高等代数第四章 矩阵

合集下载

高等代数第四章矩阵练习题参考答案

高等代数第四章矩阵练习题参考答案

高等代数第四章矩阵练习题参考答案第四章矩阵习题参考答案一、判断题1.对于任意阶矩阵,,有、错、2.如果则、错、如、3.如果,则为可逆矩阵、正确、,因此可逆,且、4.设都就是阶非零矩阵,且,则得秩一个等于,一个小于、错、由可得、若一个秩等于,则该矩阵可逆,另一个秩为零,与两个都就是非零矩阵矛盾、只可能两个秩都小于、5.为阶方阵,若则错、如,有但、6.为矩阵,若则存在阶可逆矩阵及阶可逆矩阵,使正确、右边为矩阵得等价标准形,矩阵等价于其标准形、7.阶矩阵可逆,则也可逆、正确、由可逆可得,又、因此也可逆,且、8.设为阶可逆矩阵,则正确、又====、AB B A A BB A A B EA B AA A B E()(**)(*)*||*||*||||因此、由为阶可逆矩阵可得可逆,两边同时左乘式得逆可得二、选择题1.设就是阶对称矩阵,就是阶反对称矩阵,则下列矩阵中为反对称矩阵得就是(B )、(A) (B) (C) (D)(A)(D)为对称矩阵,(B)为反对称矩阵,(C)当可交换时为对称矩阵、2、设就是任意一个阶矩阵,那么( A)就是对称矩阵、(A) (B) (C) (D)3.以下结论不正确得就是( C )、(A)如果就是上三角矩阵,则也就是上三角矩阵;(B)如果就是对称矩阵,则也就是对称矩阵;(C)如果就是反对称矩阵,则也就是反对称矩阵;(D)如果就是对角阵,则也就是对角阵、4.就是矩阵, 就是矩阵, 若得第列元素全为零,则下列结论正确得就是(B )(A ) 得第行元素全等于零; (B )得第列元素全等于零; (C ) 得第行元素全等于零; (D ) 得第列元素全等于零; 5.设为阶方阵,为阶单位阵,则以下命题中正确得就是(D ) (A) (B) (C) (D)6.下列命题正确得就是(B )、 (A) 若,则 (B) 若,且,则 (C) 若,且,则 (D) 若,且,则7、就是矩阵,就是矩阵,则( B)、 (A) 当时,必有行列式; (B) 当时,必有行列式 (C) 当时,必有行列式; (D) 当时,必有行列式、为阶方阵,当时,因此,所以、 8.以下结论正确得就是( C ) (A) 如果矩阵得行列式,则; (B) 如果矩阵满足,则;(C) 阶数量阵与任何一个阶矩阵都就是可交换得; (D) 对任意方阵,有9.设就是非零得四维列向量,为得伴随矩阵,已知得基础解系为,则方程组得基础解系为( C )、(A)、 (B)、(C)、 (D)、由得基础解系为可得、因此(A),(B)中向量组均为线性相关得,而(D)显然为线性相关得,因此答案为(C)、由12341234**(,,,)(*,*,*,*)A A A A A A A O αααααααα===可得均为得解、10、设就是阶矩阵,适合下列条件( C )时,必就是可逆矩阵(A) (B) 就是可逆矩阵 (C) (B) 主对角线上得元素全为零11.阶矩阵就是可逆矩阵得充分必要条件就是( D )(A) (B) (C) (D)12.均就是阶矩阵,下列命题正确得就是( A )(A)若就是可逆矩阵,则从可推出(B)若就是可逆矩阵,则必有(C)若,则从可推出(D)若,则必有13.均就是阶矩阵,为阶单位矩阵,若,则有(C )(A)(B) (C) (D)14.就是阶方阵,就是其伴随矩阵,则下列结论错误得就是( D )(A)若就是可逆矩阵,则也就是可逆矩阵;(B)若就是不可逆矩阵,则也就是不可逆矩阵;(C)若,则就是可逆矩阵; (D)15.设就是5阶方阵,且,则( D )(A)(B) (C) (D)16.设就是得伴随阵,则中位于得元素为(B )(A) (B) (C) (D)应为得第列元素得代数余子式与得第列元素对应乘积与、17、设, ,其中就是得代数余子式,则(C )(A)就是得伴随 (B)就是得伴随 (C)就是得伴随(D)以上结论都不对18.设为方阵,分块对角阵,则 ( C )(A)(B)(C) (D)利用验证、19.已知,下列运算可行得就是( C )(A)(B) (C) (D)20.设就是两个矩阵,就是阶矩阵,那么( D )(A)(B)(C)(D)21.对任意一个阶矩阵,若阶矩阵能满足,那么就是一个( C )(A)对称阵 (B)对角阵 (C)数量矩阵 (D)得逆矩阵与任意一个阶矩阵均可交换得矩阵为数量矩阵、22.设就是一个上三角阵,且,那么得主对角线上得元素( C )(A)全为零 (B)只有一个为零(C)至少有一个为零 (D)可能有零,也可能没有零23.设,则( D )(A)(B) (C) (D)24. 设,若,则( B )(A)(B) (C) (D)25.设阶矩阵,若矩阵得秩为1,则必为(A )(A)1 (B)-1 (C)(D)矩阵得任意两行成比例、26、设为两个阶矩阵,现有四个命题:①若为等价矩阵,则得行向量组等价;②若得行列式相等,即则为等价矩阵;③若与均只有零解,则为等价矩阵;④若为相似矩阵,则与解空间得维数相同、以上命题中正确得就是( D )(A) ①, ③、(B) ②, ④、(C) ②,③、(D)③,④、当时,为相似矩阵。

高等代数第4章矩阵1,2,3节

高等代数第4章矩阵1,2,3节
1 2 2 A , 4 5 8
B 18 6,

1 4 T A 2 5 ; 2 8
18 B . 6
T
转置矩阵的运算性质
1 A
T T

A;
T
2 A B AT BT ;
a11 a 21 A a m1
a12 a 22 am1
a1 n a2n a mn
x1 x2 X , xn
b1 b2 B . bm
性质:1.( AB)C A( BC )
2.k ( AB) (kA)B A(kB) 3. A( B C ) AB AC ( B C ) A BA CA
4. Em Amn Amn , Amn En Amn
5.( kEm ) Amn kAmn , Amn ( kEn ) Amn
全相等
k 0 0 0 k 0 的方阵, 称为数量矩阵. (8)形如 记作 kE (或kEn ). 0 0 k
(9)方阵
1 0 0 0 1 0 E En 0 0 1
4.2.2 矩阵的数乘
数k与矩阵A的乘积记作kA, 规定为
ka11 ka12 ka1n ka21 ka22 ka2 n kA [kaij ] . kam1 kam1 kamn 性质: 1.1的数乘:1 A A 2.数乘结合律: ) A k (lA) (kl 3.数乘分配律: l ) A kA lA (k
定义n阶方阵的k次幂为: Ak AA A 显然: Ak Am Ak m k个A

