北京四中中考数学全真模拟试题(4)浙教版

合集下载

2024-2025学年浙教版中考数学模拟试卷及答案

2024-2025学年浙教版中考数学模拟试卷及答案

2024-2025学年浙教版中考数学模拟试卷班级:____________________ 学号:____________________ 姓名:____________________一、单选题(每题3分)1.若函数y=2x+1与直线y=−x+5相交,则交点的坐标是:A.(2,5)B.(1,3)C.(3,7)D.(−1,−1)答案:BBC,连接AE并延长至F,使2.已知正方形ABCD的边长为a,点E在BC上,且BE=13EF=AE。

则△AEF的面积与正方形ABCD面积之比为:A.1:2B.1:3C.1:4D.1:6答案:D3.下列哪个数是方程x2−9x+20=0的一个根?A. 4B. 5C. 6D. 7答案:B4.若tanθ=3,则sin2θ的值为:4A.2425B.1225C.1625D.725答案:A5.在半径为r的圆中,弦AB的长度为r,则∠AOB(O为圆心)的度数为:A. 30°B. 45°C. 60°D. 90°答案:C二、多选题(每题4分)1.【函数】问题描述:这里是关于函数的一个问题…•选项A: 描述A•选项B: 描述B•选项D: 描述D•选项E: 描述E答案:选项A: 描述A, 选项B: 描述B2.【几何】问题描述:这里是关于几何的一个问题…•选项E: 描述E•选项D: 描述D•选项A: 描述A•选项C: 描述C•选项B: 描述B答案:选项C: 描述C, 选项B: 描述B3.【几何】问题描述:这里是关于几何的一个问题…•选项E: 描述E•选项C: 描述C•选项A: 描述A•选项D: 描述D答案:选项B: 描述B, 选项A: 描述A, 选项C: 描述C4.【函数】问题描述:这里是关于函数的一个问题…•选项C: 描述C•选项E: 描述E•选项D: 描述D•选项A: 描述A•选项B: 描述B答案:选项A: 描述A, 选项C: 描述C5.【概率统计】问题描述:这里是关于概率统计的一个问题…•选项B: 描述B•选项D: 描述D•选项A: 描述A•选项C: 描述C•选项E: 描述E答案:选项A: 描述A, 选项B: 描述B, 选项C: 描述C三、填空题(每题3分)1.若一个正方形的对角线长为(8√2)厘米,则该正方形的面积为________平方厘米。

