,0)4.已知点(3,2)在椭圆x2a2+y2b2=1上,则 ( )A.点(-3,-2)不在椭圆上B.点(3,-2)不在椭圆上C.点(-3,2)在椭圆上D.无法判断点(-3,-2),(3,-2),(-3,2)是否在椭圆上5.抛物线y2=8x 的焦点到双曲线y24-x2=1的渐近线的距离为( ) A.55 B.255 C.455D. 56.“直线与双曲线只有一个公共点”是“直线与双曲线相切”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.“直线与双曲线有两个公共点”是“直线与双曲线相交”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.若直线y =kx +3与双曲线x29-y25=1只有一个公共点,则满足条件的k 的值有 ( )A.1个B.2个C.3个D.4个9.设P 是椭圆4x2+y2=4上的点,且到直线x -2=0距离等于32,则点P 的坐标为 ( )A.⎝⎛⎭⎪⎫-12,3 B.⎝ ⎛⎭⎪⎫12,3 C.⎝⎛⎭⎪⎫12,-3,⎝ ⎛⎭⎪⎫12,3D.⎝ ⎛⎭⎪⎫-12,-3,⎝ ⎛⎭⎪⎫-12,3 10.已知方程x2-p +y2q=1表示的曲线是双曲线,则下列椭圆中,与此双曲线共焦点的是 ( ) A.x22q +p +y2q =1 B.x22q +p +y2p =-1 C.x22p +q +y2q =1 D.x22p +q +y2p =-111.若直线y =x +b 经过抛物线x2=4y 的焦点,则b 的值是() A.-2B.-1C.1D.212.若抛物线的焦点为F (0,-2),则其标准方程为 ( )A.y2=-4xB.y2=-8xC.x2=-4yD.x2=-8y13.抛物线x2=-8y的准线是()A.y=2B.y=-2C.x=2D.x=-214.F为抛物线y2=2x的焦点,点P是抛物线上的动点,点A的坐标是(3,2),当|PA|+|PF|取最小值时,点P的坐标是()A.(4,2)B.(-4,2)C.(2,2)D.(-2,2)15.已知双曲线的离心率是方程x2-3x+2=0的一个根,双曲线的中心在坐标原点,一个焦点为直线3x-4y-12=0与x轴的交点,则此双曲线的标准方程为()A.x24-y22=1B.x24-y28=1C.x26-y26=1D.x24-y212=116.双曲线x2-y23=1的渐近线中,斜率较小的一条渐近线的倾斜角是( )A.60°B.90°C.120°D.150°17.“b >a >0”是“椭圆ax2+by2=1的焦点在x 轴上”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件18.抛物线y2=-4x 上有一点到准线的距离等于4,则该点的横坐标为( )A.-4B.-3C.-2D.-119.若椭圆的长轴长为6,离心率e =13,焦点在y 轴上,则椭圆标准方程为( ) A.223632x y +=1 B.2298x y +=1 C.223236x y +=1 D.2289x y +=120.以椭圆x24+y216=1的顶点为顶点,且离心率为2的双曲线方程为( )A.y216-x248=1B.x24-y212=1C.y216-x248=1或x24-y212=1D.x2-y23=121.已知点P (4,2)是直线l 被椭圆22369x y =1所截得的弦的中点,则直线l 的方程是 ( )A.x -2y =0B.x +2y -4=0C.2x +3y +4=0D.x +2y -8=022.如图所示为某双曲线的图象,则|PF1|-|PF2|等于 ( )A.4B.-4C.±4D.±223.设椭圆x29+y216=1的焦点为F1,F2,P 为椭圆上一点,且与F1,F2构成一个三角形,则△PF1F2的周长为 ( )A.16B.18C.8+7D.8+2724.若m∈{1,2,3,4,5},n∈{1,2,3,4},且x2m+y2n=1表示焦点在x轴上的椭圆,则满足条件的椭圆有()A.12个B.0个C.9个D.8个25.平面内到两定点(-3,0)与(3,0)的距离之和等于10的动点M的轨迹方程为()A.x29+y225=1B.x225+y29=1C.x216+y225=1D.x225+y216=126.