《高等代数》知识点梳理

《高等代数》知识点梳理

高等代数知识点梳理第四章 矩阵一、矩阵及其运算 1、矩阵的概念(1)定义:由n s ×个数ij a (s i ,2,1=;n j ,2,1=)排成s 行n 列的数表sn s n a aa a 1111,称为s 行n 列矩阵,简记为n s ij a A ×=)(。

(2)矩阵的相等:设n m ij a A ×=)(,k l ij a B ×=)(,如果l m =,k n =,且ij ijb a =,对m i ,2,1=;n j ,2,1=都成立,则称A 与B 相等,记B A =。

(3)各种特殊矩阵:行矩阵,列矩阵,零矩阵,方阵,(上)下三角矩阵,对角矩阵,数量矩阵,单位矩阵。

2、矩阵的运算(1)矩阵的加法:++++= +sn sn s s n n sn s n sn s n b a b a b a b a b b b b a a a a 1111111111111111。

运算规律:①A B B A +=+②)()(C B A C B A ++=++③A O A =+ ④O A A =−+)((2)数与矩阵的乘法:= sn s n sn s n ka ka ka ka a a a a k 11111111运算规律:①lA kA A l k +=+)( ②kB kA B A k +=+)(③A kl lA k )()(= ④O A A =−+)((3)矩阵的乘法:= sm s m nm n m sn s n c c c c b b b b a a a a 111111111111其中nj in i i i i ij b a b a b a c +++= 2211,s i ,2,1=;m j ,2,1=。

运算规律:①)()(BC A C AB = ②AC AB C B A +=+)( ③CA BA A C B +=+)( ④B kA kB A AB k )()()(==一般情况,①BA AB ≠②AC AB =,0≠A ,⇒C B =③0=AB ⇒0=A 或0=A(4)矩阵的转置: =sn s n a a a a A 1111,A 的转置就是指矩阵=ns n s a a a a A 1111'运算规律:①A A =)''( ②'')'(B A B A +=+③'')'(A B AB = ④')'(kA kA =(5)方阵的行列式:设方阵1111n n nn a a A a a= ,则A 的行列式为1111||n n nn a a A a a = 。

高等代数第四章 矩阵

高等代数第四章 矩阵
20
30 10 15
10 70 35
45 20 25
100
,B

150 320000
20 45 16200
15500 ,C 28000
19750
5650 10350, 6775
第四章 矩阵
16
高等代数
东北大学秦皇岛分校
定义2
(1)结合律 ABC ABC;
(2)分配律 AB C AB AC,
B C A BA CA;
第四章 矩阵
18
高等代数
东北大学秦皇岛分校
4)矩阵乘法不满足交换律,即一般来说 AB BA
例如 设 A 1 1 B 1 1 1 1 1 1
A1 A

Ak
1

Ak
A
由乘法结合律有 Ak Al Akl


Ak
l Akl
注 1)方幂只能对行数和列数相等的矩阵来定义。
2)一般来说 ABk Ak Bk
第四章 矩阵
21
高等代数
东北大学秦皇岛分校
a11x1 a12 x2 a1n xn b1
第四章 矩阵
2
高等代数
东北大学秦皇岛分校
化学反应中方程式的配平是一个棘手的问题,但 是有一类方程式的配平利用矩阵来处理十分简洁方便。 定义 化学反应中每一个化合物含有它们所有的每一种 原子的个数,排列成的数字表称为化学反应矩阵。
第四章 矩阵
3
高等代数
东北大学秦皇岛分校
矩阵的定义
定义1 由 m n个数aij i 1,2, ,m; j 1,2,

高等代数课件PPT之第4章矩阵

高等代数课件PPT之第4章矩阵
策中甲的得分矩阵,规定胜者得1分,败者得-1分, 平手各得零分
0
1
–1
–1
0
1
1
–1
0
石头 剪子 布
乙方
石头 甲
剪子 方

0 1 1 答案 : 1 0 1 .
1 1 0
2.矩阵的线性运算(矩阵加法、 数乘) (1)矩阵相等
定义 设有两个m×n矩阵
a11
A
a21
am1
a12 a22
am2
总利润:862.5元
C矩其(1阵中)定AA义c与Baaij 12B设11的a矩i1乘baa阵 1积12j22是a一Ai 2b个2 jmaaa×i 12j ssnm矩sa阵,bbiBs12b11sCj bbbi12sj22ascinki b.j kjmbbn12nn,
a m1 i
a1m,22,, m; aj ms1,2,bs,1n
矩阵,也就是一个数.
4 1 0
例8


阵A
1 2
0 1
3 0
21与B
1
2
1
1 0 3
3的 1
乘 积AB.
4

4 1 0
C AB
1 2
0 1
3 0
1
2
1
2
1
1 0 3
3 1 4
14 01 32 11 11 01 30 13 10 0 3 31 14
24 11 0 2 21
30
32
34
利润矩阵
由已知得
B
15
17.5
20
1220.5
总3.问A利B题2333润80241W:10521的这2L18330销一C售天31560F8利内7B1106.润,O5 总最0322B2和A小5711是号1.22这275500..多55牛里 设9少仔为7A.?裤5A23915872778.05..65521432.5(

高等代数课件(北大版)第四章-矩阵§4-2

高等代数课件(北大版)第四章-矩阵§4-2
0 a12 a12 0 a1n a2n
则称 A 为反对称矩阵.
a1n a2n
ann
a1n a2n
0
§4.2 2024/3/7 矩阵的运算
数学与计算科学学院
性质
(1) A, B 对称 A B, A B 对称 ; A, B 反对称 A B, A B 反对称.
(2) A 对称,k P kA 对称 ; A 反对称,k P kA 反对称.
(3) 奇数级反对称矩阵的行列式等于零.
A A A A A (1)n A ,
n 为奇数时,A A A 0.
§4.2 2024/3/7 矩阵的运算
数学与计算科学学院
想一想 A, B 皆为 n 级对称矩阵, i) A, B 对称,积 AB对称吗? ii) A, B 反对称,积 AB 反对称吗?
例7 已知 A, B 皆为 n 级对称矩阵,证明:
AB 对称 AB BA.
证: 若AB对称,则有
AB ( AB) BA BA .
反过来,若AB=BA,则有 ( AB) BA BA AB. 所以 AB 对称.
§4.2 2024/3/7 矩阵的运算
数学与计算科学学院
例8 设 A 为 n 级实对称矩阵,且 A2 0,证明:
1
1,
12,
1 3
23
3,
An 3n1
1
3n1 3n1 A 3n1 2
3
1 2 1
3 2
1
3 2
3 1
.
§4.2 2024/3/7 矩阵的运算
数学与计算科学学院
附: 共轭矩阵
定义
当 A aij 为复矩阵时,用 aij 表示 aij 的共轭 复数, 记 A aij , A 称为 A 的共轭矩阵.

