数据包络分析DEA课件
合集下载
数据包络分析DEA和层次分析法AHP(excel)PPT课件
工商管理2班管理管理信息系统第二小组
DEA方法的特点: ➢ 适用于多输出-多输入的有效性综合评价问题,在处理多
输出-多输入的有效性评价方面具有绝对优势 ➢ DEA方法并不直接对数据进行综合,因此决策单元的最优
效率指标与投入指标值及产出指标值的量纲选取无关,应 用DEA方法建立模型前无须对数据进行无量纲化处理(当 然也可以)
❖ 定理2 DMUj0 为弱DEA有效的充要条件是线性规划 (D)的最优值θ*=1; DMUj0为DEA有效的充要条件是 线性规划(D)的最优值θ*=1,并且对于每个最优解λ*, 都有s*+=0,s*-=0
工商管理2班管理管理信息系统第二小组
DEA有效性的定义:
我们能够用CCR模型判定是否同时技术有效和规模有效: ❖ (1)θ*=1,且s*+=0,s*-=0。则决策单元j0为DEA有
决策单元
输入数据
输入数据
• 具有相同类型 的部门或单位
• 指决策单元 •在某种活 动中 •需要消耗的某些
量 •例如投入的资金
总 额投入的总劳
动力数 •占地面积等
• 决策单元经 过一定 的输入
之后, •产生的表明该 •活动成效的 •某些信息量 •例如不同类型 •的产品数量, •产品的质量, •经济效益等等
工商管理2班管理管理信息系统第二小组
二、 DEA基本原理和模型
定义:
权系数
1 2 3 … j …n
v1
1 x11 x12 x13 … x1j … x1n
v2
2 x21 x22 x23 … x2j … x2n
. . . . . . ….
vi
.. .
.
. Xij … .
. . . . . . ….
DEA方法的特点: ➢ 适用于多输出-多输入的有效性综合评价问题,在处理多
输出-多输入的有效性评价方面具有绝对优势 ➢ DEA方法并不直接对数据进行综合,因此决策单元的最优
效率指标与投入指标值及产出指标值的量纲选取无关,应 用DEA方法建立模型前无须对数据进行无量纲化处理(当 然也可以)
❖ 定理2 DMUj0 为弱DEA有效的充要条件是线性规划 (D)的最优值θ*=1; DMUj0为DEA有效的充要条件是 线性规划(D)的最优值θ*=1,并且对于每个最优解λ*, 都有s*+=0,s*-=0
工商管理2班管理管理信息系统第二小组
DEA有效性的定义:
我们能够用CCR模型判定是否同时技术有效和规模有效: ❖ (1)θ*=1,且s*+=0,s*-=0。则决策单元j0为DEA有
决策单元
输入数据
输入数据
• 具有相同类型 的部门或单位
• 指决策单元 •在某种活 动中 •需要消耗的某些
量 •例如投入的资金
总 额投入的总劳
动力数 •占地面积等
• 决策单元经 过一定 的输入
之后, •产生的表明该 •活动成效的 •某些信息量 •例如不同类型 •的产品数量, •产品的质量, •经济效益等等
工商管理2班管理管理信息系统第二小组
二、 DEA基本原理和模型
定义:
权系数
1 2 3 … j …n
v1
1 x11 x12 x13 … x1j … x1n
v2
2 x21 x22 x23 … x2j … x2n
. . . . . . ….
vi
.. .
.
. Xij … .
. . . . . . ….
DEA数据包络分析ppt课件
DEA資料包絡分析法與選股 應用之探討
1
資料包絡分析法之基本模式與應用
基本概念 CCR模式
•投入導向 •產出導向 比率式、原問題、對偶問題 BCC模式 •投入導向 •產出導向 DEA執行程序 生產效率(整體技術效率)、(純)技術效率與 規模效率 交叉效率、FPI與A&P效率概念 案例討論與研析
c
SI2
S’
S
I2 I’b2
X2 I’2 a
µ¥ »ù ®æ ½u
A =P1X1+P2X2
A”
A’ S’µ¥ ²£ ¶q ½u
O
X1
I’1 I1
X1
5
基本觀念—生產前緣與包絡分析(續)
X2(I)
E B
D
C
A
X1(I)
6
CCR(Charnes, Cooper&Rhodes)模式—概念
理想假設 生產過程屬固定規模報酬,既是當投入量以等 比例增加時,產出亦應等比增加。
n
率), ek Ekj /(n 1) 如此便可得出一個平均 j 1, j k
效率值,再依此平均效率值比較其效率之大小,此乃
所謂的交叉效率之分析。
28
交叉效率&FPI(False positive index)
但為證明此交叉效率之誤差性極大,筆者便以 Lindo所解出之權重與DEA Excel所得出的權重(兩 者權重不同),以上述定義計算其效率,相互比較, 發現其差異甚大,故其結果並不可靠,必須加以 參考另一數值FPI(假正效率), 即 M k (k ek ) ek ,依此評估其效率並相互比較,
其 值e越k 大越好, 越M小k 越好。
29
1
資料包絡分析法之基本模式與應用
基本概念 CCR模式
•投入導向 •產出導向 比率式、原問題、對偶問題 BCC模式 •投入導向 •產出導向 DEA執行程序 生產效率(整體技術效率)、(純)技術效率與 規模效率 交叉效率、FPI與A&P效率概念 案例討論與研析
c
SI2
S’
S
I2 I’b2
X2 I’2 a
µ¥ »ù ®æ ½u
A =P1X1+P2X2
A”
A’ S’µ¥ ²£ ¶q ½u
O
X1
I’1 I1
X1
5
基本觀念—生產前緣與包絡分析(續)
X2(I)
E B
D
C
A
X1(I)
6
CCR(Charnes, Cooper&Rhodes)模式—概念
理想假設 生產過程屬固定規模報酬,既是當投入量以等 比例增加時,產出亦應等比增加。
n
率), ek Ekj /(n 1) 如此便可得出一個平均 j 1, j k
效率值,再依此平均效率值比較其效率之大小,此乃
所謂的交叉效率之分析。
28
交叉效率&FPI(False positive index)
但為證明此交叉效率之誤差性極大,筆者便以 Lindo所解出之權重與DEA Excel所得出的權重(兩 者權重不同),以上述定義計算其效率,相互比較, 發現其差異甚大,故其結果並不可靠,必須加以 參考另一數值FPI(假正效率), 即 M k (k ek ) ek ,依此評估其效率並相互比較,
其 值e越k 大越好, 越M小k 越好。
29
《数据包络分析》课件
《数据包络分析》PPT课件
目录
• 引言 • 数据包络分析的基本概念 • 数据包络分析的方法 • 数据包络分析的优化策略 • 数据包络分析的案例研究 • 数据包络分析的未来展望
01
引言
