空间向量坐标运算

合集下载

空间向量的坐标运算

空间向量的坐标运算
a (a1, a2, a3)( R)
a b a1b1 a2b2 a3b3 a // b a1 b1,a2 b2,a3 b3( R)
a b a1b1 a2b2 a3b3 0.
若A(x1,y1,z1),B(x2,y2,z2), 则
无罪,该负责任的是那些劝说我的人。世上有很多很好的鞋,但要看适不适合你的脚。在这里,所有的经验之谈都无济于事,你只需在半夜时分,倾听你脚的感觉。 看到好位赤着脚参加世界田径大赛的南非女子的风采,我报以会心一笑:没有鞋也一样能破世界纪录!脚会长,鞋却
不变,于是鞋与脚,就成为一对永恒的矛盾。鞋与脚的力量,究竟谁的更大些?我想是脚。只见有磨穿了的鞋,没有磨薄了的脚。鞋要束缚脚的时候,脚趾就把鞋面挑开一个洞,到外面去凉快。 脚终有不长的时候,那就是我们开始成熟的年龄。认真地选择一种适合自己的鞋吧!一
这是从远古传下来的手艺,博物馆描述猿人生活的图画,都绘着腰间绑着兽皮的女人,低垂着乳房,拨弄篝火,准备食物。可见烹饪对于女人,先于时装和一切其他行业。汤不一定鲜美,却要热;饼不一定酥软,却要圆。无论从爱自己还是爱他人的角度想,“食”都是一件大事。一个不
爱做饭的女人,像风干的葡萄干,可能更甜,却失了珠圆玉润的本相。 ? 我喜欢爱读书的女人。书不是胭脂,却会使女人心颜常驻。书不是棍棒,却会使女人铿锵有力。书不是羽毛,却会使女人飞翔。书不是万能的,却会使女人千变万化。不读书的女人,无论她怎样冰雪聪明,只有一
只脚是男人,一只脚是女人,鞋把他们联结为相似而又绝不相同的一双。从此,世人在人生的旅途上,看到的就不再是脚印,而是鞋印了。 削足适履是一种愚人的残酷,郑人买履是一种智者的迂腐;步履维艰时,鞋与脚要精诚团结;平步青云时切不要将鞋儿抛弃…… 当然,脚

空间向量的坐标运算

空间向量的坐标运算
2 2 2
(x2 x1 ) (y2 y1 ) (z2 z1 ) ;
例3 已知A(3,3,1),B(1,0,5)求
线段 AB的中点坐标和长度.
z 解:设M(x,y,z)是AB的中点,则 B(1,0,5)
OM=
M
1 2
(OA+OB)
AM=MB
o y
x
d A, B 1 3 0 3 5 1 29
2 2 2
A(3,3,1)
例4 已知A(3,3,1),B(1,0,5)求 到A,B两点距离相等的点P(x,y,z)的坐
标x,y,z满足的条件. 解:设点P到A,B的距离相等,则
2 2 2 2 2
( x 3) y 3 z 1 x 1 y 0 z 5
例2 已知向量a=(-2,2,0),b=(-2,0,2), 求向 量n使n⊥a,且n⊥b. 解:设n=(x, y, z,)则 n•a=(x, y, z,)•(-2,2,0)=-2x+2y=0 n•b=(x, y, z,)•(-2,0,2)=-2x+2z=0 所以y=x, z=x
于是n= (x, x, x)=x(1,1,1),
C 1 A1 N C A B
B1
M
课后作业
课本:P94 练习
P97 练习
z
D1
A1
F1 E1
B1
C1
D(0,0,0)
1 F1(O, 4
,1)
O D
A
C
y
x
B (1,,1) E1 3
4
思考题:直三棱柱ABC A1B1C1 , 底面ABC中, CA=CB=1,BCA=90o,棱AA1=2,M , N 分别为A1B1 ,AA1的中点. (1)求BN的长; (2)求 cos BA1 , CB1 的值; (3)求证:A1 B C1M .

课件2:3.1.4空间向量的直角坐标运算

课件2:3.1.4空间向量的直角坐标运算

研一研·问题探究、课堂更高效
小结 已知两个向量的坐标,证明这两个向量平行或垂 直,就是根据 a⊥b⇔a·b=0⇔a1b1+a2b2+a3b3=0,c∥d⇔c =xd⇔c1=xd1,c2=xd2,c3=xd3 (x∈R,x≠0)来证明.
研一研·问题探究、课堂更高效
跟踪训练 2 将本例中“若向量 ka+b 与 ka-2b 互相垂
练一练·当堂检测、目标达成落实处
3.若 ABCD 为平行四边形,且 A(4,1,3),B(2,-5,1),
C(-3,7,-5),则顶点 D 的坐标为
(D )
A.72,4,-1
B.(2,3,1)
C.(-3,1,5)
研一研·问题探究、课堂更高效
例 2 已知空间三点 A(-2,0,2),B(-1,1,2),C(-3,0,4),设 a =A→B,b=A→C.若向量 ka+b 与 ka-2b 互相垂直,求 k 的值.
解 a=(-1+2,1-0,2-2)=(1,1,0), b=(-3+2,0-0,4-2)=(-1,0,2), ∴ka+b=(k,k,0)+(-1,0,2)=(k-1,k,2), ka-2b=(k,k,0)-(-2,0,4)=(k+2,k,-4), ∴(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k2-8, 即 2k2+k-10=0,∴k=-52或 k=2.
=(2,1,2)-λ(1,1,2)=(2-λ,1-λ,2-2λ),
研一研·问题探究、课堂更高效
则Q→A·Q→B=(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ) =(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)(2-2λ) =6λ2-16λ+10, ∴当 λ=43时,Q→A·Q→B取得最小值. 又O→Q=λO→P=43(1,1,2)=43,43,83. 所以,所求点 Q 的坐标为43,43,83.

空间向量数量积及坐标运算

空间向量数量积及坐标运算

空间向量数量积及坐标运算在空间解析几何中,向量是研究的重要对象之一,而向量的数量积和坐标运算是向量运算中的基本概念。

本文将介绍空间向量的数量积及其坐标运算方法。

一、空间向量的数量积空间中的向量可以用其坐标表示,记作a = (x1, y1, z1)和b = (x2, y2,z2),其中a、b分别是空间中的两个向量,xi、yi、zi为它们在笛卡尔坐标系中的坐标。

向量的数量积(又称点积或内积)定义为两个向量的对应坐标的乘积之和,即:a ·b = x1 * x2 + y1 * y2 + z1 * z2其中·表示数量积运算。

性质:1.数量积是实数。

2.数量积的结果等于向量乘积和坐标乘积之和。

3.数量积满足交换律:a · b = b · a。

4.数量积满足分配率:(a + b) · c = a · c + b · c。

二、向量的坐标运算1. 向量的加法设a = (x1, y1, z1)和b = (x2, y2, z2)是空间中的两个向量,它们的和记为c,则c的坐标为:x = x1 + x2y = y1 + y2z = z1 + z2即向量的和的每个坐标等于对应向量的坐标之和。

性质:1.向量的加法满足交换律:a + b = b + a。

2.向量的加法满足结合律:(a + b) + c = a + (b + c)。

2. 向量的减法设a = (x1, y1, z1)和b = (x2, y2, z2)是空间中的两个向量,它们的差记为c,则c的坐标为:x = x1 - x2y = y1 - y2z = z1 - z2即向量的差的每个坐标等于对应向量的坐标之差。

3. 向量的数乘设k为实数,a = (x, y, z)是空间中的一个向量,ka为向量a的数乘,即ka 的坐标为:x' = k * xy' = k * yz' = k * z性质:1.数乘满足结合律:k(ka) = (k * k')a。

空间向量的3种坐标运算洋葱数学

空间向量的3种坐标运算洋葱数学

空间向量的3种坐标运算洋葱数学摘要:1.空间向量的概念及坐标表示2.空间向量的加法运算3.空间向量的减法运算4.空间向量的数乘运算5.空间向量的坐标运算应用举例正文:一、空间向量的概念及坐标表示空间向量是指在三维空间中的有向线段,它可以用来表示空间中的物体和运动。

空间向量通常用有序的三元组(x, y, z) 来表示,其中x, y, z 分别代表向量在x, y, z 三个坐标轴上的分量。

二、空间向量的加法运算空间向量的加法是指将两个空间向量相加,得到一个新的空间向量。

空间向量的加法满足平行四边形法则,即两个向量的和等于以这两个向量为邻边的平行四边形的对角线。

设向量A = (x1, y1, z1) 和向量B = (x2, y2, z2),则向量A 和向量B 的和为:A +B = (x1 + x2, y1 + y2, z1 + z2)三、空间向量的减法运算空间向量的减法是指将两个空间向量相减,得到一个新的空间向量。

空间向量的减法也满足平行四边形法则,即两个向量的差等于以这两个向量为邻边的平行四边形的对角线。

设向量A = (x1, y1, z1) 和向量B = (x2, y2, z2),则向量A 和向量B 的差为:A -B = (x1 - x2, y1 - y2, z1 - z2)四、空间向量的数乘运算空间向量的数乘是指将一个向量与一个标量相乘,得到一个新的空间向量。

