北师大版七年级上册数学【1.2展开与折叠】教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

展开与折叠

【学习目标】

1.经历展开与折叠、模型制作等活动,发展学生的空间观念,积累数学活动经验.2.在操作活动中认识棱柱的某些特性.

3.了解棱柱、圆柱、圆锥的侧面展开图,并能根据展开图判断和制作简单的立体模型.

【基础知识精讲】

1.棱柱的分类

我们已经了解了棱柱,那么棱柱之间是否还有区别呢?

通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱……长方体和正方体都是四棱柱.

2.棱柱的特点

若有若干几何体,你能立刻找到棱柱吗?棱柱有什么与众不同的特征呢?

(1)棱柱的上、下底面是完全相同且互相平行的多边形.

(2)棱柱的侧面都是矩形.

(3)棱柱的侧棱长都相等.

3.部分几何体的平面展开图.

将一个几何体的外表面展开,就像打开一件礼物的包装纸.礼物外形不同,包装纸的形状也各不相同.那么我们熟悉的一些几何体,如圆柱、圆锥、棱柱的表面展开图是什么形状呢?

(1)圆柱的表面展开图是两个圆(作底面)和一个长方形(作侧面).

图1—9

(2)圆锥的表面展开图是一个圆(作底面)和一个扇形(作侧面).

图1—10

(3)棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面)

图1—11

4.能折成棱柱的平面图形的特征

我们已经见过很多平面图形了,但并不是所有的平面图形都能折成几何体.比如:棱柱.若能折成棱柱,一定要符合以下特点:

(1)棱柱的底面边数=侧面数.

(2)棱柱的两个底面要分别在侧面展开图的两端.

(3)四棱柱的平面展开图中只有5条相连的棱.

5.正方体的平面展开图

在课本中、习题中会经常遇到让大家辨认正方体表面展开图的题目.为了查阅方便,在此列出正方体的十一种展开图,供大家参考.

图1—12

【学习方法指导】

[例1]三棱柱有_______条棱,_______个面,其中侧面是_______形,_______面的形状一定完全相同.

点拨:n棱柱的数量特征如下:它有3n条棱,(n+2)个面,侧面一定是长方形.对于完全相同的面则需注意.棱柱的侧棱都是相等的但底面边长不一定相等,因此以底面边长和侧棱为长和宽的侧面的大小不一定相同.如:

图1—13

易错点:

(1)“三棱柱的侧面是三角形.”是常出现的错误,一定要记住:棱柱的侧面是长方形.

(2)“侧面都相等.”这也是易犯的错误.侧棱长都相等,易使学生误认为侧面也全都相同.

解答:95长方上、下底

[例2]一个棱柱有12个顶点,所有侧棱长和为36 cm,求每条侧棱的长.

点拨:先根据棱柱的数量特征,由顶点数求出是几棱柱,则相应有几条侧棱,再由侧棱

长相等,求出结果.

解:有12个顶点的棱柱是六棱柱,有6条侧棱.则每条侧棱长36÷6=6 cm.

答:每条侧棱长6 cm.

[例3]图1—14所示的平面图形是由哪几种几何体的表面展开的?

(1)(2)(3)

图1—14

点拨:找几何体的表面展开图,关键是看侧面和底面的形状.

底面是圆的几何体有圆柱、圆锥、圆台.

侧面是扇形的几何体是圆锥.

侧面是长方形的几何体是棱柱、圆柱.

解答:(1)圆锥;(2)圆柱;(3)圆台.

[例4]下面图形经过折叠能否围成棱柱?

图1—15

点拨:看能否围成棱柱,可参考“内容全解4”中的几条内容,如有不符合,就不能围成棱柱.

解答:(1)侧面数(4个)≠底面边数(3条),不能围成棱柱.

(2)两底面在侧面展开图的同一端,不在两端,所以也不能围成棱柱.

(3)可以折成棱柱.

[例5]一个正方体纸盒沿棱剪开,最多剪几条棱?最少呢?

点拨:正方体是四棱柱,共有12条棱,要剪开纸盒使每个面相连,必须剪开部分棱,棱的总数不变(即12),若知道剩下未被剪开的棱数,就可以得到剪开的棱数了.解答:由正方体平面展开图知正方体的所有展开图中都只有5条相连的棱,而正方体共有12条棱,那么需要剪开的棱数就是12-5=7条了.

【拓展训练】

1.矩形、长方形和正方形都可称为矩形.

2.圆台与棱锥的展开图.

(1)圆台:圆台的展开图是由大小两个圆(作底)和部分扇形(作侧面)组成的.

图1—16

(2)棱锥:棱锥的展开图是由一个多边形(作底)和几个三角形(作侧面)组成的.

图1—17图1—18

相关文档
最新文档