数据包络分析的定义
总结词
简明扼要地定义数据包络分析
详细描述
数据包络分析(Data Envelopment Analysis,简称DEA)是一种非参数的效率评估方法,用于评估决策单元( DMU)的相对效率。它通过比较输入和输出的比率来评估效率,无需预先设定函数形式。
数据包络分析的应用领域
总结词
列举数据包络分析的应用领域
详细描述
数据包络分析广泛应用于各个领域,如金融、医疗、教育、供应链管理等。例如,在银 行业评估银行的相对效率,在医疗行业评估医院的医疗服务效率,以及在供应链管理中
评估供应商的相对效率。此外,DEA还可用于政策评估、环境影响评估等领域。
02
数据包络分析的基本概念
公共部门效率评估
总结词
通过数据包络分析评估公共部门的效率,提高公共服 务的水平和质量。
详细描述
数据包络分析可以用于评估公共部门的效率,通过构建 公共部门效率评估模型,利用公共部门的历史数据和公 共服务信息,计算出公共部门的效率值。根据效率值的 大小和变化趋势,可以分析公共部门在提供公共服务方 面的效率和存在的问题。同时,通过比较不同地区或不 同部门的效率值,可以发现公共服务的优势和不足,为 政策制定者和公共部门提供改进公共服务的建议和依据 。
04
数据包络分析的优化策略
决策单元的优化
01
决策单元选择
选择具有代表性的决策单元,确 保其涵盖了所有重要的变量和特 征。
02
目录
• 引言 • 数据包络分析的基本概念 • 数据包络分析的方法 • 数据包络分析的优化策略 • 数据包络分析的案例研究 • 数据包络分析的未来展望
01
引言
数据包络分析的定义
总结词
简明扼要地定义数据包络分析
详细描述
数据包络分析(Data Envelopment Analysis,简称DEA)是一种非参数的效率评估方法,用于评估决策单元( DMU)的相对效率。它通过比较输入和输出的比率来评估效率,无需预先设定函数形式。
数据包络分析的应用领域
总结词
列举数据包络分析的应用领域
详细描述
数据包络分析广泛应用于各个领域,如金融、医疗、教育、供应链管理等。例如,在银 行业评估银行的相对效率,在医疗行业评估医院的医疗服务效率,以及在供应链管理中
评估供应商的相对效率。此外,DEA还可用于政策评估、环境影响评估等领域。
02
数据包络分析的基本概念
公共部门效率评估
总结词
通过数据包络分析评估公共部门的效率,提高公共服 务的水平和质量。
详细描述
数据包络分析可以用于评估公共部门的效率,通过构建 公共部门效率评估模型,利用公共部门的历史数据和公 共服务信息,计算出公共部门的效率值。根据效率值的 大小和变化趋势,可以分析公共部门在提供公共服务方 面的效率和存在的问题。同时,通过比较不同地区或不 同部门的效率值,可以发现公共服务的优势和不足,为 政策制定者和公共部门提供改进公共服务的建议和依据 。
04
数据包络分析的优化策略
决策单元的优化
01
决策单元选择
选择具有代表性的决策单元,确 保其涵盖了所有重要的变量和特 征。
02
DEA数据包络分析简明易懂ppt
通过输入输出指标的选择和模型计算,了解企业在各个层级的相对效
率,为企业决策提供有力支持。
DEA在政府决策中的应用案例
政策评估
DEA可以用于政策执行后的效果评估,通过输入输出 指标的选择和模型计算,评价政策的相对效率和效果 ,为未来政策制定和调整提供参考。
资源配置
政府可以利用DEA进行资源配置的优化,通过评估不 同部门或地区的相对效率和资源使用情况,进行资源 的合理调配和布局,实现资源的最大化利用。
06
总结与展望
DEA研究的主要结论
DEA模型的准确性和 效率
DEA模型在准确性和效率方面具有一 定的优势,能够有效地对多投入、多 产出的决策单元进行相对效率评价。
DEA模型的经济学含 义
DEA模型具有深刻的经济学含义,基 于生产前沿面的概念,可以很好地解 决多个输入和多个输出之间的权重问 题,避免了人为的主观判断。
01 02
小型企业
对于小型企业而言,DEA可以用于企业的相对效率评估,通过对比自 身和其他企业的效率,寻找提高效率的途径,促进企业的成长和发展 。
中型企业
中型企业可以利用DEA进行生产线的效率评估和优化,通过调整生产 线上的要素投入,追求更高的产出效率。
03
大型企业
对于大型企业而言,DEA可以用于企业的战略决策和资源配置优化。
DEA数据包络分析简明易 懂
xx年xx月xx日
contents
目录
• 引言 • DEA基本概念 • DEA模型的分析步骤 • DEA模型的拓展 • DEA的实践应用 • 总结与展望
01
引言
什么是DEA
• DEA(Data Envelopment Analysis,数据包络分析)是一种以相对效率评价为基础,用于评价一组多输 入、多输出决策单元(DMU)的相对效率或绩效的非参数方法。它广泛应用于不同行业和领域的效率评估 、决策制定等领域。
数据包络分析DEAppt课件
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
2.1基本C2R模型
基本原理:设有n个决策单元,每个决策单 元均有m个输入指标和k个输出指标,记第j 个决策单元的第i个输入指标为xij,第j个决策 单元的第k个输出指标为ykj,vi为第i个输入 指标的权重,ui为第i个输出指标的权重,且 xij>0, ykj>0, vi ,ui≥0, 初始数据见表
对建筑业的线性规划模型为 max V 3573 1 6970 2 s.t.8124 1 12560 2 8420 3 3573 1 6970 2 0 60611 5230 2 4320 3 3510 1 5870 2 0 10130 1 4260 2 5820 3 4210 1 9120 2 0 20342 1 2310 2 12560 3 12680 1 21680 2 0 20561 1 1210 2 13510 3 21760 1 43250 2 0 4632 1 1790 2 12640 3 7920 1 21320 2 0 8124 1 12560 2 8420 3 1 1,2 ,3, 1, 2 0
生产函数上的B*点为技术有效性,弱有效 性。A点为规模有效性和技术有效性,有效 性。
生产可能集满足凸性、锥性、无效性、最小 性
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
DEA有效: 最优目标值h0= 1. DEA有效: 若存在最优解ω0,μ0满足ω0 >0,μ0 >0,h0 = μ0y0 = 1.