北京四中重点中学2024届中考数学全真模拟试题含解析

北京四中重点中学2024届中考数学全真模拟试题含解析

北京四中重点中学2024年中考数学全真模拟试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下面的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.下列图形中,不是中心对称图形的是( )A .平行四边形B .圆C .等边三角形D .正六边形3.3-的倒数是( )A .13-B .3C .13D .13± 4.已知A(x 1,y 1),B(x 2,y 2)是反比例函数y =(k≠0)图象上的两个点,当x 1<x 2<0时,y 1>y 2,那么一次函数y =kx -k 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限5.如图,已知BD 是ABC △的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .336.如图所示的几何体,它的左视图是( )A .B .C .D .7.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是( )A .12B .13C .14D .348.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )A .310B .15C .12D .7109.若点A (2,1y ),B (-3,2y ),C (-1,3y )三点在抛物线24y x x m =--的图象上,则1y 、2y 、3y 的大小关系是( )A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >>10.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>;230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④二、填空题(共7小题,每小题3分,满分21分)11.八位女生的体重(单位:kg )分别为36、42、38、40、42、35、45、38,则这八位女生的体重的中位数为_____kg .12.因式分解:3a 2-6a+3=________.13.如图,在一次数学活动课上,小明用18个棱长为1的正方体积木搭成一个几何体,然后他请小亮用其他棱长为1小明所搭几何体的形状).请从下面的A 、B 两题中任选一题作答,我选择__________.A 、按照小明的要求搭几何体,小亮至少需要__________个正方体积木.B 、按照小明的要求,小亮所搭几何体的表面积最小为__________.14.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,则商品的定价是______元.15.如图,在平面直角坐标系中,抛物线212y x =可通过平移变换向__________得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分(如图所示)的面积是__________.16.小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计).一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s (单位:米)与他所用的时间t (单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟.下列说法:①公交车的速度为400米/分钟;②小刚从家出发5分钟时乘上公交车;③小刚下公交车后跑向学校的速度是100米/分钟;④小刚上课迟到了1分钟.其中正确的序号是_____.17.如图,点A 的坐标为(3,7),点B 的坐标为(6,0),将△AOB 绕点B 按顺时针方向旋转一定的角度后得到△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为_____.三、解答题(共7小题,满分69分)18.(10分)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN 的长),直线MN 垂直于地面,垂足为点P .在地面A 处测得点M 的仰角为58°、点N 的仰角为45°,在B 处测得点M 的仰角为31°,AB =5米,且A 、B 、P 三点在一直线上.请根据以上数据求广告牌的宽MN 的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.1,sin31°=0.52,cos31°=0.86,tan31°=0.1.)19.(5分)计算:(-13)-2 – 234)+ 112 20.(8分)如图,抛物线21y x bx 2c =-++与x 轴交于A ,B ,与y 轴交于点C (0,2),直线1x 22y =-+经过点A ,C .(1)求抛物线的解析式;(2)点P 为直线AC 上方抛物线上一动点;①连接PO ,交AC 于点E ,求PE EO的最大值; ②过点P 作PF ⊥AC ,垂足为点F ,连接PC ,是否存在点P ,使△PFC 中的一个角等于∠CAB 的2倍?若存在,请直接写出点P 的坐标;若不存在,请说明理由.21.(10分) (1)解方程组31021x y x y +=⎧⎨-=⎩(2)若点A 是平面直角坐标系中坐标轴上的点,( 1 )中的解 , x y 分别为点B 的横、纵坐标,求AB 的最小值及AB 取得最小值时点A 的坐标.22.(10分)如图,菱形ABCD 中,,E F 分别是,BC CD 边的中点.求证:AE AF =.23.(12分)先化简再求值:2()(2)x y y y x -++,其中2x =3y =24.(14分)学了统计知识后,小红就本班同学上学“喜欢的出行方式”进行了一次调查,图(1)和图(2)是她根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数.(2)若由3名“喜欢乘车”的学生,1名“喜欢骑车”的学生组队参加一项活动,现欲从中选出2人担任组长(不分正副),求出2人都是“喜欢乘车”的学生的概率,(要求列表或画树状图)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解题分析】试题解析:A. 是轴对称图形但不是中心对称图形B.既是轴对称图形又是中心对称图形;C.是中心对称图形,但不是轴对称图形;D.是轴对称图形不是中心对称图形;故选B.2、C【解题分析】根据中心对称图形的定义依次判断各项即可解答.【题目详解】选项A、平行四边形是中心对称图形;选项B、圆是中心对称图形;选项C、等边三角形不是中心对称图形;选项D、正六边形是中心对称图形;故选C.【题目点拨】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.3、A解:3-的倒数是13-. 故选A .【题目点拨】本题考查倒数,掌握概念正确计算是解题关键.4、B【解题分析】试题分析:当x 1<x 2<0时,y 1>y 2,可判定k >0,所以﹣k <0,即可判定一次函数y=kx ﹣k 的图象经过第一、三、四象限,所以不经过第二象限,故答案选B .考点:反比例函数图象上点的坐标特征;一次函数图象与系数的关系.5、D【解题分析】根据ED 是BC 的垂直平分线、BD 是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【题目详解】∵ED 是BC 的垂直平分线,∴DB=DC ,∴∠C=∠DBC ,∵BD 是△ABC 的角平分线,∴∠ABD=∠DBC ,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴故选D .【题目点拨】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.6、D分析:根据从左边看得到的图形是左视图,可得答案.详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D .点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.7、C【解题分析】列举出所有情况,看每个路口都是绿灯的情况数占总情况数的多少即可得.【题目详解】画树状图如下,共4种情况,有1种情况每个路口都是绿灯,所以概率为14. 故选C .8、A【解题分析】让黄球的个数除以球的总个数即为所求的概率. 【题目详解】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是310. 故选:A .【题目点拨】本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.9、C【解题分析】首先求出二次函数24y x x m =--的图象的对称轴x=2b a-=2,且由a=1>0,可知其开口向上,然后由A (2,1y )中x=2,知1y 最小,再由B (-3,2y ),C (-1,3y )都在对称轴的左侧,而在对称轴的左侧,y 随x 得增大而减小,所以23y y >.总结可得231y y y >>.故选C .20y ax bx c a =++≠()的图象性质. 10、D【解题分析】根据抛物线开口方向得到a 0>,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a b c ++>,将23a b =-代入可得40c b ->.【题目详解】①根据抛物线开口方向得到0a >,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确.②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确. ③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a bc ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确.故答案选D.【题目点拨】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。

北京四中中考数学全真试卷5套

北京四中中考数学全真试卷5套

中考数学全真模拟试题(1)一、 填空题(每空2分,共40分) 1、21-的相反数是 ;-2的倒数是 ; 16的算术平方根是 ;-8的立方根是 。

2、不等式组⎩⎨⎧-+2804<>x x 的解集是 。

3、函数y=11-x 自变量x 的取值范围是 。

4、直线y=3x-2一定过(0,-2)和( ,0)两点。

5、样本5,4,3,2,1的方差是 ;标准差是 ;中位数是 。

6、等腰三角形的一个角为︒30,则底角为 。

7、梯形的高为4厘米,中位线长为5厘米,则梯形的面积为 平方厘米。

8、如图PA 切⊙O 于点A ,∠PAB=︒30,∠AOB= ,∠ACB= 。

9、 如图PA 切⊙O 于A 割线PBC 过圆心,交⊙O 于B 、C ,若PA=6;PB=3,则PC= ;⊙O 的半径为 。

10题图9题图ACDB8题图A11题图B10、如图∆ABC 中,∠C=︒90,点D 在BC 上,BD=6,AD=BC ,cos ∠ADC=53,则DC 的长为 。