数乘运算满足分配律和结合律。

设向量A = (x, y, z) 和标量k,则向量A 与标量k 的乘积为:kA = (kx, ky, kz)五、空间向量的坐标运算应用举例假设有一个空间直角坐标系,原点为O,向量A = (2, 3, 4) 和向量B = (1, 2, 3)。

现在需要求解向量A 和向量B 的和、差以及向量A 与向量B 的数乘。

空间向量的直角坐标及其运算

空间向量的直角坐标及其运算
证:(1)∵ AP AB 1,2,12,1,4 0, AP AD 1,2,14,2,0 0 ,
∴ AP AB , AP AD,又 AB AD A , AP 平面 ABCD,
∴ AP 是平面 ABCD的法向量; 解:(2) AB 22 12 42 21 , AD 42 22 02 2 5 ,
∴ SABC
1 2
AB
AC
sin
A
101 。 2
7、在棱长为1的正方体 ABCD A1B1C1D1 中,E, F 分别是 DD1、DB 中点,G 在棱CD 上,
CG
1 4
CD

H

C1G
的中点;
(1)求证: EF B1C ;(2)求 EF 与C1G 所成的角的余弦;(3)求 FH 的长。
解:如图以 D 为原点建立直角坐标系 D xyz ,
(3)证明线面平行:若直线的方向向量与平面的一个法向量垂直,则这直线与该平面平行;
(4)证明面面平行:若两个不重合平面的法向量平行,则这两个平面就互相平行。 11、用向量求异面直线所成角:
找出两条异面直线各自的一个方向向量,计算这两个向量的夹角 ,则 (或 的补角)
即为两条异面直线所成的角。
设 a、b 是异面直线, d1 是直线 a 的一个方向向量, d2 是直线b 的一个方向向量,异面
一、基本概念:
1、空间直角坐标系:
(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用 i, j,k
表示;
(2)在空间选定一点O 和一个单位正交基底 i, j,k ,以点O 为原点,分别以 i, j,k 的方向
为正方向建立三条数轴:x 轴、 y 轴、z 轴,它们都叫坐标轴;我们称建立了一个空间 直角坐标系 O xyz ,点O 叫原点,向量 i, j, k 都叫单位向量;通过每两个坐标轴的平

向量的坐标表示与运算公式

向量的坐标表示与运算公式

向量的坐标表示与运算公式向量的坐标表示:1. 在二维平面中,一个向量可以用有序实数对 (x, y) 表示,其中 x 和 y 分别表示向量的横坐标和纵坐标。

2. 在三维空间中,一个向量可以用有序实数三元组 (x, y, z) 表示,其中 x、y 和 z 分别表示向量的三个坐标分量。

向量的运算公式:1. 向量的加法:- 定义:如果向量 A = (x₁, y₁) 和向量 B = (x₂, y₂),则 A + B = (x₁ + x₂, y₁ + y₂)。

- 几何意义:向量加法就是把两个向量的起点放在一起,然后把两个向量终点连起来的向量。

2. 向量的数乘:- 定义:对于任意实数 k,如果向量 A = (x, y),则 kA = (kx, ky)。

- 几何意义:数乘就是把向量按比例放大或缩小。

3. 向量的减法:- 定义:如果向量 A = (x₁, y₁) 和向量 B = (x₂, y₂),则 A - B = (x₁ - x₂, y₁- y₂)。

- 几何意义:向量减法就是从第一个向量的终点指向第二个向量的终点的向量。

4. 向量的数量积(点乘):- 定义:如果向量 A = (x, y) 和向量 B = (x', y'),则A · B = xx' + yy'。

- 几何意义:数量积等于两向量的长度之积和它们夹角的余弦值的乘积。

5. 向量的向量积(叉乘):- 定义:如果向量 A = (x, y) 和向量 B = (x', y'),则A × B 是一个垂直于A 和B 的向量,其大小等于A × B × sin(θ),其中θ 是 A 和 B 之间的夹角,方向按照右手定则确定。

- 几何意义:向量积表示一个向量相对于另一个向量的旋转。

以上是向量的基本坐标表示和运算公式,是解析几何和线性代数中的基础概念。

1.3.2空间向量运算的坐标表示

1.3.2空间向量运算的坐标表示

坐标表示
2.空间向量的坐标与其端点坐标的关系:
设A(x1,y1,z1),B(x2,y2,z2),则
=(x2-x1,y2-y1,z2-z1).
即一个空间向量的坐标等于表示此向量的有向线段的终点坐标减
去起点坐标.
3.空间向量平行与垂直条件的坐标表示
若向量a=(a1,a2,a3),b=(b1,b2,b3),则
一、空间向量运算的坐标表示
1.空间向量运算法则设向量a=(a1,a2,a3),b=(b1,b2,b3),λ∈R,那么
向量运算
向量表示
加法
a+b
(a1+b1,a2+b2,a3+b3)
减法
a-b
(a1-b1,a2-b2,a3-b3)
数乘
λa
(λa1,λa2,λa3)
数量积
a·b
a1b1+a2b2+a3b3
若向量a=(a1,a2,a3),b=(b1,b2,b3),则
21 + 22
(1)|a|= ·=
(2)cos<a,b>=
·
||||
+ 23
z
P1
k
;
1 1 + 2 2 + 3 3
=
;
12 + 22 + 32 12 + 22 + 32
(3)若 P1(x1,y1,z1),P2(x2,y2,z2),则 P1,P2 两点间的距离为
1
3
1,- ,-
1,1),c=
2
2 ,则它们之间的关系是( A )
A.a⊥b 且 a∥c
B.a⊥b 且 a⊥c
C.a∥b 且 a⊥c

空间向量的直角坐标运算律

空间向量的直角坐标运算律

.空间向量的直角坐标运算律:(1)若,,则.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。

(2)若,,则,,,,,;,.夹角公式:.(3)两点间的距离公式:若,,则或。

对于垂直问题,一般是利用进行证明;对于平行问题,一般是利用共线向量和共面向量定理进行证明.2.利用向量求夹角(线线夹角、线面夹角、面面夹角)有时也很方便.其一般方法是将所求的角转化为求两个向量的夹角或其补角,而求两个向量的夹角则可以利用向量的夹角公式。

3.用向量法求距离的公式设n是平面的法向量,AB是平面的一条斜线,则点B到平面的距离为(如图)。

向量法在求空间角上的应用平面的法向量的求法:设n=(x,y,z),利用n与平面内的两个不共线的向a,b垂直,其数量积为零,列出两个三元一次方程,联立后取其一组解,即得到平面的一个法向量(如图)。

线线角的求法:设直线AB、CD对应的方向向量分别为a、b,则直线AB与CD所成的角为。

(注意:线线角的范围[00,900])线面角的求法:设n是平面的法向量,是直线的方向向量,则直线与平面所成的角为(如图)。

二面角的求法:设n1,n2分别是二面角的两个面,的法向量,则就是二面角的平面角或其补角的大小(如图)利用法向量求空间距离⑴点A到平面的距离:,其中,是平面的法向量。

⑵直线与平面之间的距离:,其中,是平面的法向量。

⑶两平行平面之间的距离:,其中,是平面的法向量。

①线线平行的判定:判定定理性质定理判定定理判定定理性质定理判定定理总结:从中可以看出,一般情况下,往往借助一些“性质定理”来构造满足“判定定理”的条件。

(2)还会考查到的位置关系:异面直线的判定。

判定方法:定义(排除法与反证法)、判定定理。

二、基本例题例1已知:分析:利用线面平行的性质与平行公理。

注意严格的公理化体系的推理演绎。

说明:过l分别作平面∴l∥m同理l∥n∴m∥n又又例2. 已知:AB是异面直线a、b的公垂线段,P是AB的中点,平面经过点P且与AB垂直,设M是a上任意一点,N是b 上任意一点。