数据包络分析法课件
现在,建立评价第 K0 个决策单元相对有效性的C2R模型。 设第k0个决策单元的投入向量和产出向量分别为:
X0 ( x1k0 , x2k0 ,, x pk0 )T , Y0 ( y1k0 , y2k0 ,, yqk0 )T
效率指标 h0=hk0 ,在效率评价指标 hk ≤1(k=1,2,…,n) 的约束条件下,选择一组最优权系数 U和V,使得h0 达到 最大值,构造优化模型(分式规划)
j 为第j家小额贷款公司被赋予的权重,
S S 为松弛变量向量;
评价DMU的DEA有效性
设模型(D)的最优解为 0、s0-、s0+、0 ,分三种情况: ① 0 = 1,且 s0- = 0、s0+ = 0 :决策单元k0为DEA有效。
其经济意义是:决策单元k0的生产活动(X0,Y0)同时为技术有 效和规模有效。
点A将曲线分为两部分,在点A之左,y’>0,y’’>0,曲线是下凸 的在生产函数的下凸区间,表示增加投入量可以使产出量的递增速度 增加,此时称为规模收益递增,厂商有投资的积极性;
在点A之右,y’>0,y’’<0,曲线是上凸的,在此区间,增加投 入量只能使产出量增加的速度减小,此时称为规模收益递减,厂商己 经没有增加投资的积极性。
、
S
(s1 , s2 ,, sq )T ,
将不等式约束化为等式约束,得
(D) : MinVD
k
s.t .
X k k S X 0
k 1
n
Yk k S Y0
k 1
k 0, k 1,2,, n; S , S 0
X K 表示第K家小额贷款公司的投入指标向量,
YK 表示第j家小额贷款公司产出指标向量,
办法来综合投入指标值和产出指标值。
DEA数据包络分析模型ppt课件
输入的有效性综合 而以决策单元输入
评价问题,在处理 输出的实际数据求
多输出-多输入的 有效性评价方面具 有绝对优势
得最优权重,排除 了很多主观因素, 具有很强的客观性
DEA 特点
• DEA方法并不直接 对数据进行综合, 因此决策单元指标 与量纲选取无关, 应用方法建立模型 前无须对数据进行 无量纲化处理
.
DEA
DEA 应用领域
3.区域经济研究 4.资源配置
7.物流与供应链管理 8.银行评价
1
2
3
4
5 DEA
• 1.刻画生产函数方面 • 2.经济效率评价
5.技术进步与可持续发展 6.绩效评估
9.组合有效性 10.风险评估领域
.
DEA
Thanks!
.
DEA
.
DEA
不贤 而 自省也
缺点
1 它衡量的生产函数边界是确定的,因而它无法分
随机因素和测量误差的影响;
2
该方法的绩效效率评价容易受到极值的影响,而且 决策单元的效率值对投入、产出指标的选择比较敏 感,这就使得如何准确地选取指标成为有效使用 DEA方法的关键;
3 由于被评价的决策单元都是从最有利于自己的角
3 经济意义
DEA评价的是决策单元的相对有效性,其生产前沿面可以看成是最优决策单元的投入与产出 所组成的一个包络面,如果对应被评价的决策单元在该生产前面上,则称之为DEA有效,否 则,称之为非DEA有效。
.
DEA
概念 简言之
用其决策单元的“输入 ”数据和“输出”数据 ,对具有相同类型的部 门或单位(DMU)的评 价
.