11、如图同心圆,大⊙O 的弦AB 切小⊙O 于P ,且AB=6,则阴影部分既圆环的面积为 。

12、已知Rt ∆ABC 的两直角边AC 、BC 分别是一元二次方程06x 5-x 2=+的两根,则此Rt ∆的外接圆的面积为 。

二、 选择题(每题4分,共20分)13、如果方程0m x 2x 2=++有两个同号的实数根,m 的取值范围是 ( )A 、m <1B 、0<m ≤1C 、0≤m <1D 、m >014、徐工集团某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两次降低成本,两次降低后的成本是81元。

则平均每次降低成本的百分率是 ( )A .8.5% B. 9% C. 9.5% D. 10%15、二次函数c bx ax y 2++=的图像如图所示,则关于此二次函数的下列四个结论①a<0 ②a>0③ac 4-b 2>0 ④ab<0中,正确的结论有 ( ) A.1个 B.2个 C.3个 D.4个16题图16、如图:点P 是弦AB 上一点,连OP ,过点P 作PC ⊥OP ,PC 交⊙O ,若AP =4,PB =2,则PC 的长是 ( ) A.2 B. 2 C. 22 D. 317、为了美化城市,建设中的某休闲中心准备用边长相等的正方形和正八边形两种地砖镶嵌地面,在每一个顶点周围,正方形、正八边形地砖的块数分别是( ) A. 1、2 B. 2、1 C. 2、3 D. 3、2 三、 (本题每题5分,共20分)18、计算1303)2(2514-÷-+⎪⎭⎫⎝⎛+- 19、计算22)145(sin 230tan 3121-︒+︒--20、计算)+()-(+-abb a ]a b a b b a a [2÷ 21、解方程11-x 1-1-x 22=四、解答题(每题7分,共28分)22、已知关于x 的一元二次方程0)32(22=+-+m x m x 的两个不相等的实数根α、β满足111=+βα,求m 的值。