空间向量的坐标运算

空间向量的坐标运算

3.1 空间向量及其运算3.1.3 空间向量的正交分解及其坐标表示【基础知识在线】知识点一 空间向量基本定理★★★考点: 寻找合适的基底来表示题目中的向量 知识点二 单位正交基底★★★ 考点: 用坐标表示向量知识点三 空间直角坐标系★★★★ 考点: 选择合适的位置建系知识点四 空间向量的坐标表示★★★★★ 考点: 能在坐标系下用坐标表示空间向量 能够进行坐标运算【解密重点·难点·疑点】 问题一:空间向量基本定理若三个向量a ,b ,c 不共面,则对空间任一向量p ,存在实数组{},,x y z ,使得p xa yb zc =++.若三个向量a ,b ,c 不共面,则所有空间向量组成的集合是{},,,p p xa yb zc x y z R =++∈.这个集合可看作是由向量a ,b ,c 生成的,{},,a b c 称为空间的一个基底,a ,b ,c 称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底.推论:设C B A O ,,,是不共面的四点,则对空间任一点P ,都存在唯一的一个有序实数组(z y x ,,},使OC z OB y OA x OP ++=.注意:(1) 由定理可知,作为基底的三个向量不共面,因此,基底中不存在零向量. (2)一个基底是一组向量,一个基向量是说基底中的某一向量.(3)空间中三个向量只要不共面,即可作为基底,即空间中的基底是不唯一的;当选定一组基底后,空间中任一向量的表示却是唯一的.问题二:空间直角坐标系的建立和坐标表示空间直角坐标系的建立:在空间选定一点O 和一个单位正交基底{i ,j ,k },如图,以点O 为原点,分别以i ,j ,k 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫做坐标轴.O —x y z 为空间直角坐标系,O 为坐标原点,向量i ,j ,k 为单位坐标向量,通过每两个坐标轴的平面叫做坐标平面.设1e ,2e ,3e 为有公共起点O 的三个两两垂直的单位向量(称它们为单位正交基底),以1e ,2e ,3e 的公共起点O 为原点,分别以1e ,2e ,3e 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系xyz O .则对于空间任意一个向量p ,一定可以把它平移,使它的起点与原点O 重合,得到向量p OP =.存在有序实数组{},,x y z ,使得123p xe ye ze =++.把x ,y ,z 称作向量p 在单位正交基底1e ,2e ,3e 下的坐标,记作(),,p x y z =.此时,向量p 的坐标是点P 在空间直角坐标系xyz O 中的坐标(),,x y z .在空间直角坐标系中,坐标平面xOy 上的点的竖坐标为0;坐标平面xOz 上的点的纵坐标为0;坐标平面yOz 上点的横坐标为0.x 轴上的点纵坐标、竖坐标为0,y 轴上的点横坐标、竖坐标为0,z 轴上的点横坐标、竖坐标为0.注意:(1)空间直角坐标系的建立,必须寻求两两垂直且交于一点的直线.(2)表示坐标的三个数据的位置是不能改变的.如若顺序变了,则对应的向量也随之改变.【点拨思维·方法技巧】 一.基底的概念例1已知向量{}c b a ,,是空间的一个基底,那么向量,,-+能构成空间的一个基底吗?为什么?【思维分析】解答该题适用反证法.假设不能构成基底,则共面,利用共面基本定理推出矛盾,从而假设不成立.【解析】 能构成空间一个基底.图3-1-28假设,,-+共面,则存在y x ,,使()()y x -++=,()()y x y x -++=∴.从而由共面向量定理知,c 与b a ,共面. 这与向量{},,是空间的一个基底矛盾. ∴c b a b a ,,-+不共面.【评析】 判断三个向量能否作为基底,关键是正确理解概念,只有空间中三个向量不共面才能构成空间向量的一个基底,常用反证法.变式训练1.有以下命题:①如果向量b a ,与任何向量不能构成空间向量的一组基底,那么,a b 的关系是不共线;②,,,O A B C 为空间四点,且向量,,OA OB OC 不构成空间的一个基底,那么点,,,O A B C 一定共面;③已知向量,,a b c 是空间的一个基底,则向量,,a b a b c +-,也是空间的一个基底.其中正确的命题是( ).A.①②B.①③C.②③D.①②③ 答案:C.【解析】对于①“如果向量,与任何向量不能构成空间向量的一组基底,那么,的关系一定共线”;所以①错误.②③正确二.用基底表示向量例2如图,在三棱柱111C B A ABC -中,设===,,1,M 是B A 1的中点,点N 在CM 上,且4:1:=CM CN ,试用基底},,{表示N C 1.【思维分析】结合图形,利用空间向量的加减和数乘运算,把相关的向量均用基底表示. [解析]M 是B A 1的中点,点N 在CM 上,且4:1:=CM CN ,图3-1-29∴)(21)(21)(11AA BA b c BA AB CA BM CB CM +++-=++=+= .2121)(21c b a a b b c -+=+-++-=418187)2121(4141111-+-=+-+-=+=+=∴A C C .c【评析】(1)空间中的一组基底可以表示任意的向量,在选定的基底下,某一向量的表达形式是唯一的.(2)注意结合图形,灵活应用向量的基本运算和三角形、平行四边形法则. (3)用基底表示向量要彻底,不可在有其他向量,只含基底中的向量. 变式训练2.在平行六面体1111D C B A ABCD -中,=a ,=b ,1=c ,P 是1CA 的中点,M 是1CD 的中点,N 是11D C 的中点,点Q 在1CA 上,且1:4:1=QA CQ用基底{、、}表示以下向量:(1),(2),(3).[解析](1)()()c b a AD AB AA AC AA AP ++=++=+=21)(212111; (2)C D AA D D A AA ++=++=++=21211111111; (3))(51511111AA A A AA -+=+=+= AA 545151515151)(511++=-++=-++=三.求点和向量的坐标例3如下图,正方体1111D C B A ABCD -的棱长为2,试建立适当的空间直角坐标系,写出正方体各顶点的坐标.图3-1-30【思维分析】分别以 AB 、AD 、AA 1为x,y,z 轴建立空间直角坐标系,找出各顶点到x,y,z 轴的距离.[解析]分别以 A B 、AD 、AA 1为x,y,z 轴建立空间直角坐标系,找出各顶点到x,y,z 轴的距离,这个距离恰是正方体的棱长,所以各顶点的坐标是:A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),A 1(0,0,2),B 1(2,02,)C 1(2,2,2),D 1(0,2,2).【评析】(1)建立空间直角坐标系的关键是根据几何图形的特征,尽量寻找三条互相垂直且交于一点的直线,如果找不到,要想办法构造.(2)找出各点在坐标轴上的射影,便于得到该点的坐标,但要注意符号. 变式训练3.已知PA 垂直于正方形ABCD 所在的平面,M 、N 分别是AB ,PC 的三等分点且PN =2NC ,AM =2MB ,PA =AB =1,求 MN 的坐标.[解析] ∵PA=AB=AD=1,且PA 垂直于平面ABCD ,AD ⊥AB , ∴可设 ,,,=== 建立如图所示的空间直角坐标系. ∵MN =MA →+AP →+PN =-23 AB +AP →+23PC →图3-1-31图3-1-32=-23AB +AP →+23(-AP →+AD →+AB )=13AP +23AD → 3132+= .31,0,32⎪⎭⎫⎝⎛=∴【课后习题答案】 练习(第94页)1.答案:向量c 一定可以与q p ,一起构成空间的另一个基底. 解析:-=+=, 与,共面,只有c 不与,共面.2. 答案:点,,,O A B C 四点共面.解析:,, 不构成空间的一个基底,,,∴共面,C B A O ,,,∴四点共面.3.(1)答案:C B B O +-='-='++=',,; 解析: (2)答案:1122OG a b c =++ 解析:()B B 212121++='++=+=.【自主探究提升】夯实基础1.若向量{},,是空间的一个基底,则下列各组中不能构成空间一个基底的是( ) A.3,2, B.+++,, C.93,32,2-++ D.,,++ 答案:C.提示:在C 选项中()(),3232393c b b a c a +-+=-由共面定理知,此三个向量共面. 2.以下四个命题中正确的是( )A .空间的任何一个向量都可用其它三个向量表示B .若{}c b a ,,为空间向量的一组基底,则c b a ,,全不是零向量 C .△ABC 为直角三角形的充要条件是0=⋅AC ABD .任何三个不共线的向量都可构成空间向量的一个基底 答案 B提示: 使用排除法.因为空间中的任何一个向量都可用其他三个不共面的向量来表示,故A 不正确;△ABC 为直角三角形并不一定是0=⋅AC AB ,可能是0=⋅BA BC ,也可能是0=⋅CB CA ,故C 不正确;空间向量基底是由三个不共面的向量组成的,故D 不正确,故选B.3.已知空间四边形OABC ,其对角线为OB 、AC ,M 、N 分别是对边OA 、BC 的中点,点G在线段MN 上,且2=,现用基组{},,表示向量,有=x z y ++,则= .答案 :313161++.提示:313161]21)(21[3221)(32213221++=-++=-+=+=+= 4. 设O-ABC 是四面体,1G 是ABC ∆的重心,G 是1OG 上的一点,且13GG OG =,若OG =xOA →+yOB →+zOC →,则()z y x ,,为( ) A .(14,14,14) B .(34,34,34)C .(13,13,13)D .(23,23,23)答案 A 提示:()114343AG OG +==()()()[]-+-+=⎥⎦⎤⎢⎣⎡+⨯+=414321324343OC OB OA 414141++=.=14OA →+14OB →+14OC →.故选A. 5.在平行六面体1111D C B A ABCD -中,设===1,,,F E ,分别是BD AD ,1的中点.(1)用向量 c b a ,,,表示1,D B EF;(2)若c z b y a x F D ++=1,求实数.,,z y x解 (1)1D B =1D D +DB = - 1AA +EF =EA +AF =121D A +12AC ()()()AA +=+++-=2121211.(2) 1D F = 111()2AA AB AD -+-111()2AA AB D D =-+-c b a --=2121,.1,21,21-=-==∴z y x拓展延伸6.在以下3个命题中,真命题的个数是( )①三个非零向量,,不能构成空间的一个基底,则,,共面;②若两个非零向量b a ,与任何一个向量都不能构成空间的一个基底,则b a ,共线; ③若,是两个不共线向量,而()0,≠∈+=λμμλμλ且R ,则{},,构成空间的一个基底.A .0B .1C .2D .3 答案 C 提示:命题①,②是真命题,命题③是假命题.7.若{}c b a ,,是空间的一个基底,则下列各组中不能构成空间一个基底的是( ) A .3,2,a,2b,3c B .+++,, C .93,32,2-++ D .,,++AC1A1C图3-1-33答案 C提示:()()()09332323=-++++-c a c b b a 即三向量c a c b b a 93,32,2-++共面. ∴选C.8. 已知正方体1111D C B A ABCD -中,点O 为1AC 与1BD 的交点,1CC z y x ++=,则x +y +z =________.答案 32,提示:()12121CC ++==. 9. 从空间一点P 引出三条射线PC PB PA ,,,在PC PB PA ,,上分别取,,,===,点G 在PQ 上,且PG =2GQ ,H 为RS 的中点,则GH →=__________________. 答案: ().2132c b a ++-10.(2009.四川卷理)如图,已知正三棱柱111ABC A B C -的各条棱长都相等,M 是侧 棱1CC 的中点,则异面直线1AB BM 和所成的角的大小是 .解析:不妨设棱长为2,选择基向量{},,1,则11121,BB BC BM BA BB AB -=-=()5222111-⎪⎭⎫⎝⎛-⋅-=BB BB05220220=--+-=,故填写o 90.11.已知三棱锥A —BCD.1BAB 1AC1CM图3-1-34(1)化简()AD AC AB -+21并标出化简结果的向量; (2)设G 为△BCD 的重心,试用AD AC AB ,,表示向量.解析:设AB ,AC ,AD 中点为E ,F ,H ,BC 中点为P. (1)1(2AB +AC →-AD →)=AE → +AF = AP -AH →=HP →. (2)AG =AP →+PG → = AP →+13PD →= AP →+13(AD →-AP →)=23AP →+13AD →=()312132++⨯ =13( AB +AC →+AD →).12.在直三棱柱111O B A ABO -中,∠AOB=2π424===|,D 为11B A 的中点,则在如图所示的空间直角坐标系中,求1,DO A B的坐标.解析:∵11(),DO OD OO O D =-=-+11111[()]222OO OA OB OO OA OB =-++=--- 又1||OO = 4,|OA →|=4,|OA →|=4,|OB →|=2, ∴DO →=(-2,-1,-4), ∴1A B = (-4,2,-4).13. 在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,求:异面直线BA 1与AC 所成的角. 解析:因为BC AB AC BB BA BA +=+=,11, 所以)()(11+∙+=∙ =BC BB AB BB BC BA AB BA ∙+∙+∙+∙11ABO1A1OD图3-1-35 图3-1-36因为AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC , 所以BB ∙=∙1,0=0, AB BA BC BB ∙=∙,01=-a 2. 所以AC BA ∙1=-a 2.又,,cos 11><=∙BA .2122,cos 21-=⨯->=<a a a AC BA 所以〈AC BA ,1〉=120°. 所以异面直线BA 1与AC 所成的角为60°.图3-1-37。