DEA
• 使用Charnes-Cooper变化,引入对偶理论,并且进一 步引入松弛变量s+和剩余变量s-,将上面的不等式约 束变为等式约束,可变成:
数据包络分析(DEA)课件
可进行数据挖掘基于遗传规划决策树模型神经元网络模型聚类分析关联规则挖掘因子分析等工具与方法承担市场挖掘客户分析盈利分析定价分析欺诈发现风险评估等项目任务
数据包络分析(DEA)讲义
作者:计统咨询 QQ:3096473614
目录
CCR模型 BCC模型 FDH模型 SBM模型 MINDS模型 超效率模型 广义DEA模型 MALMQUIST 模型 窗口模型 DSBM模型
计统咨询联系方式
目录中的所有数据分析工具均可以进行。 可进行QQ联系:
QQ:3096473614
计统咨询专注于为企业或个人提供数据处理与分析、计 量经济学及统计学培训业务。 企业方面:可进行数据挖掘,基于遗传规划、决策树模 型、神经元网络模型、聚类分析、关联规则挖掘、因子 分析等工具与方法,承担市场挖掘、客户分析、盈利分 析、定价分析、欺诈发现、风险评估等项目任务。 个人业务方面:进行实证论文数据处理和分析,包括经 济计量统计分析、DSGE、数学分析、建模分析等,现代 计量统计学方法均能承担。 培训业务:可进行SPSS、MATLAB、STATA、EVIEWS、 EXCEL、R等统计软件和分析方法的培训;同时进行专升 本培训、考研培训、考博培训等。
数据包络分析(DEA)讲义
作者:计统咨询 QQ:3096473614
目录
CCR模型 BCC模型 FDH模型 SBM模型 MINDS模型 超效率模型 广义DEA模型 MALMQUIST 模型 窗口模型 DSBM模型
计统咨询联系方式
目录中的所有数据分析工具均可以进行。 可进行QQ联系:
QQ:3096473614
计统咨询专注于为企业或个人提供数据处理与分析、计 量经济学及统计学培训业务。 企业方面:可进行数据挖掘,基于遗传规划、决策树模 型、神经元网络模型、聚类分析、关联规则挖掘、因子 分析等工具与方法,承担市场挖掘、客户分析、盈利分 析、定价分析、欺诈发现、风险评估等项目任务。 个人业务方面:进行实证论文数据处理和分析,包括经 济计量统计分析、DSGE、数学分析、建模分析等,现代 计量统计学方法均能承担。 培训业务:可进行SPSS、MATLAB、STATA、EVIEWS、 EXCEL、R等统计软件和分析方法的培训;同时进行专升 本培训、考研培训、考博培训等。
第7章:数据包络分析ppt课件
………………………………………………
,…………………………
( x 1 n 1 x p n p ) ( y 1 n 1 y q n q ) 0 ,对应的对偶变量记为 n
x1k0 1 xp0k p1
i, j 0 ,i 1 ,2 , ,p ;j 1 ,2 , ,q
,对应的对偶变量记为
最新课件
3
二、C2R模型及其基本性质
1.C2R模型
设有n个部门(企业),称为n个决策单元,每个决策单元都有p种投入和q种产出,分 别用不同的经济指标表示。这样,由n个决策单元构成的多指标投入和多指标产出的评 价系统,可以用下图表示:
V 决策单元 1 2 … k … n
v1
→
x11 x12 … x1k … x1n
(P): MV ap xTY 0
(D ): MV iDn
k
s.t. T TX X0k
TYk
1
0,
(k1,2,,n)
,0
s.t. XkkSX0 k1
n
Yk k S Y0
k1
k 0 ,k 1 ,2 , ,n ;S ,S 0
定义7.1 如果线性规划(P)的最优解满足下列条件
VP = 0T · Y0 = 1
效率指标h0=hk0。在效率评价指标hk≤1(k=1,2,…,n)的约束条件下,选择一组最优权系数 U和V,使得h0达到最大值,构造优化模型(分式规划) :
最新课件
5
q
uj yjk0
Ma h0x j p1
vi xik0
u1y1k0 v1x1k0
u2y2k0 v2x2k0
uqyq0k vpxp0k
最新课件
8
引入松弛变量 S(s1,s2, ,s p)T、 S(s1 ,s2 , ,sq )T, 将不等式约束化为等式约束,得
数据包络分析DEA课件
© 24
数据包络分析
© 25
数据包络分析
© 26
数据包络分析
© 27
数据包络分析
© 28
数据包络分析
© 29
数据包络分析
© 30
数据包络分析
© 31
数据包络分析
例 有4个银行储蓄所,每月完成10000笔人民币的 存款、取款业务,但其投入情况不同,见下表,试 分析这4个储蓄所的绩效。
储蓄所 职员数
DEA方法简介
数据包络分析方法( DEA,Data Envelopment Analysis )由 著名的运筹学家A.Charnes(查恩斯), W.W.Cooper(库伯), 及 E.Rhodes (罗兹) 于1978年提出,用于评价相同部门间的相对有 效性(也被称为DEA有效)。
该方法的原理主要是通过保持决策单元(DMU, Decision Making Units)的输入或者输出不变,借助于数学规划和统计数据确定相 对有效的生产前沿面,将各个决策单元投影到DEA的生产前沿面 上,并通过比较决策单元偏离DEA前沿面的程度来评价它们的相 对有效性。
©6
数据包络分析
• 数据包络分析是一种对具有相同类型决策单元进行绩效 评价的方法。
• DMU:效率的测度对象,任何具有可测量的投入、产出 的部门、单位或个人,但必须具有可比性
• 这里相同类型是指这类决策单元具有相同性质的投入和 产出,如医院投入的是医护人员、面积、床位数、医疗 设备和药品等,产出是门诊病人人次、住院病人人日、 代培实习的医护人员数等。
(2)建模计算阶段 建立评价指标体系 选择决策单元
© 14
数据包络分析
收集和整理的数据具有可获得性 选择适当的DEA模型进行计算 (3)分析结果阶段 对结果进行比较和分析,找出无效单元无效的原因,并提供进一步 改进的途径 根据定性的分析和预测的结果来考察评价结果的合理性
数据包络分析
© 25
数据包络分析
© 26
数据包络分析
© 27
数据包络分析
© 28
数据包络分析
© 29
数据包络分析
© 30
数据包络分析
© 31
数据包络分析
例 有4个银行储蓄所,每月完成10000笔人民币的 存款、取款业务,但其投入情况不同,见下表,试 分析这4个储蓄所的绩效。
储蓄所 职员数
DEA方法简介