若双曲线的一个焦点为(5,0),且实半轴长为3,则该双曲线的标准方程为 ( )A.x225 -y29 =1B.x29 -y216 =1C.x216 -y29 =1D.x29 -y216 =1或x216 -y29 =127.若抛物线y =ax2的焦点坐标是108⎛⎫⎪⎝⎭,,则a 的值为() A.16B.8C.4D.228.直线y =2截抛物线x2=4y 所得的弦长为 ( )A.2B.4C.2 2D.4 229.已知抛物线的图象如图所示,直线l 过焦点F (0,1)且倾斜角=45°.若直线l 与抛物线相交于A,B 两点,其中O 为坐标原点,则|AB|等于( )A.4B.6C.2D.830.若椭圆221711x y +=的离心率为e1,双曲线221711x y -=的离心率为e2,抛物线y2=8x 的离心率为e3,则它们的大小关系为 ( ) A.e1>e2>e3 B.e2>e3>e1 C.e2>e1>e3 D.e1>e3>e2 二、填空题31.焦点为(5,0),且与双曲线2214x y -=有相同渐近线的双曲线的标准方程是 .32.已知抛物线y2=tx 的图象上有一点M 的横坐标为4,且到焦点距离为6,则t = .33.(1)虚半轴长为6,且焦点坐标为(-10,0)的双曲线的标准方程为 ;(2)实半轴长为2,离心率为32的双曲线的标准方程是 . 34.若直线y =x +1与椭圆2x2+y2=2相交,则截得的弦长为 .35.AB 为过抛物线y =x2焦点的弦,且|AB|=1,则弦AB 的中点m 到x 轴的距离为 .36.已知斜率为2的直线经过(2,5),(a ,-7)两点,则a = . 37.已知曲线x28+a +y29=1的离心率为12,则a = .38.已知点P (-2,1)在抛物线C :y2=2px 的准线上,其焦点为F ,则直线PF 的斜率是 .39.双曲线2222x y a b=1(a>0,b>0)的顶点坐标为 ,渐近线方程为 .40.将抛物线y2=3x 绕顶点顺时针方向旋转90°,所得的抛物线方程是 .三、解答题(解答题应写出文字说明及演算步骤)41.已知双曲线x2m -y2=1的右焦点F2与抛物线y2=8x 的焦点重合,过双曲线的左焦点F1作倾斜角为α的直线l ,其中cosα=12.若直线l 与双曲线相交于A ,B 两点,求: (1)m 的值与直线l 的方程; (2)△ABF2的面积.42.已知椭圆的焦点在x 轴上,短轴长为12,求椭圆的标准方程.43.已知点A 是抛物线x2=2py (p>0)的对称轴与准线的交点,过点A 作抛物线的两条切线,切点分别为P ,Q (P 点横坐标小于Q 点横坐标).若S △APQ =4,求p 的值.44.求椭圆22179x y +=的长轴长、短轴长、焦点坐标、顶点坐标及离心率.45.如图所示,从抛物线y2=4x 上一点A 引抛物线准线的垂线,垂足为M ,且|AF|=5,其中F 为抛物线的焦点.求△MAF 的面积.答案一、单项选择题1.C2.A3.B4.C5.C6.B7.A8.D9.C10.D11.C12.Dp=2,焦点在y轴的13.A 【提示】由已知得,-2p=-8,则p=4,2负半轴,故其准线方程是y=2,故选A.14.C 【解析】如图所示.过P 作PQ 垂直于准线,Q 为垂足,由抛物线定义知|PQ|=|PF|,∴|PF|+|PA|=|PQ|+|PA|,∴当P ,Q ,A 三点共线时,|PA|+|PQ|最短,此时yP =yA =2,代入y2=2x ,得xP =2,∴P (2,2).15.D16.C 【提示】 a2=1,b2=3,即a =1,b =3.渐近线方程为y =±ba x =±3x ,斜率较小即k =-3,故倾斜角是120°.17.C 【提示】若b >a >0,则1a >1b >0,椭圆x21a +y21b =1的焦点在x 轴上.反之,椭圆ax2+by2=1的焦点在x 轴上,则1a >1b >0,从而b >a >0.18.B 【分析】 因为抛物线上y2=-4x 一点到准线的距离等于-x +2p ,p =2,所以-x +1=4,所以x =-3,故选B.19.D 【提示】由题知a =3,∵c e a=,∴c =1,由c2=a2-b2,解得b =y轴上,∴椭圆的标准方程为22189x y +=,故选D.20.C【提示】椭圆顶点为(0,±4)和(±2,0),若双曲线顶点为(0,±4),则焦点在y 轴上,且a =4,ca =2,∴c =8,∴b2=48,∴双曲线方程为y216-x248=1.