空间向量的坐标运算精选全文完整版

空间向量的坐标运算精选全文完整版

| AC | | BB1 | cos 900 0 AD1 DB1 AD1 DA AD1 AB AD1 BB1 | AD1 | | DA | cos1350 | AD1 | | AB | cos 900
| AD1 | | BB1 | cos 450 0 又AD1 AC A,
AD1 DB1, AC DB1. DB1 平面ACD1.
xA‘
y B(3,4,0)
与y轴垂直的坐标平面是___x_o__z___ A'(3, 4, 5)
与z 轴垂直的坐标平面是___x_o_y____
(2)点P(2,3,4)在 xoy平面内的射影是_(_2_,3_,_0_)
在 xoz 平面内的射影是_(2_,_0_,4_)_
在 yoz平面内的射影是_(0_,_3_,4_)_
(2)a 6b 8c _(2_,_-3_,_1_)_+_(_12,0,18)+(0,0,-16)
=(14,-3,3)
练习P39 8.判定下列各题中的向量是否平行: (1) (1,2,-2)和(-2,-4,4), (2) (-2,3,5)和(16,-24,40). 解: (1) (-2,-4,4) = -2 (1,2,-2)
数轴:x轴、y轴、z轴,它们都叫做坐标轴.这样
就建立了一个空间直角坐标系O — x y z .
点O叫做原点,向量 i, j, k
z k
都叫做坐标向量.通过每两个
y
i 坐标轴的平面叫做坐标平面。
O
j
x
三、向量的直角坐标系
给定一个空间坐标系和向量
a ,且设 i, j, k为坐标向量,由空z a
间向量基本定理,存在唯一的有
D1 A1
D

空间向量坐标运算

空间向量坐标运算

空间向量坐标运算空间向量是指在空间中有大小和方向的线段。

空间向量的坐标运算包括向量的加法、减法、数乘和内积。

下面将对这些运算进行详细介绍。

一、向量的加法设空间中有两个向量A和B,它们的坐标分别为(Ax, Ay, Az)和(Bx, By, Bz)。

向量的加法即将两个向量的对应分量相加得到一个新的向量C。

它的坐标为(Ax+Bx, Ay+By, Az+Bz)。

例如,设A = (1, 2, 3)和B = (4, 5, 6),则A+B = (1+4, 2+5, 3+6) = (5, 7, 9)。

二、向量的减法向量的减法是指将一个向量减去另一个向量。

设向量A和B的坐标分别为(Ax, Ay, Az)和(Bx, By, Bz),则向量A减去向量B的坐标为(Ax-Bx, Ay-By, Az-Bz)。

例如,设A = (1, 2, 3)和B = (4, 5, 6),则A-B = (1-4, 2-5, 3-6) = (-3, -3, -3)。

三、向量的数乘向量的数乘是指一个向量乘以一个实数。

设向量A的坐标为(Ax, Ay, Az),实数k,则向量A乘以实数k的坐标为(kAx, kAy, kAz)。

例如,设A = (1, 2, 3),k = 2,则kA = (2*1, 2*2, 2*3) = (2, 4,6)。

四、向量的内积向量的内积又称为点乘,它是两个向量之间的一种运算。

设向量A和B的坐标分别为(Ax, Ay, Az)和(Bx, By, Bz),则向量A与向量B的内积为Ax*Bx + Ay*By + Az*Bz。

例如,设A = (1, 2, 3)和B = (4, 5, 6),则A·B = 1*4 + 2*5 +3*6 = 32。

向量的内积有以下几个性质:1. 交换律:A·B = B·A;2. 分配律:(A+B)·C = A·C + B·C;3. 数乘结合律:(kA)·B = k(A·B) = A·(kB)。

空间向量的坐标运算

空间向量的坐标运算
a1b1 a2b2 0.
a= ( a1, a2 ), b= (b1, b2 )

思考:空间向量的直角坐标运算 是否可以视作平面向量坐标运算 的推广?
向量的直角坐标运算.
设 a (a1 , a2 , a3 ), b (b1 , b2 , b3 ) 则
a b (a1 b1, a2 b2 , a3 b3 ) a b (a1 b1, a2 b2 , a3 b3 ) a (a1, a2 , a3 )( R) a b a1b1 a2b2 a3b3 a // b a1 b1, a2 b2 , a3 b3 ( R) a b a1b1 a2b2 a3b3 0.
1、空间向量的坐标运算; 2、利用向量的坐标运算判断空间几何关 系的关键:
首先要选定单位正交基,进而确定各向量 的坐标,再利用向量的坐标运算确定几何关系。
;微信监控 手机监控 https:/// 员工微信管理软件