第四章 矩阵

第四章 矩阵
8)A为反对称矩阵 对n维向量,有ZAZ 0
Ch5 P234 习题4(1)
13.正交矩阵
定义7:P370CH9
1.正交矩阵的充要条件
A
(a
)正交(A是实矩阵)
ij
A为正交阵
A1为正交阵
A为正交阵
A*为正交阵
A1 A
2)A正交,则A的特征值的模为1;
3)A正交,则 A 1; 4) A、B正交,则AB正交.
,A )为准对角阵,则 S
秩A=秩A +秩A
1
2
L
秩AS
4)A=diag(A1,A 2 ,L
,A ) S
B=diag(B ,B 1
2
,L
,B ) S
那么 AB diag( A1B1,L , AS BS )
5)A=diag(A1,A 2 ,L
,A ) S
B=diag(B ,B 12
,L
,B ) S
8) 设A为n m复矩阵,则 秩A=秩A=秩AA=秩AA
9) A,B为n n矩阵,AB=0,则 秩A+秩B n,(P200.18)
10) A为n n矩阵, A2 E,则
秩(A+E)+秩(A-E)=n;(P .3) 203
11) A为n n矩阵, A2 A,则
秩A+秩(A-E)=n;(P .4) 203
1)设 A, B 为n阶矩阵,则
① tr(A B) trA trB
② tr(kA) ktrA
③ trA trA ④ trAB trBA
2)A ~ B 那么 trA trB
3) A为n阶方阵,则A的特征多项式为
则有 E A
n
b n1 n1

高等代数 矩阵.

高等代数 矩阵.
(2) 矩阵相似于对角形的条件:
a. A有n个线性无关的特征向量 A相似于对角形
b. A有n个不同的特征根,则A相似于对角形。
c.设n阶矩阵A有s个不同的特征根 1, 2 , , s ,A
s
的属于 i 的线性无关特征向量的个数为ni, ni n i 1
A相似于对角形。
d.A的初等因子都是一次因式 A相似于对角形.
(8)若
1
1
A
若AB=BA, 则B是A的多项式.
1
4.方阵的行列式
(1) 若A是 n 阶矩阵,AT 是 A的转置矩阵,则| AT || A |;
(2) 若A是n阶矩阵,则 | kA | k n | A |; (3) 若A, B都是n阶矩阵,则 | AB || A || B |;
(4) 若A是n阶矩阵,则 | A || A |n1; (5) 若A是n阶可逆矩阵,则 | A1 || A |1;
的特征向量是方程组 (I A)X 0 的所有非零解.
(1) n阶方阵A的特征多项式
f () | I A | n a1n1 an1 an ,
其中
ak (1) k 1i1i2 ik n Aii11
i2 i2
ik
ik
n
特别地, a1 aii , an (1)n | A | . i 1
e.若r(A)=r,则
A
P
Ir
0
00Q,其中| P | 0,| Q | 0.
f. A=TBT-1,其中B是上三角形矩阵且对角线上的元 素是A的特征根。
g. 若r(A)=r,则A=PR,R是上三角形的矩阵,其主 对角线上前r个元素为1,后n-r个元素为0而|P|≠0.
h. A=B·C,其中BT=B,CT=-C. i. 对任意n阶矩阵A有A=BU,其中B是半正定矩阵, U为酉矩阵。

高等代数第四章 矩阵PPT

高等代数第四章 矩阵PPT

矩阵的定义
定义1 由 m n个数aij i 1,2, ,m; j 1,2, ,n
排成的m行n 列的数表
a11 a12 L
a21
a22
L
M M
am1
am2
L
a1n
a2n
M
amn
称为 m n矩阵. 简记为 A Amn
aij
mn
aij
.
这m n个数称为A的元素,简称为元.
高等代数
东北大学秦皇岛分校
第四章 矩 阵
1、矩阵概念的一些背景
矩阵是线性代数中最基本的概念之一, 也 是解决数学问题和实际问题的一个强有力的武 器之一。
2020/3/25
第四章 矩阵
1 1
高等代数
东北大学秦皇岛分校
矩阵在密码学中的应用实例 古罗马皇帝恺撒首先使用了这样一种密码:在保 留明文中的大小写、空格及标点符号的前提下, 把明文中的每一个字母转化为英文字母表中的第 4个字母。人们为了纪念恺撒德,就把这种密码 称为恺撒密码。但是恺撒密码有一个致命的缺陷, 即每个字母与经过转化后的字母分别在明文和密 文出现的频率是相通的。1929 年,Hill 提出了 一种克服恺撒密码缺陷的密码,该密码以矩阵变 换的方法建立字母组间的对应关系,该方法的诞 生从此使密码学进入了以数学方法处理问题的新 阶段。
b2n M bsn
称为A和B的和,记为C=A+B。
注 1)矩阵的加法就是矩阵对应的元素相加。相加 的矩阵必须要有相同的行数和列数
2)矩阵加法满足
结合律:A+(B+C)=(A+B)+C; 交换律: A+B=B+A。
2020/3/25

高等代数课件北大版第四章矩阵

高等代数课件北大版第四章矩阵

高等代数课件(北大版)第四章矩阵第一节:矩阵的概念及基本运算矩阵是现代数学的重要基础,是线性代数理论的核心概念之一。

在数学和应用领域有着重要的应用价值。

1.1 矩阵的定义定义1.1:矩阵是一个有规律的数表,其中的每一个数称为矩阵的一个元素,通常用一个大写字母表示。

例如:$$A=\begin{pmatrix}a_{11} & a_{12} & a_{13} \\a_{21} & a_{22} & a_{23} \\a_{31} & a_{32} & a_{33}\end{pmatrix}$$其中 $a_{ij}$ 称为矩阵 $A$ 的第 $i$ 行第 $j$ 列元素。

1.2 矩阵的基本运算1.2.1 矩阵的加法定义1.2:设 $A=(a_{ij})_{m \times n},B=(b_{ij})_{m \times n}$,则其和 $C=A+B$ 定义为矩阵 $C$ 的元素为 $c_{ij}=a_{ij}+b_{ij}$。