数据包络分析方法( DEA,Data Envelopment Analysis )由 著名的运筹学家A.Charnes(查恩斯), W.W.Cooper(库伯), 及 E.Rhodes (罗兹) 于1978年提出,用于评价相同部门间的相对有 效性(也被称为DEA有效)。
该方法的原理主要是通过保持决策单元(DMU, Decision Making Units)的输入或者输出不变,借助于数学规划和统计数据确定相 对有效的生产前沿面,将各个决策单元投影到DEA的生产前沿面 上,并通过比较决策单元偏离DEA前沿面的程度来评价它们的相 对有效性。
©6
数据包络分析
• 数据包络分析是一种对具有相同类型决策单元进行绩效 评价的方法。
• DMU:效率的测度对象,任何具有可测量的投入、产出 的部门、单位或个人,但必须具有可比性
• 这里相同类型是指这类决策单元具有相同性质的投入和 产出,如医院投入的是医护人员、面积、床位数、医疗 设备和药品等,产出是门诊病人人次、住院病人人日、 代培实习的医护人员数等。
(2)建模计算阶段 建立评价指标体系 选择决策单元
© 14
数据包络分析
收集和整理的数据具有可获得性 选择适当的DEA模型进行计算 (3)分析结果阶段 对结果进行比较和分析,找出无效单元无效的原因,并提供进一步 改进的途径 根据定性的分析和预测的结果来考察评价结果的合理性
DEA数据包络分析ppt课件
24
y
DMU3
DMU2
DMU4
DMU1
o
x
DMU1、 DMU2、 DMU3都处于技术有效状态;DMU1不为规模有效, 实际上它处于规模收益递增状态; DMU3不为规模有效,实际上它处于 规模收益递减状态; DMU2是规模有效的。如果用DEA模型来判断DEA 有效性,只有DMU2对应的最优值θ0=1。可见,在C2R模型下的DEA有 效,其经济含义 是:既为“技术有效”,也为“规模有效”。
项产出均不低于 j0 决策单元的各项产出,它的各项投入均 低于 j0 决策单元的各项的各项投入。
即有:
n
∑j=1j yrj ≥ yrj0
(r = 1,2,…,s)
n
∑j=1j xij ≤ E xij0
n
∑j=1j = 1
,j ≥0
(i = 1,2,…,m,E<1)
(j = 1,2,…,n)
这说明 j0 决策单元不处于生产前沿面上。
16001 +10002 +13003 +15004 ≥1600
S.t.
151 + 202 + 213 + 204 ≤ 15E
1401 + 1302 + 1203 + 1354 ≤140E
1 +
2 +
3 +
4 = 1
j ≥0 ( j = 1,2,3,4 )
29
例4:银行分理处相对有效性评价
求解结果分析: 对分理处1,E =1,说明分理处1的运行DEA有效。 对分理处2,E =0.996,说明分理处2的运行非DEA有
分理处3 21
120
800 450 1300
y
DMU3
DMU2
DMU4
DMU1
o
x
DMU1、 DMU2、 DMU3都处于技术有效状态;DMU1不为规模有效, 实际上它处于规模收益递增状态; DMU3不为规模有效,实际上它处于 规模收益递减状态; DMU2是规模有效的。如果用DEA模型来判断DEA 有效性,只有DMU2对应的最优值θ0=1。可见,在C2R模型下的DEA有 效,其经济含义 是:既为“技术有效”,也为“规模有效”。
项产出均不低于 j0 决策单元的各项产出,它的各项投入均 低于 j0 决策单元的各项的各项投入。
即有:
n
∑j=1j yrj ≥ yrj0
(r = 1,2,…,s)
n
∑j=1j xij ≤ E xij0
n
∑j=1j = 1
,j ≥0
(i = 1,2,…,m,E<1)
(j = 1,2,…,n)
这说明 j0 决策单元不处于生产前沿面上。
16001 +10002 +13003 +15004 ≥1600
S.t.
151 + 202 + 213 + 204 ≤ 15E
1401 + 1302 + 1203 + 1354 ≤140E
1 +
2 +
3 +
4 = 1
j ≥0 ( j = 1,2,3,4 )
29
例4:银行分理处相对有效性评价
求解结果分析: 对分理处1,E =1,说明分理处1的运行DEA有效。 对分理处2,E =0.996,说明分理处2的运行非DEA有
分理处3 21
120
800 450 1300
DEA数据包络分析(简明易懂版)ppt
生热量的理想值)
• yr同样量的煤用这个装置所产生的热量(实测 值)
• 0《Er《1
2020/5/15
-
11
相对有效性评价问题举例
例2:银行分理处相对有效性评价
振华银行的 4 个分理处的投入产出如下表。求各个分理处的运
行是否DEA有效。
(产出单位:处理笔数/月)
分理处
投入
产出
职员数 营业面积(m2) 储蓄存取 贷款 中间业务
分理处1 15 分理处2 20 分理处3 分理处4 20
140
1800 200 1600
130
1000 350 1000
120
800 450 1300
135
900 420 1500
-
例2:银行分理处相对有效性评价
求解结果分析: 对分理处1,E =1,说明分理处1的运行DEA有效。 对分理处2,E =0.996,说明分理处2的运行非DEA有
• 因而,需采用一种全新的方法进行绩效比较。这种方法就 是二十世纪七十年代末产生的数据包络分析(DEA)。 DEA方法处理多输入,特别是多输出的问题的能力是具有 绝对优势的。
2020/5/15
-
3
数据包络分析(DEA)源起
1978年,著名运筹学家、美国德克萨斯大学教授 A.Charnes及W.W.Cooper和E.Rhodes发表了一篇重要论 文:“Measuring the efficiency of decision making units”(决策单元的有效性度量),刊登在权威的“欧洲运 筹学杂志”上。正式提出了运筹学的一个新领域:数据包 络分析,其模型简称 C2R 模型。该模型用以评价部门间的 相对有效性(因此被称为DEA有效)。
• yr同样量的煤用这个装置所产生的热量(实测 值)
• 0《Er《1
2020/5/15
-
11
相对有效性评价问题举例
例2:银行分理处相对有效性评价
振华银行的 4 个分理处的投入产出如下表。求各个分理处的运
行是否DEA有效。
(产出单位:处理笔数/月)
分理处
投入
产出
职员数 营业面积(m2) 储蓄存取 贷款 中间业务
分理处1 15 分理处2 20 分理处3 分理处4 20
140
1800 200 1600
130
1000 350 1000
120