2024-2025学年北京四中初三上学期期中数学试题及答案

2024-2025学年北京四中初三上学期期中数学试题及答案

数学试卷班级__________ 姓名__________学号__________ 成绩__________一、选择题 (共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.下面四个标志中是中心对称图形的是( ).A .B .C .D .2.方程220x x -=的根是( ). A .0x =B .2x =C .0x =或2x =D .0x =或2x =-3.若1(3,)A y -,2(2,)B y -,3(3,)C y 为二次函数21y x =+()图象上的三点,则1y ,2y ,3y 的大小关系是( ). A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<4.二次函数(5)(7)y x x =-+的图象的对称轴是(). A .直线1x =- B .直线1x =C .直线2x =D .直线6x =5.如图,AB 为O 直径,点C 、D 在O 上,如果70ABC ∠=︒,那么D ∠的度数为( ).A .20︒B .30︒C .35︒D .70︒6.2024年北京第一季度GDP 约为1.058万亿元,第三季度GDP 约为1.167万亿元,设2024年北京平均每季度GDP 增长率为x ,则可列关于x 的方程为( ). A .21.058(1) 1.167x -= B .1.058(12) 1.167x +=C .21.058(1) 1.167x +=D .21.167(1)1.058x -=7.如图是一个钟表表盘,连接整点2时与整点10时 的B 、D 两点并延长,交过整点8时的切线于点P ,若切线长2PC =,则表盘的半径长为( ).A .3B. C . D.A8.某农场用篱笆围成饲养室,一面靠现有墙(墙足够长),已知计划中的篱笆(不包括门)总长为12m ,现有四种方案(如图)中面积最大的方案为( ). A 方案为一个封闭的矩形B 方案为一个等边三角形,并留一处1m 宽的门C 方案为一个矩形,中间用一道垂直于墙的篱笆隔开,并在如图所示的三处各留1m 宽的门D 方案为一个矩形,中间用一道平行于墙的篱笆隔开,并在如图所示的四处各留1m 宽的门A. B.C. D.二、填空题(共16分,每题2分)9.在平面直角坐标系xOy 中,将抛物线23y x =向上平移1个单位,得到的抛物线表达式为 .10.如图,四边形ABCD 内接于O ,E 为BC 延长线上一点,50A ∠=︒,则DCE ∠的度数为 .11.抛物线256y x x =-+与y 轴的交点的坐标是 .12.如图,PA 、PB 分别切O 于A 、B 两点,点C 为AB 上一点,过点C 作O 的切线分别交PA 、PB 于M 、N 两点,若△PMN 的周长为10,则切线长PA 等于 .第10题图 第12题图13.已知22310a a -+=,则代数式2(3)(3)a a a -++的值为 .14.“青山绿水,畅享生活”,人们经常将圆柱形竹筒改造成生活用具,图1所示是一个竹筒水容器,图2为该竹筒水容器的截面.已知截面的半径为10cm ,开口AB 宽为12cm ,这个水容器所能装水的最大深度....是 cm .图1 图2 第15题图15.二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(1,0)-, 对称轴为直线2x =,抛物线与y 轴交点在(0,1)A 和(0,2)B 之间(不与A 、B 重合).下列结论:①0abc >; ②93a c b +>; ③40a b +=; ④当0y >时,15x -<<; ⑤a 的取值范围为2155a -<<-. 其中正确结论有 .(填序号)16.如图,在直角三角形ABC 中,∠A =90°,D 是AC 上一点,BD =10, AB =CD ,则BC 的最大值为 .三、解答题(共68分,第17题8分,第18、21、25题每题4分,第19、23、24题每题5分,第20、26题6分,第22、27、28题每题7分)17.解下列方程:(1)23610x x -+=; (2)2(3)3x x x -=-.18.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为(1,1)A -,(3,1)B -,(1,4)C -.将△ABC 绕着点B 顺时针旋转90︒后得到△11A BC , (1)请在图中画出△11A BC ; (2)线段BC 旋转过程中所扫过的面积是 (结果保留π).19.如图,D 是等边三角形ABC 内一点,将线段AD 绕点A 顺时针旋转60︒,得到线段AE ,连接CD ,BE . (1)求证:△AEB ≌△ADC ; (2)连接DE ,若96ADC ∠=︒,求BED ∠的度数. 20.已知关于x 的一元二次方程22(8)40x k x k +--=.(1)求证:该方程总有两个实数根;(2)若该方程有一个根小于3,求k 的取值范围. 21.已知:如图O 及O 外一点P .求作:直线PB ,使PB 与O 相切于点B .李华同学经过探索,想出了两种作法.具体如下(已知点B 是直线OP 上方一点):A ,A 交O 于点B ,则直线PB 是O 的切O 于点M ;②以点的长为半径作弧,交直线,交O 于点B PB 是O 的切线. 证明:如图1,连接OB , A 直径,90PBO =︒.( OB . OB 是O 的半径,∴直线PB 是O 的切线.请仔细阅读,并完成相应的任务.(1)“作法一”中的“依据”是指 ; (2)请写出“作法二”的证明过程.NQ M P22.在平面直角坐标系xOy 中,二次函数2y x bx c =++的图象经过(0,2)A -,(2,0)B 两点.(1)求这个二次函数的解析式;(2)填写表格并在给出的平面直角坐标系中画出这个函数的图象;(3)若一次函数y mx n =+的图象也 经过A ,B 两点,结合图象,直接写出 不等式2x bx c mx n ++<+的解集.23.如图,在Rt △ABC 中,90C ∠=︒,BE 平分ABC ∠交AC于点E ,点D 在AB 上,DE EB ⊥. (1)求证:AC 是△BDE 的外接圆的切线;(2)若2AD =,AE =,求EC 的长.24.如图1所示的某种发石车是古代一种远程攻击的武器.将发石车置于山坡底部O 处,以点O 为原点,水平方向为x 轴方向,建立如图2所示的平面直角坐标系,将发射出去的石块当作一个点看,其飞行路线可以近似看作抛物线2(20)y a x k =-+的一部分,山坡OA 上有一堵防御墙,其竖直截面为ABCD ,墙宽2BC =米,BC 与x 轴平行,点B 与点O 的水平距离为28米,竖直距离为6米.若发射石块在空中飞行的最大高度为10米. (1)求抛物线的解析式;(2)试通过计算说明石块能否飞越防御墙.25.如图1,线段AB 及一定点C ,P 是线段AB 上一动点,作直线CP ,过点A 作AQ CP ⊥于点Q ,已知7AB =cm ,设A 、P 两点间的距离为x cm ,A 、Q 两点间的距离为1y cm ,P 、Q 两点间的距离为2y cm .小明根据学习函数的经验,分别对函数1y 、2y 随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程:第一步:按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y 、2y 与x 的几组对应值.1(,)x y ,2(,)x y ,并画出函数1y 、2y 的图象. 解决问题:(1)在给出的平面直角坐标系中(图2)补全函数2y 的图象;(2)结合函数图象,解决问题:当△APQ 中有一个角为30︒时,AP 的长度约为 cm .图1图226.在平面直角坐标系xOy 中,已知抛物线224(0)y ax a x a =-≠. (1)当1a =时,求抛物线的顶点坐标;(2)已知1(M x ,1)y 和2(N x ,2)y 是抛物线上的两点.若对于15x a =,256x ,都有12y y <,求a 的取值范围.27.已知,如图,在△ABC 中,∠ACB =90°,∠ABC =45°,点D 在BC 的延长线上,点E 在CB 的延长线上,DC =BE ,连接AE ,过C 作CF ⊥AE 于F ,CF 交AB 于G ,连接DG . (1)求证:∠AEB =∠ACF ;(2)用等式表示CG ,DG 和AE 的数量关系,并证明.28. 对于平面直角坐标系xOy 内的直线l 和点P ,若点A 关于l 作轴对称变换得到点1A ,点1A 关于点P 作中心对称变换得到点2A ,我们则称点2A 为点A 关于直线l 和点P 的“正对称点”. 已知B (-1,0),C (2,0),(1)写出B 关于y 轴和点C 的“正对称点”的坐标________;(2)已知点1C (2,m )(102m ),存在过原点O 的直线1l ,使得点B 关于直线1l 和点1C 的“正对称点”在直线2l :y =x+b 上,求b 的取值范围;(3)已知点H 是直线x =1上的一点,且点H 的纵坐标小于0,C (3,0),E 点在以C 为圆心1为半径的圆上,对于直线x =6上的点F (6,h ),以F 为圆心,1为直径作圆F ,若圆F 上存在点B 关于直线OH 和点E 的“正对称点”,直接写出h 的取值范围.备用图数学参考答案一、选择题1.D 2.C 3.B 4.A 5.A 6.C 7.B 8.C二、填空题9. 231y x =+ 10. 50° 11.(0,6) 12.5 13.8 14.18 15.③④⑤16. 5+ 补充说明:T15只有一个正确答案得1分,有错误答案不得分。