密,只要你呀敢亮出来,那么你呀将永远遭受无止境の追杀,没有人能够救你呀,所以这上品神剑,你呀只能摆在这逍遥阁,绝对不能曝光,也就是说,这剑你呀只能看,不能用." 【作者题外话】:郑重推荐几个大大の经典之作——艾连の《特种兵痞在校园》习风《阵芒》,大家闹书荒の话,可以 去看看,很不错!俺一直在追! 本书来自 品&书#网 当前 第2陆陆章 没有品节の屠神刀 可惜啊,暴殄天物啊! 白重炙叹了口气,有些无奈,这么好の东西只能看,不能用,の确是件憾事.看书 只是他明白鹿希说の很有道理,于是也不多想,点了点头. 见白重炙点了点头,鹿希才再次说道:"这 把刀,主人称之屠神刀,品阶…未知,能力…未知,虽然他只能增加使用者百分之两百の攻击力.但是主人却说,这把刀绝不寻常,只是他没有时候破解这把刀の秘密.而这把刀外面看不出他是把神器,使用の时候,也没有特殊の异状,外表和普通武器差不多,所以这把刀你呀可以放心使用!接着! " 屠神刀? 品阶未知? 能力未知? 增加百分之两百攻击力?绝不寻常? 白重炙脑海还在琢磨着鹿希の话语,不料鹿希却把这把刀丢了过来,白重炙连忙一把接住,细细观看起来. 其实严格意义这把屠神刀,并不能称作刀.因为这刀是直の,但是又不能称呼为剑,因为它顶端是平の,并且只有一边 有锋刃. 刀长一米五,宽一尺,大约有百多斤斤重,通体黝黑,却有些暗红の神秘花纹.这把刀让白重炙想起前世の传奇里面の战士武器"开天".同样の款式,只是颜色换成了黑色.恩,这刀也可以称呼为巨大铁尺,只不过一边有锋刃而已. 白重炙手握刀柄,感觉着这屠神刀の惊人重量,百多斤の武 器,他还是第一见到.不过白重炙此刻如此强悍の修为,百来斤の东西也是犹如握着一把菜刀一样轻松. 随意挥舞了几下,白重炙非常の满意.其实他老早就想换武器了,青龙匕虽然用の很习惯,但是太短了.并且此刻他修炼成功夜皇七式,他很早就想拥有一把霸气の长刀,而这把屠神刀却是让他 非常满意,爱不释手. "好刀!好刀!"白重炙不断の抚摸着刀身,感觉这刀身带来の寒意,心情大好,这刀虽然看起来满意那把神剑绚丽,神秘,威势.但是白重炙一握住这把刀,就几多の舒适,几多の欢喜,似乎这把刀本来就属于他の一样,似乎这刀已经成为了他身体不可分割の一部分一样. 虽 然不知品阶,不知道能力,但是魂帝那么牛の人都说这刀不寻常,那肯定就不寻常,白重炙决定以后有时候好好摸索一样,说不定这把刀和他の魂戒一样,突然涌现出许多莫名神奇の能力也不一定. "好了!" 鹿希の话语再次将白重炙の思绪拉了回来,鹿希看着白重炙宛如一些孩子得到心爱の玩 具一样,微微笑了起来,继续说道:"以后有の是时候给你呀玩,现在你呀有更重要の事情!" "恩!"白重炙不好意思の笑了笑,点了道:"什么事,您说,鹿老!" "炼化这个戒指,这戒指就是这逍遥阁の中心,这是一枚空间神奇戒指,你呀炼化了它就等于炼化了逍遥阁,以后你呀就可以随时进入 这逍遥阁了!"鹿希一把抓起戒指,而后隔空缓缓将他丢了过来. "空间神器,炼化它就等于炼化逍遥阁?"白重炙有些疑惑の望着手中の戒指,另外一只手却还是抓着屠神刀不放. "其实整个逍遥阁,本来是在这逍遥戒内の,不过主人强行将它移动到了,你呀们炽火位面の空间乱流之中,现在你呀 炼化了这枚逍遥戒,逍遥阁自然再次回到里面,这可不是一样の空间神器,因为一样の空间戒指,可不能装活人!"鹿希郑重の点了点头,开始为白重炙解释器这枚炼化这枚戒指起来. 片刻之后,等白重炙总算弄懂了这枚炼化之后,鹿希才催促起来:"行了,你呀马上炼化吧,落神山天路现在已经 开启了,并且闯关威力也减半了,你呀抓紧时候炼化,其他の问题,以后俺在和你呀细说!" "好!"白重炙知道轻重,不再废话,连忙盘坐起来,把屠神刀放在脚下,开始闭目炼化逍遥戒起来. …… …… 当白重炙开始炼化逍遥戒の时候,落神山却再次震动了一下,而落神上顶部悬空の不咋大的神 阁却微微颤抖了一下,不过很显然,下面の人都没有发现. 而其实炽火大陆看到の不咋大的神阁,其实只是一些幻像而已.真正の不咋大的神阁,其实在炽火大陆の空间乱流之中. 空间乱流内,有这无数の空间裂缝,也有着无数の可以轻易绞杀神级强者の乱流风刃,只是……这些风刃飘到不咋大 的神阁外表の时候,却自动弯了开去,似乎有股无形之力,正自动の将乱流风刃扒开,很是神奇. 只是,当白重炙炼化逍遥戒,不咋大的神阁微微颤抖の那一刻.不远处の乱流中,盘踞の一处黑影,突然亮起了两道刺眼の精光. 居然是一名长着双角の神秘男子,这名男子盘坐在乱流中,四周の乱流 风刃也如同碰不到他一样,主动绕路.长角の男子,双眼成褐色,此刻盯着不咋大的神阁,看了一会,随即又闭上了眼睛,继续盘坐,宛如空间乱流中の一粒沙城,继续沉寂下去. 而同一时候,暗黑森林最深处の一座古堡内,也有人发出了一声微微の惊讶声音. 暗黑森林最深处,有一座,没有人知道 の古堡.古堡很华丽,很漂亮,比逍遥阁要大了几倍,各种装饰却是更加豪华,甚至可以说奢华. 不咋大的神阁微微颤抖の那一刻,古堡の顶层,一名正在穿着火红袍子正在看书の女子,惊讶の轻呼了一声,放下了手中の书,将目光投向了落神山方向,脸上却露出了玩味の笑容. 只是片刻之后,这名 看不出年纪の女子,微微笑了笑,继续拿起了手中の书籍,专心了看了起来,宛如什么也没用察觉,什么也没用发生. 暗黑森林又恢复了往日の平静. …… 白重炙在炼化逍遥戒,鹿希却身形一闪,离开了逍遥阁,居然回到了傀儡通道の最后一关の那个大厅之中. 他回到大厅,双手快速の朝着大厅 の墙壁,不同の方位,开始射出强弱不等の气剑,随着他の气剑射出,大厅突然神奇出现了一块屏幕.而屏幕上方却是不同闪现着不同の人物. 如果白重炙在这里の话,一定会激动の大叫起来.因为屏幕上不是闪现出来の人物,不少他都认识.有风家の,有龙城の,有蛮神府妖神府の,当然还有夜枪 和夜轻语. "呵呵,速度蛮快の嘛,恩!不咋大的寒子要炼化一天,没事索性俺来玩玩,这也是最后一次玩了,要好好玩玩……"鹿希眼中闪现出一次戏谑,继续开始挥动双手,控制着落神山の无数阵法,机关运转起来… 当前 第2陆柒章 诡异の第九关 文章阅读 神城の不咋大的队,是首先进入天 路の,也是速度最快の,由于白重炙の破了落神山の所有关卡,所以落神山の关卡威力全部减半了.请大家检索(品#书……网)看最全!更新最快の所以神城不咋大的队の闯关速度是最快の. 仅仅一天时候,此刻他们已经达到了第八关,这次神城带队是一名身材很是矮不咋大的の帝王境巅峰 强者,名屠黑,是屠神卫世家の旁系子弟. 屠黑双眼透过金袍,冷冷の望着,前方の一群八级魔智血虎,被自己の手下轻易の击退,不禁嘴角微微の笑了起来.虽然不清楚为何落神山突然异变,但是这并妨碍屠黑の心情无比の好了起来.一天时候就达到了傀儡通道第八关,看来这次是运气到了极点. 他此刻已经在幻想着,自己不咋大的队破了落神山の关卡,而后拿了神剑,回到神城,自己被神主赐予神城五卫の风光情景. 越想越兴奋,他再次一挥手,身旁の所有神城使者,全部一窝蜂の朝前面の血虎扑去,想必几多钟之后这关就破了吧. 下一关,第九关他知道是吞石鼠の关卡,傀儡通道虽然 许多关卡の守护智,地形都会随着闯关の人の综合实力,人数等方面,自动转换.但是闯关多次の他,非常清楚,一、五、九这三个最难の关卡,守护智从来没有换过,只是实力不同而已.而第九关是一种很难缠の吞石鼠,而他们是清一色の帝王境强者,所以他们等会面对の则是八品下阶の吞石鼠. 当然第九关,虽然吞石鼠比较多了一点,但是屠黑却并没有放在眼里,因为第九关の地

空间向量坐标运算

空间向量坐标运算

空间向量坐标运算空间向量是指具有大小和方向的直线段,在三维空间中通常用坐标表示。

空间向量的坐标运算包括向量的加法、减法、数量乘法、点乘和叉乘等。

下面将详细介绍这些运算。

1. 向量的加法和减法向量的加法和减法是指将两个向量相加或相减得到一个新的向量,其坐标运算规律如下:- 加法:若向量u的坐标为(u1, u2, u3),向量v的坐标为(v1, v2, v3),则向量u和v的和的坐标为(u1+v1, u2+v2, u3+v3);- 减法:若向量u的坐标为(u1, u2, u3),向量v的坐标为(v1, v2, v3),则向量u和v的差的坐标为(u1-v1, u2-v2, u3-v3)。

2. 向量的数量乘法向量的数量乘法是指将一个向量乘以一个实数得到一个新的向量,其坐标运算规律如下:- 数量乘法:若向量u的坐标为(u1, u2, u3),实数k,则向量u 乘以k的坐标为(k*u1, k*u2, k*u3)。

3. 向量的点乘向量的点乘又称为内积,是指将两个向量进行乘法运算得到一个标量(实数),其计算公式如下:- 点乘:若向量u的坐标为(u1, u2, u3),向量v的坐标为(v1, v2, v3),则向量u和v的点乘的结果为u1*v1 + u2*v2 + u3*v3。

4. 向量的叉乘向量的叉乘又称为外积,是指将两个向量进行乘法运算得到一个新的向量,其计算公式如下:- 叉乘:若向量u的坐标为(u1, u2, u3),向量v的坐标为(v1, v2, v3),则向量u和v的叉乘的坐标为((u2*v3 - u3*v2), (u3*v1 -u1*v3), (u1*v2 - u2*v1))。