例如:$$A=\begin{pmatrix}1 &2 &3 \\4 &5 &6 \\7 & 8 & 9\end{pmatrix},B=\begin{pmatrix}-1 & -2 & -3 \\-4 & -5 & -6 \\-7 & -8 & -9\end{pmatrix},$$则 $C=A+B$ 得:$$C=\begin{pmatrix}0 & 0 & 0 \\0 & 0 & 0 \\0 & 0 & 0\end{pmatrix}$$1.2.2 矩阵的数乘定义1.3:设 $A=(a_{ij})_{m \times n}$,$k \in K$,则矩阵 $kA$ 定义为矩阵 $kA$ 的元素为 $ka_{ij}$。

高等代数课件(北大版)第四章 矩阵§4-4

高等代数课件(北大版)第四章 矩阵§4-4

立即可得,
a11 a 21 * AA a n1 a12 a 22 an2 a1n a2n a nn A1 1 A 2 1 A1 2 A 2 2 A1 n A 2 n
d 0 0 0 d 0 dE . 0 0 d数学与计算科学学院 2012-9-22 §4.4 矩阵的逆
AB A 2B
求矩阵B.
解:由
,得 ( A
2 E ) B A ,又
2 3 3 A 2 E 1 1 0 2 0 1 2 1
A 2E
可逆,且
(A 2E )
1
1 1 3 3 1 1 3 2 1 1 1
0 3 3 1 B ( A 2 E ) A 1 2 3 1 1 0
数学与计算科学学院
1 1 E 1

A
1
§4.4 矩阵的逆
2012-9-22
三、逆矩阵的运算规律
1 若 A 可逆 , 则 A 亦可逆 , 且 A
1 1 1

A.
2 若 A 可逆 , 数 0 , 则 A 可逆 , 且
§4.4 矩阵的逆
2012-9-22
X A CB
1
1
.
数学与计算科学学院
3. 矩阵积的秩
定理4
A s n ,
若 Ps s , Q n n 可逆,则
R( A) R( PA) R( AQ ) R( PAQ )
证: 令
B PA,
由定理2, R ( B ) R ( A ),
数学与计算科学学院

代数方法 第四章__高等代数选讲之矩阵

代数方法 第四章__高等代数选讲之矩阵

分析 因为可逆矩阵的定义式是矩阵相乘可交换次序 的等式,所以可将等式进行恒等变形,变成 CD E(或
DC E )的形式,此时有 DC E(或 CD E )。利用 此可证明矩阵乘积可交换的命题。
由 AB A B 得 AB A B O ,即 AB A B E E 于是有 A E B E E 证 因为 A E 与 B E 为 n 阶方阵,则由上式知 A E 可逆 且 B E 为 A E 的逆矩阵,从而有 B E A E E 即 BA A B E E 故
A
k T

k

T
k 1

T T
k 1
A

当 A 可分解为 A T 时,可知 r A 1.
方法4 分块对角矩阵求方幂:对于分块对角矩阵
A1 A AN A1k 有 Ak
A' A, AA' A2 0
2 2 a11 a12 a12n 0 2 2 2 a21 a22 a2 n 0 则有 2 2 2 an1 an 2 ann 0
又 aij R 则有 aij 0, i, j 1,2,n
xy y2 yz
xz 1 1 1 yz 1 1 1 z 2 1 1 1 1,于是 T x2 y 2 z 2 3.
例2.
12
13
14
15
AB 例3、设 A, B 为 n 阶方阵,且 AB A B ,证明: BA.
3
T 例3、设 A 是 n 阶矩阵,满足 AA E,且 A 0 ,