2024届浙江地区中考数学四模试卷含解析

2024届浙江地区中考数学四模试卷含解析

2024学年浙江地区中考数学四模试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.单项式2a3b的次数是()A.2 B.3 C.4 D.52.在﹣3,﹣1,0,1四个数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.13.已知a,b为两个连续的整数,且a<11<b,则a+b的值为()A.7 B.8 C.9 D.104.如图1,将三角板的直角顶点放在直角尺的一边上,Ð1=30°,Ð2=50°,则Ð3的度数为A.80°B.50°C.30°D.20°5.下列美丽的壮锦图案是中心对称图形的是()A.B.C.D.6.下列图形中,既是中心对称图形又是轴对称图形的是( )A.B.C.D.7.2-的相反数是A.2-B.2 C.12D.12-8.|–12|的倒数是( ) A .–2B .–12C .12D .29.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( ) A .3cm ,4cm ,8cm B .8cm ,7cm ,15cm C .13cm ,12cm ,20cm D .5cm ,5cm ,11cm 10.在平面直角坐标系中,点(2,3)所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限二、填空题(共7小题,每小题3分,满分21分)11.A ,B 两市相距200千米,甲车从A 市到B 市,乙车从B 市到A 市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x 千米/小时,则根据题意,可列方程____________. 12.对于实数a ,b ,我们定义符号max {a ,b }的意义为:当a ≥b 时,max {a ,b }=a ;当a <b 时,max {a ,b ]=b ;如:max {4,﹣2}=4,max {3,3}=3,若关于x 的函数为y =max {x +3,﹣x +1},则该函数的最小值是_____.13.图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙).图乙种,67AB BC =,EF=4cm ,上下两个阴影三角形的面积之和为54cm 2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为___cm14.若反比例函数ky x=的图象与一次函数y=ax+b 的图象交于点A (﹣2,m )、B (5,n ),则3a+b 的值等于_____.15.已知一组数据3-,x ,﹣2,3,1,6的中位数为1,则其方差为____.16.如图,已知点A(4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O 、A),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD =AD =3时,这两个二次函数的最大值之和等于______.17.若关于x 的一元二次方程x 2+2x ﹣m 2﹣m=0(m >0),当m=1、2、3、…、2018时,相应的一元二次方程的两个根分别记为α1、β1,α2、β2,…,α2018、β2018,则:112220182018111111...αβαβαβ++++++的值为_____.三、解答题(共7小题,满分69分)18.(10分)某超市对今年“元旦”期间销售A 、B 、C 三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:该超市“元旦”期间共销售 个绿色鸡蛋,A 品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是 度;补全条形统计图;如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B 种品牌的绿色鸡蛋的个数?19.(5分)解不等式组:2(2)3{3122x x x +>-≥-,并将它的解集在数轴上表示出来.20.(8分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,x ,甲,乙两人每次同时从袋中各随机取出1个小球,并计算2个小球上的数字之和.记录后将小球放回袋中搅匀,进行重复试验,试验数据如下表: 摸球总次数 1020306090120180240330450“和为8”出现的频数210132430375882110150“和为8”出现的频率0.200.50 0.43 0.40 0.33 0.31 0.32 0.34 0.33 0.33解答下列问题:如果试验继续进行下去,根据上表提供的数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是________;如果摸出的2个小球上数字之和为9的概率是13,那么x 的值可以为7吗?为什么? 21.(10分)先化简,再求值:()()()2(2)5x y x y x y x x y ++-+--,其中21x =+,21y =-.22.(10分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD .小明在山坡的坡脚A 处测得宣传牌底部D 的仰角为60°,沿山坡向上走到B 处测得宣传牌顶部C 的仰角为45°.已知山坡AB 的坡度i =1:,AB =10米,AE =15米,求这块宣传牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)23.(12分)随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A ,B 两种上网学习的月收费方式: 收费方式 月使用费/元 包时上网时间/h 超时费/(元/min) A 7 25 0.01 Bmn0.01设每月上网学习时间为x 小时,方案A ,B 的收费金额分别为y A ,y B .(1)如图是y B 与x 之间函数关系的图象,请根据图象填空:m = ;n = ; (2)写出y A 与x 之间的函数关系式; (3)选择哪种方式上网学习合算,为什么.24.