通过以上的描述可以看出,向量的加法、减法、数量乘法都是按照对应位置进行运算,只要对应坐标进行相加、相减或乘以相同的实数即可。

点乘和叉乘则需要对应坐标进行特定的运算。

需要注意的是,向量的坐标运算不关心向量的起点和终点,只关心向量的大小和方向。

课件1:3.1.4空间向量的直角坐标运算

课件1:3.1.4空间向量的直角坐标运算

4.几何中的平行和垂直可以利用向量进行判断,利用直 线的方向向量的关系可以证明直线的平行和垂直;距离、 夹角问题可以借助于空间直角坐标系利用数量积解决.
1.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),满足条件(c
-a)·(2b)=-2,则x的值为( )
A.2
B.-2
C.0
D.1
图3-1-33
1.e1,e2,e3共面吗?
【提示】 不共面. 2.试用e1,e2,e3表示A→B1. 【提示】 A→B1=4e1+4e2+4e3. 3.若M为A1B1的中点,能否用e1=4e1+2e2+4e3.
1.建立空间直角坐标系Oxyz,分别沿x轴,y轴,z轴的正 方向引单位向量i,j,k,这三个互相垂直的单位向量构成空间 向量的一个基底{i,j,k},这个基底叫做 单位正交基底 .单位 向量i,j,k都叫做 坐标向量 .
所以 c=(-2,-1,2)或 c=(2,1,-2).
(2)由题意可知,a=(1,1,0),b=(-1,0,2),所以 ka+b=(k -1,k,2),ka-2b=(k+2,k,-4),又(ka+b)⊥(ka-2b),所 以(ka+b)·(ka-2b)=0,所以(k-1,k,2)·(k+2,k,-4)=k2+k -2+k2-8=0,即 2k2+k-10=0,所以 k=2 或 k=-52.
1.一个向量在直角坐标系中的坐标等于表示这个向量的有 向线段的终点坐标减去起点坐标.
2.空间向量进行坐标运算的规律是首先进行数乘运算,再 进行加法或减法运算,最后进行数量积运算,先算括号里,后算 括号外.
已知A,B,C三点的坐标分别为A(3,-2,3),B(2,1,-
1),C(-1,0,3),求点D的坐标(O为坐标原点),使(1)

空间向量的坐标运算

空间向量的坐标运算

9.6 空间向量的坐标运算一、空间直角坐标系:如果空间的一个基底的三个基向量互相垂直,且长都为1,这个基底叫做单位正交基底,常用{},,i j k r r u r表示。

在空间选定一点O 和一个单位正交基底{},,i j k r r u r,以点O 为原点,分别以i r 、j r 、k u r的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫做坐标轴。

这时我们称建立了一个空间直角坐标系-O xyz ,点O 叫做原点,向量i r 、j r 、k u r都叫做坐标向量。

通过每两个坐标轴的平面叫做坐标平面,分别称为xOy 平面,yOz 平面,zOx 平面。

注意:O xyz时,一般使①作空间直角坐标系-?xOy135o(或45o),?yOz90o。

②在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系。

说明右手直角坐标系的特点是:从Ox到Oy是逆时针方向。

③如无特别说明,以后建立的坐标系都是右手直角坐标系。

给定一个空间直角坐标系和向量a r,且设i r 、j r 、k u r为坐标向量,根据空间向量基本定理可知:存在唯一的有序实数组(),,a a a 123,使=++a a i a j a k 123r r r u r有序实数组(),,a a a 123叫做向量a r在空间直角坐标系-O xyz 中的坐标,可简记作()=,,a a a a 123r在空间直角坐标系-O xyz 中,对空间任一点A ,对应一个向量OA uu u r,于是存在唯一的有序实数组x 、y 、z ,使=++OA xi y j zk u u u r r r u r有序实数组(),,x y z 叫做点A 的坐标,记作(),,A x y z ,其中x 叫做点A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标。

二、空间向量的直角坐标运算:Ⅰ.设()=,,a a a a 123r ,()=,,b b b b 123r,则 ①()+=+++,,a b a b a b a b 112233r r; ②()-=---,,a b a b a b a b 112233r r;③()()=?,,a a a a R l l l l l 123r; ④?++a b a b a b a b 112233r r; ⑤^?+=a b a b a b a b 1122330r r;⑥()ì=ïïï??íïïï=ïî//a b a b a b R a b l l l l 112233r r 。

3.1.4空间向量的直角坐标运算

3.1.4空间向量的直角坐标运算

七、 当堂训练( 8 分钟)
15
OA与BO的夹角
5. 已知 a (3, 2,5), b (1, 3,0), c (7, 2,1) ,求 2 | a b c | (4) cos a, b (1) a b c (2)(a b) c (3)
三、学习目标:(10s)
1. 掌握向量的坐标表示、坐标运算。 2.掌握平行向量、垂直向量坐标之间的关系。 3.掌握两个向量夹角与向量长度的坐标计算 公式。 4.体会类比思想在空间向量公式推导当中的 应用。
四、自学指导:(7分钟)
认真阅读课本P89-P91,并注意以下问题:
1.空间向量的直角坐标运算:建立空间直角坐标系 的方法以及如何用坐标表示向量的加减、数乘、 数量积? 2.空间向量平行和垂直的条件是什么? 3.怎样表达两个向量的夹角? 4.向量长度的坐标计算公式是什么? (限时7分钟,7分钟后进行检测,看谁能利用本节 知识做对检测题)
3.空间向量平行和垂直的条件
若 a (a1 , a2 , a3 ) b (b1 , b2 , b3 )
a // b (b 0)
当b 与三个坐标平面都不平 行时
a1 a 2 a3 b1 b2 b3
b1 a ___ 1 a b ( R) b2 a2 ___ a ___ 3 b
则 a
a a a
2 1 2 2
————————
Cos a, b
AB
2 2 2 a12 a 2 a3 b12 b2 b32 若 A( x1 , y1 , z1 ) B( x2 , y2 , z2 ) 则
a b ———————— = ab