高等代数第四章矩阵练习试题参考包括答案.docx

高等代数第四章矩阵练习试题参考包括答案.docx

第四章矩阵习题参考答案一、判断题1.对于任意 n 阶矩阵A,B,有A B A B .错.2.如果 A20, 则A0 .错 . 如A 110, 但A 0 . 1, A213.如果 A A2 E ,则 A 为可逆矩阵.正确 . A A2E A( E A) E ,因此A可逆,且A1 A E .4.设 A, B 都是 n 阶非零矩阵,且AB 0 ,则A, B的秩一个等于n,一个小于n.错 . 由AB0 可得r ( A)r (B)n .若一个秩等于 n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾. 只可能两个秩都小于n .5.A, B, C为n阶方阵,若AB AC ,则 B C.错 . 如A 112132,有 AB AC ,但B C. 1, B2, C32116.A为m n矩阵,若r ( A)s, 则存在 m 阶可逆矩阵P及 n 阶可逆矩阵 Q ,使I s0PAQ.00正确 . 右边为矩阵A的等价标准形,矩阵 A 等价于其标准形.7.n阶矩阵A可逆,则A *也可逆 .正确 . 由A可逆可得| A |0 ,又 AA* A* A| A | E .因此 A *也可逆,且( A*) 11A . | A |8.设A, B为n阶可逆矩阵,则( AB)* B * A* .正确 . ( AB)( AB)*| AB | E| A || B | E. 又( AB)( B * A*) A( BB*) A* A | B | EA* | B | AA* | A || B | E .因此 ( AB)( AB)* ( AB)( B * A*) .由 A, B 为 n 阶可逆矩阵可得AB 可逆,两边同时左乘式 AB 的逆可得( AB)* B * A * .二、选择题1.设A是n阶对称矩阵,B是n阶反对称矩阵(B T B ),则下列矩阵中为反对称矩阵的是( B ).(A) AB BA (B)AB BA (C)( AB)2(D)BAB(A)(D) 为对称矩阵,( B)为反对称矩阵,( C)当A, B可交换时为对称矩阵.2.设 A 是任意一个n阶矩阵,那么(A)是对称矩阵.(A)A T A(B) A A T(C)A2(D)A T A3.以下结论不正确的是(C).(A)如果 A 是上三角矩阵,则 A2也是上三角矩阵;(B)如果 A 是对称矩阵,则 A2也是对称矩阵;(C)如果 A 是反对称矩阵,则 A2也是反对称矩阵;(D)如果 A 是对角阵,则 A2也是对角阵.4.A是m k 矩阵, B 是 k t 矩阵,若 B 的第 j 列元素全为零,则下列结论正确的是( B )( A)AB 的第 j 行元素全等于零;( B) AB的第j列元素全等于零;( C)BA 的第 j 行元素全等于零;( D)BA 的第 j 列元素全等于零;5 .设 A, B 为 n 阶方阵,E 为 n 阶单位阵,则以下命题中正确的是(D )(A)( A B)2 A 2 2 ABB 2 (B) A 2 B 2( A B)( A B)(C) ( AB) 2A 2B 2 (D) A 2E 2( A E)( A E)6.下列命题正确的是( B ) .(A) 若 AB AC ,则 B C(B) 若 AB AC ,且 A0 ,则 B C(C) 若 AB AC ,且 A 0 ,则 BC(D)若 ABAC ,且 B 0, C 0 ,则 B C7.A 是 m n 矩阵,B 是 n m 矩阵,则( B ) .(A) 当 m n 时,必有行列式 AB 0 ; (B) 当 m n 时,必有行列式 AB 0 (C) 当 nm 时,必有行列式 AB0 ;(D) 当 n m 时,必有行列式 AB 0 .AB 为 m 阶方阵,当 m n 时, r ( A) n, r ( B) n, 因此 r ( AB) n m ,所以AB 0 .8.以下结论正确的是( C )(A) 如果矩阵 A 的行列式 A 0 , 则 A 0 ; (B) 如果矩阵A 满足 A 2 0 ,则A 0;(C) n 阶数量阵与任何一个 n 阶矩阵都是可交换的;(D) 对任意方阵 A, B ,有 ( A B)( A B) A 2 B 29.设 1 , 2 , 3 ,4 是非零的四维列向量, A ( 1 ,2 ,3 ,4 ), A * 为 A 的伴随矩阵,已知 Ax0 的基础解系为 (1,0, 2,0) T ,则方程组 A * x0 的基础解系为( C ) .( A ) 1 , 2,3 .( B ) 12 ,23 ,31 .( C)2,3,4 .( D)1 2 ,2 3 , 3 4 , 4 1 .1由 Ax 0 的基础解系为(1,0, 2,0)T可得 ( 1 , 2 , 3 , 4 )00, 1 2 30 .2D)显然为线性相关的,因此答案因此( A),(B)中向量组均为线性相关的,而(为( C) . 由A* A A*( 1 , 2 ,3, 4 )( A *1, A* 2 , A* 3 , A * 4 )O 可得 1 , 2 , 3 , 4 均为A* x0 的解.10.设 A 是n阶矩阵, A 适合下列条件(C)时,I n A 必是可逆矩阵(A)A n A(B) A 是可逆矩阵(C)A n0(B) A 主对角线上的元素全为零11. n 阶矩阵A是可逆矩阵的充分必要条件是(D)(A) A 1 (B)A 0 (C) A A T(D)A012. A, B, C 均是 n 阶矩阵,下列命题正确的是(A)(A)若 A 是可逆矩阵,则从 AB AC 可推出 BA CA(B)若 A 是可逆矩阵,则必有 AB BA(C) 若A0 ,则从 AB AC 可推出 B C(D) 若B C ,则必有 AB AC13.A, B,C均是n阶矩阵,E为 n 阶单位矩阵,若ABC E ,则有(C)(A) ACB E (B) BAC E (C) BCA E (D)CBA E14.A是n阶方阵,A*是其伴随矩阵,则下列结论错误的是(D)(A)若 A 是可逆矩阵,则 A*也是可逆矩阵;(B) 若A是不可逆矩阵,则A*也是不可逆矩阵;(C) 若 A *0 ,则 A 是可逆矩阵;(D) AA *A .AA *A E nA .15.设 A 是 5 阶方阵,且A0 ,则 A * ( D)(A)A(B)A23 (D)4(C)AA16.设 A * 是 A(a ij )n n 的伴随阵,则 A * A 中位于 (i , j) 的元素为(B )nnnn(A)ajkA ki (B)a kjAki(C)a jkAik(D)a kiAkjk 1k 1k 1k 1应为 A 的第 i 列元素的代数余子式与 A 的第 j 列元素对应乘积和 .a11L a 1nA11L A1n17. 设 ALL L, BLL L, 其中 A ij 是 a ij 的代数余子式, 则( C )an1LannAn1LAnn(A)A 是B 的伴随 (B)B 是 A 的伴随 (C) B 是 A 的伴随(D) 以上结论都不对18.设 A, B 为方阵,分块对角阵CA 0*( C )0 , 则 CB(A)A *(B)A A *C0 B *CB B *(C)CB A *0 (D)A B A *A B *CA B B *利用 CC*| C | E 验证 .46 1 3 5 19.已知 A, B4 ,下列运算可行的是(C)122 6(A)A B (B)A B(C)AB (D) AB BA20.设A, B是两个m n 矩阵,C是 n 阶矩阵,那么(D)(A) C ( A B) CA CB(B)( A T B T )C A T C B T C(C) C T( A B) C T A C T B(D)( A B)C AC BC21.对任意一个n阶矩阵A,若n阶矩阵B能满足AB BA ,那么 B 是一个(C)(A)对称阵(B) 对角阵(C)数量矩阵(D) A 的逆矩阵与任意一个 n 阶矩阵均可交换的矩阵为数量矩阵.22.设A是一个上三角阵,且A0,那么 A 的主对角线上的元素(C)(A)全为零( B)只有一个为零( C)至少有一个为零( D)可能有零,也可能没有零23.设A 13D2,则 A 1()1111 2332(A)( B)( C)( D)1111111136362636a1b1 24.设A a2b2a3b31 00(A)0 0 10 2 0c1a1c12b1c2,若 AP a2c22b2,则 P( B)c3a3c32b3100001200( B)002( C)020(D)001 0101000101 a a L aa 1a L a25.设 n(n3) 阶矩阵 Aa a1 L a ,若矩阵 A 的秩为 1,则 a 必为( A )L L LL La aa L1(A) 1( B ) -1(C ) 1(D )1 nn 11矩阵 A 的任意两行成比例 .26. 设 A, B 为两个 n 阶矩阵 , 现有四个命题 :①若 A, B 为等价矩阵 , 则 A, B 的行向量组等价 ;②若 A, B 的行列式相等 , 即 | A | | B |, 则 A, B 为等价矩阵 ; ③若 Ax 0 与 Bx 0 均只有零解 , 则 A, B 为等价矩阵 ; ④若 A, B 为相似矩阵 , 则 Ax 0 与 Bx 0 解空间的维数相同 .以上命题中正确的是 ( D )(A) ① , ③. (B) ② , ④. (C) ② , ③ .(D)③ , ④ .当 BP 1 AP 时, A, B 为相似矩阵。

高等代数北大版第四章矩阵知识点总结

高等代数北大版第四章矩阵知识点总结

高等代数北大版第四章矩阵知识点总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第四章 矩阵( * * * )一、复习指导:矩阵这一章节可以说是一个基础章节,它不仅很重要,而且还是其他章节的基础,学好矩阵十分重要,我们要对逆矩阵,转置矩阵,对称矩阵等等的概念都要弄清楚,除此之外,还要知道矩阵的运算性质,矩阵的秩。