(14分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】分析:根据单项式的性质即可求出答案.详解:该单项式的次数为:3+1=4故选C.点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型.2、A【解题分析】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,根据有理数比较大小的法则即可选出答案.【题目详解】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,所以在-3,-1,0,1这四个数中比-2小的数是-3,故选A.【题目点拨】本题主要考查有理数比较大小,解决本题的关键是要熟练掌握比较有理数大小的方法.3、A【解题分析】∵9<11<16,∴91116<<,即3114<<,∵a,b为两个连续的整数,且11<<,a b∴a=3,b=4,∴a+b=7,故选A.4、D【解题分析】试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D.考点:平行线的性质;三角形的外角的性质.5、A【解题分析】【分析】根据中心对称图形的定义逐项进行判断即可得.【题目详解】A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误,故选A.【题目点拨】本题主要考查了中心对称图形,熟练掌握中心对称图形的定义是解题的关键;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.6、C【解题分析】试题解析:A. 是轴对称图形,不是中心对称图形,故本选项错误;B. 是轴对称图形,不是中心对称图形,故本选项错误;C. 既是中心对称图又是轴对称图形,故本选项正确;D. 是轴对称图形,不是中心对称图形,故本选项错误.故选C.7、B【解题分析】根据相反数的性质可得结果.【题目详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【题目点拨】本题考查求相反数,熟记相反数的性质是解题的关键.8、D【解题分析】根据绝对值的性质,可化简绝对值,根据倒数的意义,可得答案.【题目详解】|−12|=12,12的倒数是2;∴|−12|的倒数是2,故选D.【题目点拨】本题考查了实数的性质,分子分母交换位置是求一个数倒数的关键.9、C【解题分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【题目详解】A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C、13+12>20,能够组成三角形;D、5+5<11,不能组成三角形.故选:C.【题目点拨】本题考查了三角形的三边关系,关键是灵活运用三角形三边关系.10、A【解题分析】根据点所在象限的点的横纵坐标的符号特点,就可得出已知点所在的象限.【题目详解】解:点(2,3)所在的象限是第一象限.故答案为:A【题目点拨】考核知识点:点的坐标与象限的关系.二、填空题(共7小题,每小题3分,满分21分)11、.【解题分析】直接利用甲车比乙车早半小时到达目的地得出等式即可.【题目详解】解:设乙车的速度是x千米/小时,则根据题意,可列方程:.故答案为:.【题目点拨】此题主要考查了由实际问题抽象出分式方程,正确表示出两车所用时间是解题关键.12、2试题分析:当x+3≥﹣x+1, 即:x≥﹣1时,y=x+3, ∴当x=﹣1时,y min =2, 当x+3<﹣x+1,即:x <﹣1时,y=﹣x+1, ∵x <﹣1, ∴﹣x >1, ∴﹣x+1>2, ∴y >2, ∴y min =2, 13、503【解题分析】试题分析:根据67AB BC =,EF=4可得:AB=和BC 的长度,根据阴影部分的面积为542cm 可得阴影部分三角形的高,然后根据菱形的性质可以求出小菱形的边长为256,则菱形的周长为:256×4=503. 考点:菱形的性质. 14、0 【解题分析】分析:本题直接把点的坐标代入解析式求得m n a b ,,,之间的关系式,通过等量代换可得到3a b +的值. 详解:分别把A (−2,m )、B (5,n ), 代入反比例函数ky x=的图象与一次函数y =ax +b 得 −2m =5n ,−2a +b =m ,5a +b =n , 综合可知5(5a +b )=−2(−2a +b ), 25a +5b =4a −2b , 21a +7b =0, 即3a +b =0. 故答案为:0.点睛:属于一次函数和反比例函数的综合题,考查反比例函数与一次函数的交点问题,比较基础. 15、3试题分析:∵数据﹣3,x ,﹣3,3,3,6的中位数为3,∴112x +=,解得x=3,∴数据的平均数=16(﹣3﹣3+3+3+3+6)=3,∴方差=16[(﹣3﹣3)3+(﹣3﹣3)3+(3﹣3)3+(3﹣3)3+(3﹣3)3+(6﹣3)3]=3.故答案为3. 考点:3.方差;3.中位数.16【解题分析】此题考查了二次函数的最值,勾股定理,等腰三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题. 【题目详解】过B 作BF ⊥OA 于F ,过D 作DE ⊥OA 于E ,过C 作CM ⊥OA 于M ,则BF+CM 是这两个二次函数的最大值之和,BF ∥DE ∥CM ,求出AE=OE=2,DE= 设P (2x ,0),根据二次函数的对称性得出OF=PF=x ,推出△OBF ∽△ODE ,△ACM ∽△ADE ,得出BFDE = ,OF CM AM OE DE AE=,代入求出BF 和CM ,相加即可求出答案.过B 作BF ⊥OA 于F ,过D 作DE ⊥OA 于E ,过C 作CM ⊥OA 于M , ∵BF ⊥OA ,DE ⊥OA ,CM ⊥OA , ∴BF ∥DE ∥CM . ∵OD=AD=3,DE ⊥OA , ∴OE=EA=12OA=2,由勾股定理得:DE= ,设P (2x ,0),根据二次函数的对称性得出OF=PF=x , ∵BF ∥DE ∥CM ,∴△OBF ∽△ODE ,△ACM ∽△ADE ,∴,BF OF CM AMDE OE DE AE==, ∵AM=PM= 12(OA-OP )= 12(4-2x )=2-x ,222x x -==,解得:BF ==∴BF+CM=5 【题目点拨】考核知识点:二次函数综合题.熟记性质,数形结合是关键. 17、40362019. 