若双曲线顶点为(±2,0),则焦点在x 轴上,且a =2,c a =2,∴c =4,∴b2=12,∴双曲线方程为x24-y212=1. 21.D 【解析】设弦端点A (x1,y1),B (x2,y2),则x1≠x2,且122x x +=4,122y y +=2,即x1+x2=8,y1+y2=4.由2211222213691369x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩作差得136(x22-x21)+19(y22-y21)=0,∴136×8(x2-x1)=-19×4(y2-y1),即2121y y x x --=-12,即kAB =-12,∴点斜式方程为y -2=-12(x -4),即x +2y -8=0.22.A 【解析】∵2a =4,且|PF1|-|PF2|>0.∵||PF1|-|PF2||=2a =4,∴|PF1|-|PF2|=4. 23.D 24.B25.D 【提示】 ∵c =3,2a =10,∴a2=25,b2=16,焦点在x 轴上.故选D.26.B 【提示】焦点在x 轴上,c =5,b2=c2-a2=16,双曲线方程为x29 -y216 =1.故选B.27.D 【提示】原方程可化为x2=1a y ,开口向上,p 2 =18 ,p =14 ,1a =2p =12 ,a =2.故选D. 28.D【提示】联立方程组⎩⎪⎨⎪⎧y =2,x2=4y ,解得x =-2 2 或x =2 2 ,∴弦长为4 2 .故选D. 29.D 30.B 二、填空题 31.221205x y -= 32.8 【分析】M 到准线距离为6,得4t+4=6,解得t =8.33.(1)226436x y -=1【解析】b =6,c =10,∴a =8.(2)2245x y -=1或2245y x -=1 【解析】a =2,c a =32,∴c =3,∴b2=c2-a2=5,焦点位置不确定,∴双曲线的标准方程为2245x y -=1或2245y x -=1.34.423 【解析】由22122y x x y =+⎧⎨+=⎩,,得3x2+2x -1=0,∴x1+x2=-23,x1x2=-13,∴弦长=()212x x +=2=423. 35.14 【解析】焦点弦|AB|=|y1+y2|+p =|y1+y2|+12=1,∴|y1+y2|=12,∴122y y +=14,即AB 中点到x 轴距离为14.36.-4 【解析】k =752a ---=2,∴a =-4. 37.-54或438.-14 【提示】 准线方程为x =-2,p =4,焦点F(2,0),则kPF =0-12+2=-14 . 39.(-a ,0),(a ,0) bx -ay =0或bx +ay =0 【提示】 由双曲线的标准方程可知.40.x2=-3y 【提示】原抛物线焦点为304⎛⎫⎪⎝⎭,,旋转后抛物线焦点为304⎛⎫- ⎪⎝⎭,,∴所得抛物线方程为x2=-3y.三、解答题41.解:(1)∵抛物线y2=8x 的焦点坐标为(2,0),∴F2(2,0), ∴m +1=2,∴m =3.故双曲线方程为x23-y2=1,F1(2,0). 又∵cosα=12且α∈[0°,180°),∴α=60°, ∴斜率k =tan60°= 3.∴直线l 的方程为y =3(x +2)即3x -y +23=0.(2)联立⎩⎪⎨⎪⎧y =3(x +2),①x23-y2=1,②①代入②并化简得8x2+36x +39=0,Δ=362-4×8×39=48, ∴|AB|=1+k2Δ8=1+3×488= 3. 又∵点F2到直线l 的距离为d =23+234=23,∴△ABF2的面积S =12|AB|·d =12×3×23=3. 42.24x +23y =143.解:由题意得点A 的坐标为(0,-p2 ),∴设过点A 的切线方程为y =kx -p2 ,与抛物线方程联立得⎩⎪⎨⎪⎧y =kx -p 2,x2=2py x2-2pkx +p2=0.∵直线与抛物线相切, ∴Δ=4p2k2-4p2=0, 解得k =±1,∴⎩⎪⎨⎪⎧x1=-p ,y1=p2,⎩⎪⎨⎪⎧x2=p ,y2=p 2,则P (-p ,p 2 ),Q (p ,p2 ), ∴S △APQ =12 ×2p×p =4, 解得p =2(负值舍去).44.解:∵焦点在y 轴上,且a2=9,b2=7, ∴c2=2.