在考试中,很有可能会出与矩阵这一章节有关的证明题,例如证明相互关联的矩阵的秩,矩阵的逆之间的关系,还有可能有与求矩阵的逆有关的题目。

总的来说,这一个章节是一个关键的章节,高等代数这本书里面的知识都是融会贯通的,学好了矩阵能够为后面的章节夯实基础。

二、考点精讲:(一) 基本概念及其运算1.基本概念矩阵—形如⎪⎪⎪⎪⎪⎭⎫ ⎝⎛mn m m n n a a a a a aa a a212222111211称为m 行n 列的矩阵,记为n m ij a A ⨯=)(,行数与列数相等的矩阵称为方阵,元素全为零的矩阵称为零矩阵。

(1)若矩阵中所有元素都为零,该矩阵称为零矩阵,记为O 。

(2)对n m ij a A ⨯=)(,若n m =,称A 为n 阶方阵。

(3)称⎪⎪⎪⎭⎫ ⎝⎛=11 E 为单位矩阵。

(4)对称矩阵—设n n ij a A ⨯=)(,若),,2,1,(n j i a a ji ij ==,称A 为对称矩阵。

(5)转置矩阵—设⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n a a a a a a a a a A 212222111211,记⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn n n m m Ta a a a a a a a a A212221212111,称T A 为矩阵A 的转置矩阵。

(6)同型矩阵及矩阵相等—若两个矩阵行数与列数相同,称两个矩阵为同型矩阵,若两个矩阵为同型矩阵,且对应元素相同,称两个矩阵相等。

(7)伴随矩阵—设n n ij a A ⨯=)(为n 矩阵,将矩阵A 中的第i 行和j 列去掉,余下的元素按照原来的元素排列次序构成的1-n 阶行列式,称为元素ij a 的余子式,记为ij M ,同时称ij j i ij M A +-=)1(为元素ij a 的代数余子式,这样矩阵中的每一个元素都有自己的代数余子式,记⎪⎪⎪⎪⎪⎭⎫⎝⎛=*nn n n n n A A A A A A A A A A 212221212111,称为矩阵A 的伴随矩阵。

高等代数第四章

高等代数第四章

§1 二次型及其矩阵表示教学目的: 使学生了解及掌握二次型及其矩阵的表示方法 重点: 矩阵的表示方法及矩阵合同关系 难点: 矩阵合同关系的性质 课时: 2学时 教学方法: 讲授法 教学内容:一、二次型及其矩阵表示设P 是一个数域,一个系数在数域P 中的n x x ,,1 的二次齐次多项式)1(222),,,(2222222112112211121nnn n n n n n x a x x a x a x x a x x a x a x x x f ++++++++= 称为数域P 上的一个n 元二次型,简称二次型.定义1 设n n y y x x ,,;,,11 是两组文字,系数在数域P 中的一组关系式⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=n nn n n n n n n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111,, (2)称为由n x x ,,1 到n y y ,,1 的一个线性替换,或简称线性替换.如果系数行列式≠ij c ,那么线性替换(2)就称为非退化的.线性替换把二次型变成二次型.令.,j i a a ji ij <=由于,i j j i x x x x =所以二次型(1)可写成)3(),,,(11222112222221221112112211121∑∑===++++++++++++=ni nj ji ij n nn n n n n nn nn n x x a x a x x a x x a x x a x a x x a x x a x x a x a x x x f把(3)的系数排成一个n n ⨯矩阵,212222111211⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n a a a a a a a a a A (4) 它称为二次型(3)的矩阵.因为,,,2,1,,n j i a a ji ij ==所以A A ='把这样的矩阵称为对称矩阵,因此,二次型的矩阵都是对称的.令()()∑∑===⎪⎪⎪⎪⎪⎭⎫⎝⎛+++++++++=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛='ni nj ji ij n nn n n n n n n n n nn n n n n n x x a x a x a x a x a x a x a x a x a x a x x x x x x a a a a a a a a a x x x AX X 11221122221211212111212121222211121121,,,,,,或AX X x x x f n '=),,,(21应该看到二次型(1)的矩阵A 的元素,当j i ≠时ji ija a =正是它的j i x x 项的系数的一半,而ii a 是2i x 项的系数,因此二次型和它的矩阵是相互唯一决定的.由此可得,若二次型BX X AX X x x x f n '='=),,,(21且B B A A ='=',,则B A =.令⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=n nn n n n n y y y Y c c c c c c c c c C21212222111211,,于是线性替换(4)可以写成⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n nn n n n n n y y y c c c c c c c c c x x x 2121222211121121 或者CY X =.经过一个非退化的线性替换,二次型还是变成二次型,替换后的二次型与原来的二次型之间有什么关系,即找出替换后的二次型的矩阵与原二次型的矩阵之间的关系.设A A AX X x x x f n '='=,),,,(21 (7)是一个二次型,作非退化线性替换CY X = (8)得到一个n y y y ,,,21 的二次型BY Y ' ,例1 试写出2211ni ji i j nxx x =≤< ≤+∑∑的矩阵解:111122211112221111222A ⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭例2写出11211(,,,)n n i i i f x x x ix x -+==∑ 的矩阵解:122334123(1)n n f x x x x x x n x x -=++++-∴100212022202102102A n n ⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪= ⎪ ⎪- ⎪ ⎪⎪- ⎪⎝⎭例3写出222121211n n n n n x x x x x x x ---+++++ 的矩阵解:(21)(21)121211212n n n n A -⨯-→⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭行列二、矩阵的合同关系 现在来看矩阵A 与B 的关系. 把(8)代入(7),有.)()()(),,,(21BY Y Y AC C Y ACYC Y CY A CY AX X x x x f n '=''=''='='=易看出,矩阵AC C '也是对称的,由此即得AC C B '=.这是前后两个二次型的矩阵的关系。

高等代数--第四章 矩阵的对角化

高等代数--第四章 矩阵的对角化

特征值与特征向量的性质
如果 是矩阵 A 属于特征值 0 的

k 0 k
个特征向量, 那么任取
,


0
矩阵 A 属于特征值 的特征向量,
特征值与特征向量的性质
设 1 , 2 是矩阵 A 属于特征值 0 的两个
特征向量, 如果 1 2 0 那么1 2
也是矩阵 A 属于特征值 0 的特征向量,
高等代数--第四章 矩阵的对角 化
相似矩阵的性质
反身性: 矩阵 A与自己相似 对称性: A相似于 B, 则B也相似于 A 传递性: A相似于B, B相似于C, 则A相
似于 C 若A相似于B, 则它们的行列式相等 如果 A可逆, 且A相似于B, 则B可逆,
它们的逆 A1 , B1 也相似.
4 8 2
3 ( 2)
1 ( 2)( 1)2
4 1
矩阵 A 的特征值是 1, -2
把特征值 1 代入, 得到齐次方程组
4
2 x1 x1
2
x2 x2
0, 0,
4 x1 8x2 3x3 0,
它的基础解系是
3
16ຫໍສະໝຸດ 2 0 属于 1 的全部特征向量就是 k 1 1 , k1 0
而A的全体特征值的积为|A|.
§3 矩阵的对角化
相似矩阵的性质 矩阵可对角化的条件 如何判断一个矩阵是否可对角化
相似矩阵的性质
定理1:相似矩阵有相同的特征多项 式
定理2:相似矩阵有相同的特征值 注意:上述两个定理的逆定理不成立.
例:
1 A0
0 1
和B10
1 1
特征向量的性质
定理3 定理4
在特征多项式中令 0,即得常数项