空间向量运算的坐标表示

空间向量运算的坐标表示

空间向量运算的坐标表示1.理解空间向量坐标的概念,会确定一些简单几何体的顶点坐标.2.掌握空间向量的坐标运算规律,会判断两个向量的共线或垂直.3.掌握空间向量的模、夹角公式和两点间距离公式,并能运用这些知识解决一些相关问题.1.空间向量的坐标运算设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3),a -b =(a 1-b 1,a 2-b 2,a 3-b 3),λa =(λa 1,λa 2,λa 3),a ·b =a 1b 1+a 2b 2+a 3b 3.2.空间向量的平行、垂直及模、夹角设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R );a ⊥b ⇔a ·b|a |=a ·a cos 〈a ,b 〉=a ·b |a ||b |=1122a 3b 3a 21+a 22+a 23b 21+b 22+b 23. 3.空间中两点间的距离公式在空间直角坐标系中,设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则A ,B 两点间的距离d =|AB →|1.判断(正确的打“√”,错误的打“×”)(1)空间向量a =(1,1,1)的长度为1.( )(2)若向量a·b =0,则向量a 与向量b 垂直.( )(3)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a 1b 1=a 2b 2=a 3b 3.( ) (4)任给向量a ,b ,都有a·b ≤|a ||b |.( )答案:(1)× (2)× (3)× (4)√2.已知向量a =(4,-2,-4),b =(6,-3,2),则下列结论正确的是( )A .a +b =(10,-5,-6)B .a -b =(2,-1,-6)C .a ·b =10D .|a |=6答案:D3.已知A (3,3,3),B (6,6,6),O 为原点,则OA→与BO →的夹角是( )A .0B .πC.3π2 D .2π答案:B4.已知a =(2,1,3),b =(-4,5,x ),若a ⊥b ,则x =________. 答案:1探究点一 空间向量的坐标运算已知O 为原点,A ,B ,C ,D 四点的坐标分别为A (2,-4,1),B (3,2,0),C (-2,1,4),D (6,3,2).求满足下列条件的点P 的坐标.(1)OP→=2(AB →-AC →);(2)AP →=AB →-DC →. [解] (1)AB→-AC →=CB → =(3,2,0)-(-2,1,4)=(5,1,-4),所以OP→=2(5,1,-4)=(10,2,-8), 所以点P 的坐标为(10,2,-8).(2)设P (x ,y ,z ),则AP→=(x -2,y +4,z -1). 又AB→=(1,6,-1),DC →=(-8,-2,2), 所以AB→-DC →=(9,8,-3), 所以(x -2,y +4,z -1)=(9,8,-3),所以⎩⎪⎨⎪⎧x -2=9,y +4=8,z -1=-3,解得⎩⎪⎨⎪⎧x =11,y =4,z =-2,所以点P 的坐标为(11,4,-2).向量的坐标即终点坐标减去起点坐标所得的坐标.求点的坐标时,一定要注意向量的起点是否在原点,在原点时,向量的坐标与终点坐标相同;不在原点时,向量的坐标加上起点坐标才是终点坐标.1.(1)设向量a =(2,1,6),b =(-8,-3,2),则①3a -4b =________;②12a ·b =________.(2)已知△ABC 中,A (2,-5,3),AB→=(4,1,2),BC →=(3,-2,5),求顶点B 、C 的坐标及CA →.解:(1)①3a -4b =3(2,1,6)-4(-8,-3,2)=(6,3,18)-(-32,-12,8)=(38,15,10).故填(38,15,10).②12a ·b =12[2×(-8)+1×(-3)+6×2]=12×(-7)=-72.故填-72.(2)设B (x ,y ,z ),C (x 1,y 1,z 1),所以AB →=(x -2,y +5,z -3),BC →=(x 1-x ,y 1-y ,z 1-z ).因为AB →=(4,1,2),所以⎩⎪⎨⎪⎧x -2=4,y +5=1,z -3=2解得⎩⎪⎨⎪⎧x =6,y =-4,z =5.所以B 的坐标为(6,-4,5).因为BC →=(3,-2,5),所以⎩⎪⎨⎪⎧x1-6=3,y 1+4=-2,z 1-5=5解得⎩⎪⎨⎪⎧x 1=9,y 1=-6,z 1=10.所以C 的坐标为(9,-6,10),CA →=(-7,1,-7).探究点二 坐标形式下的平行与垂直已知空间三点A (-2,0,2)、B (-1,1,2)、C (-3,0,4).设a =AB →,b =AC →.(1)设|c |=3,c ∥BC →,求c ;(2)若k a +b 与k a -2b 互相垂直,求k .[解] (1)因为BC →=(-2,-1,2)且c ∥BC →,所以设c =λBC →=(-2λ,-λ,2λ)(λ∈R ),所以|c |= (-2λ)2+(-λ)2+(2λ)2=3|λ|=3. 解得λ=±1.所以c =(-2,-1,2)或c =(2,1,-2).(2)因为a =AB→=(1,1,0),b =AC →=(-1,0,2), 所以k a +b =(k -1,k ,2),k a -2b =(k +2,k ,-4).因为(k a +b )⊥(k a -2b ),所以(k a +b )·(k a -2b )=0,即(k -1,k ,2)·(k +2,k ,-4)=2k 2+k -10=0.解得k =2或k =-52.将本例(2)中“若k a +b 与k a -2b 互相垂直”改为“若k a +b 与a +k b 互相平行”,其他条件不变,求k 的值.解:a =(-1+2,1-0,2-2)=(1,1,0),b =(-3+2,0-0,4-2)=(-1,0,2),所以k a +b =(k ,k ,0)+(-1,0,2)=(k -1,k ,2). a +k b =(1,1,0)+(-k ,0,2k )=(1-k ,1,2k ),因为k a +b 与a +k b 平行,所以k a +b =λ(a +k b ),即(k -1,k ,2)=λ(1-k ,1,2k ),所以⎩⎪⎨⎪⎧k -1=λ(1-k ),k =λ·1,2=λ·2k ,则⎩⎪⎨⎪⎧k =-1,λ=-1或⎩⎪⎨⎪⎧k =1,λ=1.(1)平行与垂直的判断①应用向量的方法判定两直线平行,只需判断两直线的方向向量是否共线;②判断两直线是否垂直,关键是判断两直线的方向向量是否垂直,即判断两向量的数量积是否为0.(2)平行与垂直的应用①适当引入参数(比如向量a ,b 平行,可设a =λb ),建立关于参数的方程;②选择坐标形式,以达到简化运算的目的.2.设a =(1,5,-1),b =(-2,3,5).(1)若(k a +b )∥(a -3b ),求k ;(2)若(k a +b )⊥(a -3b ),求k .解:k a +b =(k -2,5k +3,-k +5).a -3b =(1+3×2,5-3×3,-1-3×5)=(7,-4,-16).(1)因为(k a +b )∥(a -3b ),所以k -27=5k +3-4=-k +5-16,解得k =-13. (2)因为(k a +b )⊥(a -3b ),所以(k -2)×7+(5k +3)×(-4)+(-k +5)×(-16)=0,解得k =1063.探究点三 向量夹角与长度的计算如图所示,正四棱锥S -ABCD 的侧棱长为2,底面边长为3,E 是SA 的中点,O 为底面ABCD 的中心.(1)求CE 的长;(2)求异面直线BE 与SC 所成角的余弦值.[解] 如图,以O 为原点,以OA→,OB →,OS →所在的直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系.因为侧棱长为2,底面边长为3,E 为SA 的中点,所以A ⎝ ⎛⎭⎪⎫62,0,0,S ⎝⎛⎭⎪⎫0,0,22, C ⎝ ⎛⎭⎪⎫-62,0,0,B ⎝ ⎛⎭⎪⎫0,62,0,E ⎝ ⎛⎭⎪⎫64,0,24. (1)CE →=⎝ ⎛⎭⎪⎫364,0,24, 所以|CE →|=⎝ ⎛⎭⎪⎫3642+02+⎝ ⎛⎭⎪⎫242 =142,即CE =142.⎝⎭SC →=⎝⎛⎭⎪⎫-62,0,-22, 所以cos 〈BE →,SC →〉=BE →·SC →|BE →|·|SC →|=-12×2=-12, 故异面直线BE 与SC 所成角的余弦值为12.运用空间向量的坐标运算解决立体几何问题的一般步骤(1)建系:根据题目中的几何图形建立恰当的空间直角坐标系; (2)求坐标:①求出相关点的坐标;②写出向量的坐标;(3)论证、计算:结合公式进行论证、计算;(4)转化:转化为几何结论.3.(1)已知a +b =(2,2,23),a -b =(0,2,0),则cos 〈a ,b 〉=( )A.13B.16C.63D.66(2)已知△ABC 的顶点分别为A (1,-1,2),B (5,-6,2),C (1,3,-1),则边AC 上的高BD =( )A .5 B.41C .4D .2 5解析:(1)选C.由已知得a =(1,2,3),b =(1,0,3),所以cos 〈a ,b 〉=a ·b |a ||b |=1+0+36×4=63. (2)选A.设AD→=λAC →(λ∈R ),因为AC →=(0,4,-3),所以AD →=(0,4λ,-3λ).又AB→=(4,-5,0), 所以BD→=AD →-AB →=(-4,4λ+5,-3λ). 由AC →·BD →=0,得λ=-45,所以BD →=⎝⎛⎭⎪⎫-4,95,125,所以|BD→|=5,即BD =5.1.判断空间两向量(直线)平行与垂直的思路(1)空间两个向量平行、垂直与平面两个向量平行、垂直的表达式不一样,但实质是一致的.(2)判定空间两直线平行或垂直只需判断两直线对应的方向向量是否平行或垂直.2.特殊向量的坐标表示(1)当向量a 平行于x 轴时,纵坐标、竖坐标都为0,即a =(x ,0,0)(x ∈R );(2)当向量a 平行于y 轴时,横坐标、竖坐标都为0,即a =(0,y ,0)(y ∈R );(3)当向量a 平行于z 轴时,横坐标、纵坐标都为0,即a =(0,0,z )(z ∈R );(4)当向量a 平行于xOy 平面时,竖坐标为0,即a =(x ,y ,0)(x ,y ∈R );(5)当向量a 平行于yOz 平面时,横坐标为0,即a =(0,y ,z )(y ,z ∈R );(6)当向量a 平行于xOz 平面时,纵坐标为0,即a =(x ,0,z )(x ,z ∈R ).1.已知a =(1,1,0),b =(0,1,1),c =(1,0,1),p =a -b ,q =a +2b -c ,则p ·q =( )A .-1B .1C .0D .-2解析:选A.因为p =a -b =(1,0,-1),q =a +2b -c =(0,3,1),所以p ·q =1×0+0×3+(-1)×1=-1,故选A.2.已知a =(1,0,1),b =(x ,1,2),且a ·b =3,则向量a 与b 的夹角为( )A.5π6B.2π3C.π3D.π6解析:选D.因为a ·b =x +2=3,所以x =1.所以b =(1,1,2).所以cos 〈a ,b 〉=a ·b |a |·|b |所以a 与b 的夹角为π6.3.