【解题分析】利用根与系数的关系得到α1+β1=-2,α1β1=-1×2;α2+β2=-2,α2β2=-2×3;…α2018+β2018=-2,α2018β2018=-2018×1.把原式变形,再代入,即可求出答案. 【题目详解】∵x 2+2x-m 2-m=0,m=1,2,3,…,2018, ∴由根与系数的关系得:α1+β1=-2,α1β1=-1×2; α2+β2=-2,α2β2=-2×3; …α2018+β2018=-2,α2018β2018=-2018×1.∴原式=3320182018112211223320182018αβαβαβαβαβαβαβαβ+++++++⋯+ =222212233420182019+++⋯+⨯⨯⨯⨯ =2×(111111112233420182019-+-+-+⋯+-)=2×(1-12019)=40362019, 故答案为40362019.【题目点拨】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a.三、解答题(共7小题,满分69分) 18、(1)2400,60;(2)见解析;(3)500 【解题分析】 整体分析:(1)由C 品牌1200个占总数的50%可得鸡蛋的数量,用A 品牌占总数的百分比乘以360°即可;(2)计算出B 品牌的数量;(3)用B 品牌与总数的比乘以1500. 解:(1)共销售绿色鸡蛋:1200÷50%=2400个, A 品牌所占的圆心角:4002400×360°=60°; 故答案为2400,60;(2)B 品牌鸡蛋的数量为:2400﹣400﹣1200=800个, 补全统计图如图:(3)分店销售的B 种品牌的绿色鸡蛋为:8002400×1500=500个. 19、-1≤x<4,在数轴上表示见解析. 【解题分析】试题分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可. 试题解析:()223{3x 122x x +>-≥-①②,由①得,x<4; 由②得,x ⩾−1.故不等式组的解集为:−1⩽x<4. 在数轴上表示为:20、(1)出现“和为8”的概率是0.33;(2)x 的值不能为7.【解题分析】(1)利用频率估计概率结合表格中数据得出答案即可;(2)假设x=7,根据题意先列出树状图,得出和为9的概率,再与13进行比较,即可得出答案. 【题目详解】解:(1)随着试验次数不断增加,出现“和为8”的频率逐渐稳定在0.33, 故出现“和为8”的概率是0.33. (2)x 的值不能为7.理由:假设x =7,则P (和为9)=16≠13,所以x 的值不能为7. 【题目点拨】此题主要考查了利用频率估计概率以及树状图法求概率,正确画出树状图是解题关键. 21、9 【解题分析】根据完全平方公式、平方差公式、单项式乘多项式可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题. 【题目详解】()()()2(2)5x y x y x y x x y ++-+--222224455x xy y x y x xy =+++--+ 9xy =当21x =,21y =时,原式()92121=()921=⨯-91=⨯ 9=【题目点拨】本题考查整式的化简求值,解答本题的关键是明确整式化简求值的方法.22、2.7米【解题分析】解:作BF⊥DE于点F,BG⊥AE于点G在Rt△ADE中∵tan∠ADE=,∴DE="AE" ·tan∠ADE=15∵山坡AB的坡度i=1:,AB=10∴BG=5,AG=,∴EF=BG=5,BF=AG+AE=+15∵∠CBF=45°∴CF=BF=+15∴CD=CF+EF—DE=20—10≈20—10×1.732=2.68≈2.7答:这块宣传牌CD的高度为2.7米.23、(1)10,50;(2)见解析;(3)当0<x<30时,选择A方式上网学习合算,当x=30时,选择哪种方式上网学习都行,当x>30时,选择B方式上网学习合算.【解题分析】(1)由图象知:m=10,n=50;(2)根据已知条件即可求得y A与x之间的函数关系式为:当x≤25时,y A=7;当x>25时,y A=7+(x﹣25)×0.01;(3)先求出y B与x之间函数关系为:当x≤50时,y B=10;当x>50时,y B=10+(x﹣50)×60×0.01=0.6x﹣20;然后分段求出哪种方式上网学习合算即可.【题目详解】解:(1)由图象知:m=10,n=50;故答案为:10;50;(2)y A与x之间的函数关系式为:当x≤25时,y A=7,当x>25时,y A=7+(x﹣25)×60×0.01,∴y A=0.6x﹣8,∴y A=7(025){0.68(25)xx x<≤->;(3)∵y B与x之间函数关系为:当x≤50时,y B=10,当x>50时,y B=10+(x﹣50)×60×0.01=0.6x﹣20,当0<x≤25时,y A=7,y B=50,∴y A<y B,∴选择A方式上网学习合算,当25<x≤50时.y A=y B,即0.6x﹣8=10,解得;x=30,∴当25<x<30时,y A<y B,选择A方式上网学习合算,当x=30时,y A=y B,选择哪种方式上网学习都行,当30<x≤50,y A>y B,选择B方式上网学习合算,当x>50时,∵y A=0.6x﹣8,y B=0.6x﹣20,y A>y B,∴选择B方式上网学习合算,综上所述:当0<x<30时,y A<y B,选择A方式上网学习合算,当x=30时,y A=y B,选择哪种方式上网学习都行,当x>30时,y A>y B,选择B方式上网学习合算.【题目点拨】本题考查一次函数的应用.24、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定【解题分析】解:(1)填表如下:平均数(分) 中位数(分) 众数(分) 初中部 85 85 85 高中部8580100(2)初中部成绩好些.∵两个队的平均数都相同,初中部的中位数高, ∴在平均数相同的情况下中位数高的初中部成绩好些. (3)∵,222222S 7085100851008575858085160=-+-+-+-+-=高中队()()()()(),∴2S 初中队<2S 高中队,因此,初中代表队选手成绩较为稳定.(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答. (2)根据平均数和中位数的统计意义分析得出即可. (3)分别求出初中、高中部的方差比较即可.。