∴a =3,b =7 ,c = 2 ,∴长轴长2a =6,短轴长2b =27 ,焦点坐标为(0,- 2 )和(0,2 ),顶点坐标为(0,-3),(0,3),(-7 ,0),(7 ,0),离心率为e =c a =2345.解:设A(m,n)(m>0,n>0),则p2=1.∵|AF|=|AM|=p2+m=5,∴m=4. 将A(4,n)代入y2=4x得n=4,∴S△MAF=12|AM|·n=12×5×4=10.21。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一课时 变量与函数1、函数2y x =-的自变量x 的取值范围是__。
A 、1x …B 、1x …且2x ≠C 、2x ≠D 、1x >>且2x ≠2、盛满10千克水的水箱,每小时流出千克的水,写出水箱中的剩余水量y(千克)与时间t(时)之间的函数关系是 ,自变量t 的取值范围是3、已知正方形ABCD 的对角线长xcm,则周长y 关于x 的函数解析式为 ,当1cm ≤x ≤10cm 时, y 的取值范围是4、汽车从距A 站300千米的B 站,以每小时60千米的速度开向A 站,写出汽车离B 站S(千米)与开出的时间t(时)之间的函数关系是 ,自变量t 的取值范围是5、等腰三角形周长为10cm ,底边BC 长为ycm,腰AB 长为xcm,(1)写出y 关于x 的函数关系式; (2)求x 的取值范围; (3) 求y 的取值范围. 6、汽车从距A 站300千米的B 站,以每小时60千米的速度开向A 站,写出汽车离B 站S (千米)与开出的时间t (时)之间的函数关系是_________ ,自变量t 的取值范围是____________. 7、我国是一个水资源缺乏的国家,大家要节约用水.据统计,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约毫升.李丽同学在洗手时,没有把水龙头拧紧,当李丽同学离开x 小时后水龙头滴了y 毫升水.则y 与x 之间的函数关系式是 8、曾子伟叔叔的庄园里已有50棵树,,他决定今后每年栽2棵树,则曾叔叔庄园树木的总数y (棵)与年数x 的函数关系式为9、圆柱底面半径为5cm ,则圆柱的体积V (cm 3)与圆柱的高h (cm )之间的函数关系式为 ,它是 函数10、甲市到乙市的包裹邮资为每千克元,每件另加手续费元,求总邮资y (元)与包裹重量x (千克)之间的函数解析式,并计算5千克重的包裹的邮资。
11、在拖拉机油箱中,盛满56千克油,拖拉机工作时,每小时平均耗油6千克,求邮箱里12、我市某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米1元收费;若每月用水超过7立方米,则超过部分按每立方米2元收费. 如果某居民户今年5月缴纳了17元水费,那么这户居民今年5月的用水量为________立方米 .第二课时 平面直角坐标系1、在平面直角坐标系中,点(-1,-2)所在的象限是 ( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限2、已知点P (9,-2)关于原点对称的点是Q ,Q 关于y 轴对称的点是R ,则点R 的坐标是( )A 、(2,-9)B 、(-9,2)C 、(9,2)D (-9,-2)3、已知a 是整数,点A(2a+1,2+a)在第二象限,则a=4、若a<0,b<0, 则点P(-a ,-2+b)在第 象限.5、已知点(3a ,2+b)和点(b-a ,7)关于原点对称,则ab =6、若点P(1-m,m)在第二象限,则下列关系正确的是.........( ) A 、0<m<1 B 、m<0 C 、m>0 D 、m>17、在平面直角坐标系中,点(-1,-2)所在的象限是__。
A 、第一象限B 、第二象限C 、第三象限D 、第四象限 8、点P (2,3)关于x 轴的对称点为__。
A 、(-2,3)B 、(2,-3)C 、(-2,-3)D 、以上都不对9、若a <0,b <0, 则点P (-a ,-2+b )在第______象限.10、 已知点(3a ,2+b )和点(b -a ,7)关于原点对称,则a b =______.11、在平面直角坐标系内,A 、B 、C 三点的坐标为(0,0) 、(4,0)、(3,2),以A 、B 、C 三点为顶点画平行四边形,则第四个顶点不可能在__。