800 450 1300
135
900 420 1500
-
例2:银行分理处相对有效性评价
求解结果分析: 对分理处1,E =1,说明分理处1的运行DEA有效。 对分理处2,E =0.996,说明分理处2的运行非DEA有
• 因而,需采用一种全新的方法进行绩效比较。这种方法就 是二十世纪七十年代末产生的数据包络分析(DEA)。 DEA方法处理多输入,特别是多输出的问题的能力是具有 绝对优势的。
2020/5/15
-
3
数据包络分析(DEA)源起
1978年,著名运筹学家、美国德克萨斯大学教授 A.Charnes及W.W.Cooper和E.Rhodes发表了一篇重要论 文:“Measuring the efficiency of decision making units”(决策单元的有效性度量),刊登在权威的“欧洲运 筹学杂志”上。正式提出了运筹学的一个新领域:数据包 络分析,其模型简称 C2R 模型。该模型用以评价部门间的 相对有效性(因此被称为DEA有效)。
数据包络分析DEA ppt课件
数据包络分析DEA
数据包络分析DEA
重要的是“会什 么”,而不是“为什
么”
数据包络分析DEA
▪ 复旦大学现代哲学研究所所 长:俞吾金
舍恩伯格说:“是什么”往往比“为什么”重要。 俞吾金:为什么还有《十万个为什么》? 大家怎么看? 刘永亮的观点:哲学,我不说。对于应用统计学者, 是什么,为什么,都不重要。会什么才重要。
▪ 产出松驰度:三个产出指标,11个公司 ▪ 企业3:指标2增加13.234个单位,指标3增加12.764
个单位,就有效了
▪ 其它企业:依此类推。
▪ 投入松驰度(或称冗余):第1,2个企业是有效的, 所以,投入没有冗余。
▪ 企业3:前三种投入没有冗余,第4种投入,冗余 了27.572。实践意义?
标3增加724个单位,就最优了。
数据包络分析DEA
▪ 哪些企业最优?1, 2,4和 .企业3如何调整? ▪ 产出不变条件下,第二项投入减少166.9个单位,
同时第3项投入减少342个单位,就最优了。
数据包络分析DEA
▪ 第3个企业第2个产出指标目标是多少? ▪ 54.814。现实情况是多少?35。
▪ 规模无效,技术也无效 (都小于1)
▪ irs何意? ▪ Increasing,递增,decreasing,递减,
constant,不变 ▪ irs是规模报酬递增,实践意义?
数据包络分析DEA
▪ 规模报酬:不变、递增、递减三种情况
▪ 不变规模报酬:crs,constant return to scale ▪ 递增规模报酬:irs,increasing return to scale
数据包络分析DEA
▪ 哪儿的点有效,哪儿的点无效? ▪ 线上的点有效,线右边的点无效。
数据包络分析DEA
重要的是“会什 么”,而不是“为什
么”
数据包络分析DEA
▪ 复旦大学现代哲学研究所所 长:俞吾金
舍恩伯格说:“是什么”往往比“为什么”重要。 俞吾金:为什么还有《十万个为什么》? 大家怎么看? 刘永亮的观点:哲学,我不说。对于应用统计学者, 是什么,为什么,都不重要。会什么才重要。
▪ 产出松驰度:三个产出指标,11个公司 ▪ 企业3:指标2增加13.234个单位,指标3增加12.764
个单位,就有效了
▪ 其它企业:依此类推。
▪ 投入松驰度(或称冗余):第1,2个企业是有效的, 所以,投入没有冗余。
▪ 企业3:前三种投入没有冗余,第4种投入,冗余 了27.572。实践意义?
标3增加724个单位,就最优了。
数据包络分析DEA
▪ 哪些企业最优?1, 2,4和 .企业3如何调整? ▪ 产出不变条件下,第二项投入减少166.9个单位,
同时第3项投入减少342个单位,就最优了。
数据包络分析DEA
▪ 第3个企业第2个产出指标目标是多少? ▪ 54.814。现实情况是多少?35。
▪ 规模无效,技术也无效 (都小于1)
▪ irs何意? ▪ Increasing,递增,decreasing,递减,
constant,不变 ▪ irs是规模报酬递增,实践意义?
数据包络分析DEA
▪ 规模报酬:不变、递增、递减三种情况
▪ 不变规模报酬:crs,constant return to scale ▪ 递增规模报酬:irs,increasing return to scale
数据包络分析DEA
▪ 哪儿的点有效,哪儿的点无效? ▪ 线上的点有效,线右边的点无效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
© 10
数据包络分析
DEA方法的特点: ➢ 适用于多输出-多输入的有效性综合评价问题,在处理多
输出-多输入的有效性评价方面具有绝对优势 ➢ DEA方法并不直接对数据进行综合,因此决策单元的最优
效率指标与投入指标值及产出指标值的量纲选取无关,应 用DEA方法建立模型前无须对数据进行无量纲化处理(当 然也可以)
©9
数据包络分析
DEA是对其决策单元(同类型的企业或部门)的投入规模、 技术有效性作出评价,即对各同类型的企业投入一定数量的 资金、劳动力等资源后,其产出的效益(经济效益和社会效 益)作一个相对有效性评价。
DEA方法以相对效率概念为基础,以凸分析和线形规划 为工具的一种评价方法,应用数学规划模型计算比较决策 单元之间的相对效率,对评价对象做出评价,它能充分考 虑对于决策单元本身最优的投入产出方案,因而能够更理 想地反映评价对象自身的信息和特点;同时对于评价复杂 系统的多投入多产出分析具有独到之处。
通过数据本身获得权重
© 2015年
数据包络分析
• 衡量一个单位的绩效,通常是用投入产 出比这个指标,当所有投入和产出指标 均分别可折算成同一单位时(例如货币 值),容易根据投入产出比大小对要评 定的决策单元进行绩效排序。
© 2015年
数据包络分析
总况
无需考虑生产函数表达式及参数的分布形式,
技
只需要考虑投入和产出的项目有哪些, 且适用于拥有多投入和多产出的研究对象
© 11
数据包络分析 DEA方法的特点:
➢ 无须任何权重假设,而以决策单元输入输出的实际数据求 得最优权重,排除了很多主观因素,具有很强的客观性
➢ DEA方法假定每个输入都关联到一个或者多个输出,且输 入输出之间确实存在某种联系,但不必确定这种关系的显 示表达式
➢ DEA可以用来研究多种方案之间的相对有效性(例如投资 项目的评价);研究在决策之前去预测一旦做出决策后它的 相对效果如何(例如建立新厂后,新厂相对于已有的一些工 厂是否为有效).