已知点A (-1,3,1),B (-1,3,4),若AP→=2PB →,则点P 的坐标是________.解析:设点P (x ,y ,z ),则由AP→=2PB →,得(x +1,y -3,z -1)=2(-1-x ,3-y ,4-z ),则⎩⎪⎨⎪⎧x +1=-2-2x ,y -3=6-2y ,z -1=8-2z ,解得⎩⎪⎨⎪⎧x =-1,y =3,z =3,即P (-1,3,3). 答案:(-1,3,3)4.已知向量a =(x ,4,1),b =(-2,y ,-1),c =(3,-2,z ),且a ∥b ,b ⊥c .(1)求向量a ,b ,c ;(2)求向量a +c 与向量b +c 所成角的余弦值.解:(1)因为a ∥b ,所以x -2=4y =1-1, 解得x =2,y =-4,此时a =(2,4,1),b =(-2,-4,-1).又由b ⊥c 得b·c =0,故(-2,-4,-1)·(3,-2,z )=-6+8-z =0,得z =2,此时c =(3,-2,2).(2)由(1)得,a +c =(5,2,3),b +c =(1,-6,1),因此向量a +c 与向量b +c 所成角θ的余弦值为cos θ=5-12+338×38=-219.[A 基础达标]1.已知向量a =(1,1,0),b =(-1,0,2),则|3a +b |为( ) A.15 B .4C .5 D.17解析:选D.3a +b =3(1,1,0)+(-1,0,2)=(3,3,0)+(-1,0,2)=(2,3,2),故|3a +b |=4+9+4=17.2.若向量a =(1,1,x ),b =(1,2,1),c =(1,1,1),满足条件(c -a )·(2b )=-2,则x 的值为( )A .2B .-2C .0D .1解析:选A.因为c -a =(0,0,1-x ),2b =(2,4,2), 所以(c -a )·(2b )=2(1-x )=2-2x =-2.所以x =2.3.若△ABC 中,∠C =90°,A (1,2,-3k ),B (-2,1,0),C (4,0,-2k ),则k 的值为( ) A.10 B .-10C .2 5D .±10解析:选D.CB→=(-6,1,2k ), CA→=(-3,2,-k ), 则CB→·CA →=(-6)×(-3)+2+2k ×(-k ) =-2k 2+20=0,所以k =±10.4.已知a =(x ,1,2),b =(1,2,-y ),且(2a +b )∥(-a +2b ),则( )A .x =13,y =1B .x =12,y =-4C .x =2,y =-14D .x =1,y =-1解析:选B.2a +b =(2x +1,4,4-y ),-a +2b =(2-x ,3,-2y -2),因为(2a +b )∥(-a +2b ),则存在非零实数λ,使得2a +b =λ(-a +2b ),所以⎩⎪⎨⎪⎧2x +1=(2-x )λ,4=3λ,4-y =(-2y -2)λ,所以⎩⎨⎧x =12,y =-4. 5.若A (x ,5-x ,2x -1),B (1,x +2,2-x ),则当|AB→|取最小值时,x 的值等于( )A .19B .-87C.87D.1914解析:选C.因为AB→=(1-x ,2x -3,3-3x ), 所以|AB→|= (1-x )2+(2x -3)2+(3-3x )2 = 14⎝ ⎛⎭⎪⎫x -872+57. 故当x =87时,|AB→|有最小值. 6.已知a =(1,m ,3),b =(-2,4,n ),若a ∥b ,则m -n =________. 解析:因为a ∥b ,所以b =λa .所以⎩⎪⎨⎪⎧λ=-2,m λ=4,3λ=n .所以⎩⎪⎨⎪⎧λ=-2,m =-2,n =-6.所以m -n =4.答案:47.已知2a +b =(0,-5,10),c =(1,-2,-2),a ·c =4,|b |=12,则〈b ,c 〉=________.解析:由题意,得|c |=3,(2a +b )·c =0×1+(-5)×(-2)+10×(-2)=-10,所以2a ·c +b ·c =-10.又a ·c =4,所以b ·c =-18,所以cos〈b ,c 〉=b ·c |b |·|c |=-12,所以〈b ,c 〉=120°. 答案:120°8.若a =(x ,2,2),b =(2,-3,5)的夹角为钝角,则实数x 的取值范围是________.解析:a·b =2x -2×3+2×5=2x +4,设a ,b 的夹角为θ,因为θ为钝角,所以cos θ=a·b |a ||b |<0,又|a |>0,|b |>0,所以a·b <0,即2x +4<0,所以x <-2.又a ,b 不会反向,所以实数x 的取值范围是(-∞,-2). 答案:(-∞,-2)9.已知向量a =(6,-3,2),b =(4,-2,-4).求:(1)|a |;(2)(3a +2b )·(-2a +b ).解:(1)|a |=a 2=62+(-3)2+22=7.(2)因为|b |=b 2=42+(-2)2+(-4)2=6,a ·b =6×4+(-3)×(-2)+2×(-4)=22,所以(3a +2b )·(-2a +b )=-6a 2+3a ·b -4a ·b +2b 2=-244.10.已知四边形ABCD 的顶点坐标分别是A (3,-1,2),B (1,2,-1),C (-1,1,-3),D (3,-5,3),求证:四边形ABCD 是一个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1、在正方体
ABCD—A1B1 C1D1 中 E、F 分别是 BB1 、 CD 的中点 , 求证: D1F 平面ADE
Z
D1
A1
D A
X
C1 B1
E
F
C Y
B
练习一:
1.求下列两个向量的夹角的余弦:
(1) a (2 , 3 , 3) , b (1 , 0 , 0) ;
(2) a (1 , 1 , 1) , b (1 , 0 , 1) ;
单位正交基底:如果空间的一个基底的三个基向量互相
垂直,且长都为1,则这个基底叫做单位正交基底,常用 i , j ,
k 来表示.
空间直角坐标系:在空间选定一点
z
O和一个单位正交基底 i、j、k 。以点O为
原点,分别以i、j、k的正方向建立三条数
k
轴:x轴、y轴、z轴,它们都叫做坐标轴.这
i Oj
y
样就建立了一个空间直角坐标系O--xyz
空间向量坐标运算法则,关键是注意空间几何关系与 向量坐标关系的转化,为此在利用向量的坐标运算判断空 间几何关系时,首先要选定单位正交基底,进而确定各向 量的坐标。
练习2 如图在边长为2的正方体ABCD-A1B1C1D1中,取D点 为原点建立空间直角坐标系,O、M、P、Q分别是 AC、DD1、CC1、A1B1的中点,写出下列向量的坐标.
1.距离公式 (1)向量的长度(模)公式
| a |2 a a a12 a22 a32
| b |2 b b b12 b22 b32
注意:此公式的几何意义是表示长方体的对角线的 长度。
(2)空间两点间的距离公式
在空间直角坐标系中,已知 A( x1 , y1 , z1)、 B( x2 , y2 , z2 ),则
高中选修2-1
空间向量的正交分解及其坐标表示 空间向量运算的坐标表示
复习引入:
共面向量基本定理:如果两个向量 a,不b共线,则向量
与向量 p共面的充要条件是存在唯一的有序实数对 (使x, y)
a, b
p xa yb
因此,平面内的任意一个向量 p,我们都可以用与该平面平
行的两个不共线的向量 a, b的线性组合来表示( 称a,为b该平
AB ( x2 x1 , y2 y1 , z2 z1)
| AB | AB AB ( x2 x1)2 ( y2 y1)2 (z2 z1)2
d A,B ( x2 x1)2 ( y2 y1)2 (z2 z1)2
(2)、两个向量夹角公式
cos a, b a b | a || b |
a b (a 1b1, a2 b2 , a3 b3 );
a (a1,a2 ,a3 ),( R) ;
a b a1b1 a2b2 a3b3
;
a / /b a1 b1, a2 b2 , a3 b3 ( ;R)
a b a1b1 a2b2 a3b3 0 ;
四、距离与夹角
2.求下列两点间的距离:
(1) A(1,1, 0) , B(1,1,1) ;
(2) C(3 , 1, 5) , D(0 , 2 , 3) .
五、应用举例
例1 已知A(3 , 3 , 1)、B(1, 0 , 5) ,求: A (1)线段 AB 的中点坐标和长度;
解:设 M(x , y , z)是 AB 的中点,则
x
点O叫做原点,向量i、j、k都叫做坐标向量.通过每两个坐标轴的 平面叫做坐标平面。分别称为xOy平面,yOz平面,xOz平面.
二、向量的直角坐标
给定一个空间直角坐标系和向
量 a,且设i、j、k为坐标向量,
由空间向量基本定理,存在唯一的
有序实数组( a1, 2a, 3)a使 = a1i+a2j+ a3k a
D1 z
A1
C1 B1
D
xA
y
C
B
思考:设A(x1,y1,z1), B(x2,y2,z2), 则AB的坐标表示是什么?
AB=OB-OA=(x2,,y2,z2)-(x1,y1,z1)
=(x2-x1,y2-y1,z2-z1). 一个向量在直角坐标系中的坐标等于表示这个向量 的有向线段的终点的坐标减去起点的坐标.
注意:
a1b1 a2b2 a3b3
;
a12 a22 a32 b12 b22 b32
(1)当cos a , b 1时,a 与 b同向; (2)当cos a , b 1时,a 与 b反向; (3)当cos a , b 0时,a b 。
思考:当 0 cos a , b 1及 1 cos a , b 时 0,夹 角在什么范围内?
a
即 向量如果起点平移到原点, 那么它的坐标表示就是其终点 的坐标
k i Oj
x
A(x,y,z) y
在单位正交基底i, j, k中与向量OA对应的有序实 数组(x,y,z),其中x叫做点A的横坐标,y叫做点A的纵 坐标,z叫做点A的竖坐标.
练习1 如图建立直角坐标系,已知正方体ABCD-A1B1C1D1的棱 长为2,求正方体各顶点的坐标.
M
B
OM
1 (OA OB) 2
1 2
(3
,
3
,
1)
1
,
0,
5
2
,
3 2
,
3
,
O
∴点 M的坐标是
2
,
有序数组( a1, 2a, 3)叫a 做 在 a
空间直角坐标系O--xyz中的坐标,
记作.
a=( a1 , a 2, a3)
za
k i Oj
A(a1,a2, a3)y
x
在空间直角坐标系O--xyபைடு நூலகம்中,对空间任一点A,
对应一个向量OA,于是存在唯一的有序实数组 z
x,y,z,使 OA=x i+y j+ z k
面的一组基底)
空间向量的基本定理:
存在如一p果 个三唯个一向的量有序a实,数b 不组共, cx面、,y、那z么,使对得空:间任一向量 ,
p xa yb zc
a, b, c 叫做空间的一个_基__底___
空间任意三个不共面向量都可以构成空间的一个基底 思考:基底能不能含有零向量?
一、空间直角坐标系
AM ______________
OB1 ______________
PQ ________________
D1 z
C1
A1
Q
M
B1
P
y
D
C
xA
O B
三、向量的直角坐标运算
设a (a1, a2 , a3 ), b (b1, b2 , b3 )则
a b (a 1b1, a2 b2 , a3 b3 ) ;
相关文档
最新文档