A 、第一象限B 、第二象限C 12、如图,如果○士所在位置的坐标为(-1,-2), ○相所在位置的坐标为(2,-2), 那么,○炮所 在位置的坐标为_____。
13、若 k >0,点P(-k , k )在第_____象限(A)第一象限 (B) 第二象限 (C)第三象限 (D) 第四象限第三课时 函数的图像1、“龟兔赛跑”是同学们熟悉的寓言故事,如图所示表示路程S(米) 与时间t(分)的关系,那么知道: ①赛跑中,兔子共睡了__分钟;②乌龟在这次赛跑中的平均速度为___米/分钟。
2、如图,射线分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的函数关系,则他们行进的速度关系是...........( ) A 、甲比乙快 B 、乙比甲快 C 、甲、乙同速 D 、不一定3、甲、乙两人在一次赛跑中,路程s 与时间t 的关系如图所示(图中实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象)小王根据图象得到如下四个信息,其中错误的是(A.这是一次1500米的赛跑 B.甲、乙两人中乙先到达终点C.甲比乙先起跑D.甲的这次赛跑中的速度为5米/秒 4、如图,A l 、B l 分别表示A 步行与B路上行 驶的路程S 与时间t 的关系。
(1)B 出发时与A 相距 千米。
(2)走了一段路后,自行车发生故障,进行修理,用时是 小时。
(3)B 出发后 小时与A 相遇。
(4)求出A 行走的路程S 与时间t 的函数关系式。
(5)若B 的自行车不发生故障,保持出发时的速度前进, 小时与A 相遇,相遇点离B 的出发点 千米。
在图中表示出这个相遇点C5、下图表示甲、乙两名选手在一次自行车越野赛中,路程y (千米)随时间x (分)变化的图象.根据图象回答问题;⑴、求比赛开始多少分钟时,两人第一次相遇。
⑵、求这次比赛全程是多少千米。
⑶、求比赛开始多少分钟时,两人第二次相遇.第四课时 一次函数1、下列函数中一次函数的个数为( ) ①y=2x ;②y=3+4x ;③y=21;④y=ax (a ≠0的常数);⑤xy=3;⑥2x+3y-1=0; A .3个 B 4个 C 5个 D 6个2、若y =(m -1)x22m -是正比例函数,则m 的值为( )B.-1 或-1D.2或-23、若函数y =(3m -2)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( )>32 <21 =32 =21 4、已知点(1)P m ,在正比例函数2y x =的图象上,那么点P 的坐标是( )A.(12), B.(12)--, C.(12)-, D(12)-, 5、下列函数关系式中,哪些是一次函数,哪些是正比例函数? ( 1)y=-x-4 (2)y=5x2+6 (3)y=2πx (4)y=-8x 6、若23y x b =+-是正比例函数,则b 的值是 ( ) B.23 C.23- D.32- 7、已知函数()()2442-+-=+m xm y n ,当m 且 时,它是一次函数;533O6 7当m 且n 时它是正比例函数. 8、若关于x 的函数1(1)m y n x-=+是一次函数,则m = ,n .9、2y-3与3x+1成正比例,且x=2,y=12,则y 与x 的函数解析式为_______; 10、填空题(1)若函数y=(m-2)x+5是一次函数,则m 满足的条件是____________。
(2)当m=__________时,函数y=3x2m+1 +3 是一次函数。
(3 )关于x 的一次函数y=x+5m-5,若使其成为正比例函数,则m 应取_________。
11、已知函数y=()()112-++m x m 当m 取什么值时,y 是x 的一次函数?当m 取什么值时,y 是x 的正比例函数。
12、函数:①y=-2x+3;②x+y=1;③xy=1;④y=1+x ;⑤y=221x +1;⑥y=中,属一次函数的有 ,属正比例函数的有 (只填序号) 13、当m= 时,y=()()m x m x m +-+-1122是一次函数。
14、请写出一个正比例函数,且x =2时,y= -6请写出一个一次函数,且x=-6时,y=2 15、设圆的面积为s ,半径为R,那么下列说法正确的是( ) A S 是R 的一次函数 B S 是R 的正比例函数 C S 是2R 的正比例函数 D 以上说法都不正确16、说出下面两个问题中两个量的函数关系,并指出它们是不是正比例函数,是不是一次函数。