高等代数第四章矩阵知识点复习与相关练习

高等代数第四章矩阵知识点复习与相关练习
4. 设 A ∈ P n×n, 且 A2 = 2A, 证明 E − A, E + A 都可逆,并求 (E − A)−1, (E + A)−1. 5. 设 A2 = A, 但 A ̸= E, 证明 A 不可逆.
6. 证明关于秩的不等式: 1) r(A) + r(B) − n ≤ r(AB) ≤ min{r(A), r(B)}, r(A + B) ≤ r(A) + r(B); 2) 设 A, B ∈ P n×n, 且 AB = 0, 证明:r(A) + r(B) ≤ n;
()
(
)
对方程 Y C = B, C −初−等−−列−变−换→
E
.
B
Y = BC−1
4.2 相关练习
一. 填空题
1.设 A ∈ P n×m, B ∈ P m×s,则 r(AB) ≤

2
2.对一个 s × n 矩阵 A 作一次初等列变换就相当于在 A 的
边乘上一个相应的
初等矩阵。
3.设 A ∈ P n×n,写出 A 可逆的充要条件:
14. 设 A, B 是 n 级可逆方阵, A 0
=
0A
,
=
.
0 B
B0
k111
15.
设矩阵 A =
1 1
k 1
1 k
1 1
,

r(A) = 3,则 k =
.
111k
16. 设 A 为 3 级方阵,若 |A| = 2, 则 |2A| =
.
17. 设 A 是实对称矩阵,若 A2 = 0, 则 A =
7. 证明:若 A, B 分别为 n × m, m × n 矩阵,则 |λEn − AB| = λn−m|λEm − BA|.

高等代数课件--第四章 矩阵§4.2 矩阵的运算

高等代数课件--第四章 矩阵§4.2 矩阵的运算
A, B为反对称矩阵,则AB不一定反对称; ⑥ A为方阵, 则A+AT为对称矩阵, AAT
为反对称矩阵;A可表示为一个对称矩
阵与一个反对称矩阵之和。
例4 A反对称,B对称.证明: 1)A2对称.2)ABBA对称; AB+BA反对 称. 3)AB反对称的充要条件为 AB=BA. 例5 A为n级实对称矩阵,且A2=0,证明:A=0。
§4.2 矩阵的运算
一、加法
1. 定义
设A=(aij)sn, B=(bij)sn 则矩阵
C = (cij)sn=(aij+bij)sn 称为矩阵A与B的和,记作 C=A+B.
2.性质
1)交换律 2)结合律 3) A+0=A 4) A+(A)=0 A+B=B+A
(A+B)+C=A+(B+C )
3.减法:A B= A+(B)
1. 定义
设A=(aij)sn, kP, 记矩阵
B = (kaij)sn 称B为矩阵A与k的数量乘积,记作 B=kA.
2.性质:
1) (k+l)A=kA + lA 2) k (A+B)= kA + kB 3) k(lA)=(kl)A 4) 1A=A
5) k (AB)= (kA)B= A(kB)
6) 若A是n级方阵,则|kA|=
(AB)k与AkBk 是否相等?如果不等,
又需要添加什么条件?
7) 对于两个n级矩阵A, B,当AB=0时, R(A) + R(B) n 8) 对于n级矩阵A, 当A2=0时,
R(A+E) + R(AE) = n
9) 对于n级矩阵A, 当A2=A时, R(A) + R(AE) = n三、数量乘法(数乘) Nhomakorabea 性质:

高等代数 讲义 第四章

高等代数 讲义 第四章

⎜⎝ 0 0 λ2 ⎟⎠⎜⎝ 0 0 λ ⎟⎠ ⎜⎝ 0 0 λ 3 ⎟⎠
§4.1 矩阵的概念
由此归纳出
⎜⎛ λ k
Ak
=
⎜ ⎜
0
⎜⎜⎝ 0
kλ k −1 λk 0
k (k − )1 λ k −2 ⎟⎞
2 kλ k −1
⎟ ⎟
λk
⎟⎟⎠
(k ≥ 2)
用数学归纳法证明之.
当 k = 2 时,显然成立. 假设 k = n 时成立,则 k = n + 1时,
第一节:矩阵的概念 第二节:矩阵的运算
本堂课的要求:
掌握矩阵的加法、乘法以及数与矩阵的乘法运算法则及其基本性质,并能熟 练地对矩阵进行运算。
掌握转置矩阵及其运算性质。 掌握方阵的幂、方阵的多项式。
重点难点
矩阵的乘法运算法则及其基本性质,转置矩阵及其运算性质。
§4.1 矩阵的概念
一、矩阵的概念 二、矩阵的相等 三、一些特殊矩阵
L L L L
−a1n −a2n L −asn
⎞ ⎟ ⎟ ⎟⎠
称为A的负矩阵,记作-A .
即 − A = (−aij )s×n .
§4.1 矩阵的概念
一、加法
1.定义 设 A = (aij )s×n , B = (bij )s×n , 则矩阵
C = (cij )s×n = (aij + bij )s×n 称为矩阵A与B的和,记作 C = A+B .即
§4.1 矩阵的概念
⎜⎛ λn
An+1
=
AnA =
⎜ ⎜
0
nλn−1 λn
n(n − 1)λn−2
2 nλn−1
⎟⎞ ⎟ ⎟
⎜⎛ ⎜
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排成的m行n 列的数表
a11 a12 L

a21
a22
L
M M
am1
am2
L
a1n
a2n

M
amn
称为 m n矩阵. 简记为 A Amn
aij

mn
aij
.
这m n个数称为A的元素,简称为元.
第四章 矩阵
4
高等代数
东北大学秦皇岛分校
求各工厂的总收入与总利润.
单位利润
20 45 120 60
第四章 矩阵
15
高等代数
东北大学秦皇岛分校
解 容易算出各工厂的总收入与总利润, 也
可以列表如下:
项目 工厂
甲 乙 丙
总收入
15500 28000 19750
总利润
5650 10350 6775
本例中的三个表格可用三个矩阵表示, 设
20 A 15
A1 A