数据包络分析
评价相对有效性的DEA模型
——运筹学的新领域
© 2015年
数据包络分析
技术效率
• 技术效率是指一个生产单元的生产过程达 到该行业技术水平的程度。
• 技术效率可以从投入与产出两个角度来衡 量
• 测度:产出/投入的比值 简单,但仅适用于单投入、单产出
各投入、各产出赋予权重,加权产出/加权 投入的比值 权重的确定方法?固定的权重
©8
数据包络分析
1985年查恩斯,库伯,格拉尼(B.Golany),赛福德(L.Seiford)和 斯图茨(J.Stutz)给出另一个模型(称为C2GS2模型),这一模型 用来研究生产部门间的“技术有效性”.
1987年查恩斯,库伯,魏权龄和黄志明又得到了称为锥比率的 数据包络模型——C2WH模型。这一模型可用来处理具有过 多的输入及输出的情况,而且锥的选取可以体现决策者的“偏 好”.灵活地应用这一模型,可以将C2R模型中确定出的DEA有 效决策单元进行分类或排队.
© 12
数据包络分析
DEA的应用: • 经济效率评价中的应用 • 区域经济研究中的应用 • 资源配置中的应用 • 技术进步与可持续发展中的应用 • 绩效评价中的应用 • 物流与供应链中的应用 • 银行评价中的应用 • 风险评估中的应用
© 13
数据包络分析 DEA方法的工作步骤 (1)明确问题阶段 需要明确评价的目标,并围绕评价的目标对评价的对象进行分析 确定各种因素的性质(可变或不变的、可控或不可控) 考虑因素间可能的定性与定量关系 确定决策单元的边界,对决策单元的结构、层次进行分析 对结果进行定性的分析和预测
©4
数据包络分析
基于DEA的技术效率影响因素的分析:
DEA两阶段模型:DEA+Tobit
DEA三阶段模型: DEA+SFA+DEA SFA:排除环境变量和随机误差对效率评价
的影响,调整投入产出指标
DEA四阶段模型: DEA+Tobit+DEA Tobit 拟合投入变量的松弛量与环境变量的关系
©5
数据包络分析
术 非参数方法 单周期计算,适用于小样本
效 数据包络分析 把所有偏离效率边界的情况归为无效率,
率
造成效率程度的过高或过低;
评 价
参数方法
不能分析技术效率的影响因素; 不具有统计特征,不能进行统计检验
优势在于影响因素的分析;
方 随机前沿方法 SFA具有统计特征,能研究传统假设中的
法
参数检验; 采用面板数据时可以进行跨期研究
DEA方法简介
数据包络分析方法( DEA,Data Envelopment Analysis )由 著名的运筹学家A.Charnes(查恩斯), W.W.Cooper(库伯), 及 E.Rhodes (罗兹) 于1978年提出,用于评价相同部门间的相对有 效性(也被称为DEA有效)。
该方法的原理主要是通过保持决策单元(DMU, Decision Making Units)的输入或者输出不变,借助于数学规划和统计数据确定相 对有效的生产前沿面,将各个决策单元投影到DEA的生产前沿面 上,并通过比较决策单元偏离DEA前沿面的程度来评价它们的相 对有效性。
©6
数据包络分析
• 数据包络分析是一种对具有相同类型决策单元进行绩效 评价的方法。
•但必须具有可比性
• 这里相同类型是指这类决策单元具有相同性质的投入和 产出,如医院投入的是医护人员、面积、床位数、医疗 设备和药品等,产出是门诊病人人次、住院病人人日、 代培实习的医护人员数等。
©7
数据包络分析
查恩斯和库伯等人的第一个模型被命名为C2R模型.从生产 函数的角度看,这一模型是用来研究具有多个输入,特别是具 有多个输出的“生产部门”同时为“规模有效”与“技术 有效”的十分理想且卓有成效的方法.
数据包络分析是运筹学的一个新的研究领域.查恩斯和库伯 等人的第一个应用DEA的十分成功的案例,就是评价为弱智 儿童开设公立学校项目的效果.在评估中,输出包括“自尊” 等无形的指标;输入包括父母的照料和父母的文化程度等,无 论哪种指标都有无法与市场价格相比较,也难以轻易定出适 当的权重(权系数),这也是DEA的优点之一.