① 汽车以40千米/小时的平均速度从A 站出发,行驶了t 小时,那么汽车离开A 站的距离s(千米)和时间t(小时)之间的函数关系是什么?的函数关系式为 ,它是 函数② 汽车离开A 站4千米,再以40千米/小时的平均速度行驶了t 小时,那么汽车离开A 站的距离s(千米)与时间t(小时)之间的函数关系是什么?的函数关系式为 ,它是 函数17、曾子伟叔叔的庄园里已有50棵树,,他决定今后每年栽2棵树,则曾叔叔庄园树木的总数y (棵)与年数x 的函数关系式为 它是 函数18、圆柱底面半径为5cm ,则圆柱的体积V (cm 3)与圆柱的高h (cm )之间的函数关系式为 ,它是 函数 第五课时 一次函数的图像一次函数y=kx +b(k ≠0)的图象是过点(0,_____)、(______,0)的___________ 一次函数y=kx+b 的k 、b 的值对一次函数图象的影响。
① ② ③ ④例2、若一次函数()12112-+-=k x k y 的图象不过第一象限,则k 的取值范围是 . 举一反三:1、一次函数12+=x y 的图象经过( )A . 第二、三、四象限B . 第一、三、四象限C . 第一、二、四象限D . 第一、二、三象限 2、一次函数3y x =+的图象不经过...的象限是( ) A.第一象限B.第二象限C.第三象限D.第四象限3、若一次函数b kx y +=的图象经过一、二、三象限,则b k ,应满足的条件是:( ) A.0,0>>b k B.0,0<>b k C.0,0><b k D.0,0<<b k4、已知一次函数y=kx+b 的图象如图所示,则k,b 的符号是( )(A)k>0,b>0 (B)k>0,b<0 (C)k<0,b>0 (D)k<0,b<0 5、 一次函数k x k y +-=)1(,若k >1时,则函数图像不经过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 6. 已知直线y = k x +b 经过一、二、四象限,则有( ).(A)k <0, b <0 (B)k <0, b >0 (C)k >0, b >0 (D)k >0, b <0 7.直线b kx y +=1过第一、二、四象限,则直线k bx y -=2不经过( ) A 、第一象限 B 、第二象限 C 、、第三象限 D 、第四象限例3、已知一次函数y kx k =-,若y 随着x 的增大而减小,则该函数的图象经过( ) A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限 举一反三:1、下列一次函数中,y 的值随x 值的增大而增大的是( )A 、y= -5x+3B 、y= -x-7C 、y= 9-2xD 、y=x+2 2、下列一次函数中,y 的值随x 值的增大而减小的是( )A 、y=32x-8 B 、y= -x+3 C 、y=2x+5 D 、y=7x-6 3、已知函数y =(m -4)x -5+2m,当m___________时,y 随x 的增大而增大;当m___________时,y 随x 的增大而减小; 当m___________时,函数图像经过原点4、已知一次函数(0)y kx b k =+≠的图象经过点(01),,且y 随x 的增大而增大,请你写出一个..符合上述条件的函数关系式 . 5、一次函数的图象过点(10)-,,且函数值随着自变量的增大而减小,写出一个符合这个条件的一次函数解析式: .例4、点111()P x y ,,点222()P x y ,是一次函数43y x =-+图象上的两个点,且12x x <,则1y 与2y 的大小关系是( ) A.12y y >B.120y y >>C.12y y <D.12y y =举一反三:若正比例函数mx y =的图象经过点),(11y x A 和点),(22y x B ,当x 1<x 2时,y 1>y 2则m 的取值范围是 ( )A .m <0B .m >0C .m <21 D .m >21例5、已知函数3)12(-++=m x m y ;(1)若函数图像经过原点,求m 的值;(2)若这个函数是一次函数,且y 随x 的增大而减小,求m 的取值范围。