Ak
1

Ak
A
由乘法结合律有 Ak Al Akl


Ak
l Akl
注 1)方幂只能对行数和列数相等的矩阵来定义。
2)一般来说 ABk Ak Bk
第四章 矩阵
21
高等代数
东北大学秦皇岛分校
a11x1 a12 x2 a1n xn b1
3)元素全为零的矩阵称为零矩阵,记为Osn或O。 对于所有的矩阵A,都有A+O=A。
4)矩阵
a11 a21 M as1
a12 L a22 L
M as2 K
a1n a2n
M asn
称为矩阵A的负矩阵,记为-A。则有A +(-A)= O 。
5)矩阵的减法定义为 A-B=A+(-B)
设 A
aik
B
sn
bkj
,那么矩阵 C
nm
cij sm
其中 cij ai1b1 j ai2b2 j L ainbnj n aikbkj
k 1
称为A与B的乘积,记为 C AB .
例1 C 2 1
4 2 222 3
4
(2)k A B kA kB
第四章 矩阵
24
高等代数
东北大学秦皇岛分校
(3)kl A k lA; (4)1A A
(5) k AB kAB AkB
定义
k 0 L 0
矩阵
kE


0
kL
0

通常称为数量矩阵。
L L L L

0
0L
k
东北大学秦皇岛分校
如 2 3 5 9 是一个 1 4 矩阵,
1 2 是一个 3 1 矩阵, 4
4 是一个 11 矩阵.
例4 设A=(aij)mn,B=(bij)lk,如果m=l,n=k,且 对于i=1,2,…,m; j=1,2,…,n, aij = bij 都成立, 称A=B。

(6)kA kE A AkE (7)kE lE k l E (8) kElE kl E
第四章 矩阵
25
高等代数
东北大学秦皇岛分校
4、转置
定义6 设
a11 a12 L
A


a21
a22
L
L L L
as1 as2 L
所谓A的转置就是指矩阵
a11 a21 L
A


a12
a22
L
L L L
xx23

a21 y1 a31 y1

a22 a32
y2 y2

a23 y3 a33 y3
, ,
(1)
x4 a41 y1 a42 y2 a43 y3 .
第四章 矩阵
11
高等代数
东北大学秦皇岛分校
y1 b11z1 b12 z2 ,

y2
b21z1


xxn2 ,
b1
B


bbm2 ,
方程组变成
AX B
第四章 矩阵
22
高等代数
东北大学秦皇岛分校
例3 设
0 3 4
1
A


1
0
0 1 5
1 3 1
2
0

4
B


1
3

1
2 1 2
1

aik bkj z j
aik bkj z j
k 1 j1
j1 k 1
第四章 矩阵
12
高等代数
东北大学秦皇岛分校
2 3

aikbkj z j (i 1,2,3,4) . (3)
j1 k 1

2
如果用 xi cij z j (i 1,2,3,4) (4) j 1
则 AB 0 0
0 , 0
BA 2 2
2 , 故 2
AB BA.
5)矩阵乘法不满足消去律,即当 AB AC 时,不一
定有B C ;
因为由上例可以看到,两个不为零的矩阵的乘积 可以是零。
第四章 矩阵
19
高等代数
东北大学秦皇岛分校
特别的,如果 AB BA,则称 A, B 可交换.
ka11 ka12 L

ka21
ka22
L
L L L
kam1 kam2 L
ka1n
ka2n

L
kamn
称为矩阵A (aij )mn 与数k的数量乘积,记作kA。
注 1)用数k乘矩阵就是把矩阵的每个元素都乘上k。 2)数量乘法满足
(1)k l A kA lA
6)秩( A+B) ≤秩(A)+秩(B)
第四章 矩阵
9
高等代数
东北大学秦皇岛分校
例1 12 3 5 1 8 9 1 9 0 6 5 4 3 6 8 3 2 1 12 1 3 8 5 9 13 11 4
1 6 9 5 0 4 7 4 4. 3 3 6 2 8 1 6 8 9
例1 1 0 3 5 是一个 2 4 实矩阵, 9 6 4 3
13 6 2i 2 2 2 是一个 3 3 复矩阵, 2 2 2
例2 n维向量也可以看成矩阵的特殊形式: n维行向量就是1×n矩阵;n维列向量就是n×1矩阵。
第四章 矩阵
5
高等代数
第四章 矩阵
2
高等代数
东北大学秦皇岛分校
化学反应中方程式的配平是一个棘手的问题,但 是有一类方程式的配平利用矩阵来处理十分简洁方便。 定义 化学反应中每一个化合物含有它们所有的每一种 原子的个数,排列成的数字表称为化学反应矩阵。
第四章 矩阵
3
高等代数
东北大学秦皇岛分校
矩阵的定义
定义1 由 m n个数aij i 1,2, ,m; j 1,2, ,n
622

16 ?
32
8 16 22
第四章 矩阵
17
高等代数
东北大学秦皇岛分校
注 1)两个矩阵相乘,必须第二个矩阵的行数与第一 个矩阵的列数相等。 2)计算法则:两个矩阵A与B乘积的第i行第j列的 元素等于第一个矩阵A的第i行与第二个矩阵B第j列 的对应元素乘积的和。 3)矩阵乘法满足
L K
b1n b2n M bsn
第四章 矩阵
7
高等代数
东北大学秦皇岛分校
则 C
cij

sn
aij bij
sn
a11 b11 a12 b12 L a1n b1n


a21 as1
b21 M bs1
a22 b22 L M
b22 z2
,
(2)
y3 b31z1 b32 z2 ,
求 x1, x2, x3, x4与 z1, z2之间的关系. 把 (2) 代入 (1) ,得
xi
3
aik yk

3
aik
2
bkj z j
k 1
k 1
j 1

32
23


a21 x1
a22 x2
a2n xn
b2
am1x1 am2 x2 amn xn bm
若令
a11 a12 a1n
A


a21 am1
a22 am2

aam2nn ,
x1
X
20
30 10 15
10 70 35
45 20 25
100
,B

150 320000
20 45 16200
15500 ,C 28000
19750
5650 10350, 6775
第四章 矩阵
16
高等代数
东北大学秦皇岛分校
定义2
as2 bs2 K
a2n asn
b2n M bsn

称为A和B的和,记为C=A+B。
注 1)矩阵的加法就是矩阵对应的元素相加。相加 的矩阵必须要有相同的行数和列数
2)矩阵加法满足 结合律:A+(B+C)=(A+B)+C; 交换律: A+B=B+A。
相关文档
最新文档