数据包络分析
DEA方法的特点: ➢ 适用于多输出-多输入的有效性综合评价问题,在处理多
输出-多输入的有效性评价方面具有绝对优势 ➢ DEA方法并不直接对数据进行综合,因此决策单元的最优
效率指标与投入指标值及产出指标值的量纲选取无关,应 用DEA方法建立模型前无须对数据进行无量纲化处理(当 然也可以)
©9
数据包络分析
DEA是对其决策单元(同类型的企业或部门)的投入规模、 技术有效性作出评价,即对各同类型的企业投入一定数量的 资金、劳动力等资源后,其产出的效益(经济效益和社会效 益)作一个相对有效性评价。
DEA方法以相对效率概念为基础,以凸分析和线形规划 为工具的一种评价方法,应用数学规划模型计算比较决策 单元之间的相对效率,对评价对象做出评价,它能充分考 虑对于决策单元本身最优的投入产出方案,因而能够更理 想地反映评价对象自身的信息和特点;同时对于评价复杂 系统的多投入多产出分析具有独到之处。
通过数据本身获得权重
© 2015年
数据包络分析
• 衡量一个单位的绩效,通常是用投入产 出比这个指标,当所有投入和产出指标 均分别可折算成同一单位时(例如货币 值),容易根据投入产出比大小对要评 定的决策单元进行绩效排序。
© 2015年
数据包络分析
总况
无需考虑生产函数表达式及参数的分布形式,
技
只需要考虑投入和产出的项目有哪些, 且适用于拥有多投入和多产出的研究对象
© 11
数据包络分析 DEA方法的特点:
➢ 无须任何权重假设,而以决策单元输入输出的实际数据求 得最优权重,排除了很多主观因素,具有很强的客观性
➢ DEA方法假定每个输入都关联到一个或者多个输出,且输 入输出之间确实存在某种联系,但不必确定这种关系的显 示表达式
➢ DEA可以用来研究多种方案之间的相对有效性(例如投资 项目的评价);研究在决策之前去预测一旦做出决策后它的 相对效果如何(例如建立新厂后,新厂相对于已有的一些工 厂是否为有效).
数据包络分析
评价相对有效性的DEA模型
——运筹学的新领域
© 2015年
数据包络分析
技术效率
• 技术效率是指一个生产单元的生产过程达 到该行业技术水平的程度。
• 技术效率可以从投入与产出两个角度来衡 量
• 测度:产出/投入的比值 简单,但仅适用于单投入、单产出
各投入、各产出赋予权重,加权产出/加权 投入的比值 权重的确定方法?固定的权重
©8
数据包络分析
1985年查恩斯,库伯,格拉尼(B.Golany),赛福德(L.Seiford)和 斯图茨(J.Stutz)给出另一个模型(称为C2GS2模型),这一模型 用来研究生产部门间的“技术有效性”.
1987年查恩斯,库伯,魏权龄和黄志明又得到了称为锥比率的 数据包络模型——C2WH模型。这一模型可用来处理具有过 多的输入及输出的情况,而且锥的选取可以体现决策者的“偏 好”.灵活地应用这一模型,可以将C2R模型中确定出的DEA有 效决策单元进行分类或排队.
© 12
数据包络分析
DEA的应用: • 经济效率评价中的应用 • 区域经济研究中的应用 • 资源配置中的应用 • 技术进步与可持续发展中的应用 • 绩效评价中的应用 • 物流与供应链中的应用 • 银行评价中的应用 • 风险评估中的应用
© 13
数据包络分析 DEA方法的工作步骤 (1)明确问题阶段 需要明确评价的目标,并围绕评价的目标对评价的对象进行分析 确定各种因素的性质(可变或不变的、可控或不可控) 考虑因素间可能的定性与定量关系 确定决策单元的边界,对决策单元的结构、层次进行分析 对结果进行定性的分析和预测
©4
数据包络分析
基于DEA的技术效率影响因素的分析:
DEA两阶段模型:DEA+Tobit
DEA三阶段模型: DEA+SFA+DEA SFA:排除环境变量和随机误差对效率评价
的影响,调整投入产出指标
DEA四阶段模型: DEA+Tobit+DEA Tobit 拟合投入变量的松弛量与环境变量的关系
©5
数据包络分析
术 非参数方法 单周期计算,适用于小样本
效 数据包络分析 把所有偏离效率边界的情况归为无效率,
率
造成效率程度的过高或过低;
评 价
参数方法
不能分析技术效率的影响因素; 不具有统计特征,不能进行统计检验
优势在于影响因素的分析;
方 随机前沿方法 SFA具有统计特征,能研究传统假设中的
法
参数检验; 采用面板数据时可以进行跨期研究
DEA方法简介
数据包络分析方法( DEA,Data Envelopment Analysis )由 著名的运筹学家A.Charnes(查恩斯), W.W.Cooper(库伯), 及 E.Rhodes (罗兹) 于1978年提出,用于评价相同部门间的相对有 效性(也被称为DEA有效)。
该方法的原理主要是通过保持决策单元(DMU, Decision Making Units)的输入或者输出不变,借助于数学规划和统计数据确定相 对有效的生产前沿面,将各个决策单元投影到DEA的生产前沿面 上,并通过比较决策单元偏离DEA前沿面的程度来评价它们的相 对有效性。
©6
数据包络分析
• 数据包络分析是一种对具有相同类型决策单元进行绩效 评价的方法。
•但必须具有可比性
• 这里相同类型是指这类决策单元具有相同性质的投入和 产出,如医院投入的是医护人员、面积、床位数、医疗 设备和药品等,产出是门诊病人人次、住院病人人日、 代培实习的医护人员数等。
©7
数据包络分析
查恩斯和库伯等人的第一个模型被命名为C2R模型.从生产 函数的角度看,这一模型是用来研究具有多个输入,特别是具 有多个输出的“生产部门”同时为“规模有效”与“技术 有效”的十分理想且卓有成效的方法.
数据包络分析是运筹学的一个新的研究领域.查恩斯和库伯 等人的第一个应用DEA的十分成功的案例,就是评价为弱智 儿童开设公立学校项目的效果.在评估中,输出包括“自尊” 等无形的指标;输入包括父母的照料和父母的文化程度等,无 论哪种指标都有无法与市场价格相比较,也难以轻易定出适 当的权重(权系数),这也是DEA的优点之一.