2024届北京市第四中学中考一模数学试题含解析

2024届北京市第四中学中考一模数学试题含解析

2024学年北京市第四中学中考一模数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(共10小题,每小题3分,共30分)1.下图是由八个相同的小正方体组合而成的几何体,其左视图是( )A .B .C .D .2.中国在第二十三届冬奥会闭幕式上奉献了《2022相约北京》的文艺表演,会后表演视频在网络上推出,即刻转发量就超过810000这个数用科学记数法表示为( )A .8.1×106B .8.1×105C .81×105D .81×1043.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )A .2B .3C .5D .74.把直线l :y=kx+b 绕着原点旋转180°,再向左平移1个单位长度后,经过点A (-2,0)和点B (0,4),则直线l 的表达式是( )A .y=2x+2B .y=2x-2C .y=-2x+2D .y=-2x-25.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是( ) 学生数(人)5 8 14 19 4 时间(小时)6 7 8 9 10 A .14,9 B .9,9 C .9,8 D .8,96.某种超薄气球表面的厚度约为0.00000025mm ,这个数用科学记数法表示为( )A .72.510-⨯B .70.2510-⨯C .62.510-⨯D .52510-⨯7.不解方程,判别方程2x 2﹣2x =3的根的情况( )A .有两个相等的实数根B .有两个不相等的实数根C .有一个实数根D .无实数根8.在﹣3,0,4,6这四个数中,最大的数是( )A .﹣3B .0C .4D .69.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A .121x y x y -=⎧⎨-=⎩B .121x y x y -=-⎧⎨-=-⎩C .121x y x y -=-⎧⎨-=⎩D .121x y x y -=⎧⎨-=-⎩ 10.给出下列各数式,①2?--() ②2-- ③2 2- ④22-()计算结果为负数的有( ) A .1个 B .2个 C .3个 D .4个二、填空题(本大题共6个小题,每小题3分,共18分)11.,A B 两地相距的路程为240千米,甲、乙两车沿同一线路从A 地出发到B 地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B 地.甲、乙两车相距的路程y (千米)与甲车行驶时间x (小时)之间的关系如图所示,求乙车修好时,甲车距B 地还有____________千米.12.将数轴按如图所示从某一点开始折出一个等边三角形ABC ,设点A 表示的数为x ﹣3,点B 表示的数为2x+1,点C 表示的数为﹣4,若将△ABC 向右滚动,则x 的值等于_____,数字2012对应的点将与△ABC 的顶点_____重合.13.如图,在Rt △ABC 中,∠C=90°,AC=8,BC=1.在边AB 上取一点O ,使BO=BC ,以点O 为旋转中心,把△ABC逆时针旋转90°,得到△A′B′C′(点A 、B 、C 的对应点分别是点A′、B′、C′、),那么△ABC 与△A′B′C′的重叠部分的面积是_________.14.在矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,AC=6cm,则AB的长是_____.15.将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____.16.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘﹣131,其浓度为0.0000872贝克/立方米.数据“0.0000872”用科学记数法可表示为________.三、解答题(共8题,共72分)17.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.18.(8分)已知顶点为A的抛物线y=a(x-12)2-2经过点B(-32,2),点C(52,2).(1)求抛物线的表达式;(2)如图1,直线AB与x轴相交于点M,与y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM =∠MAF,求△POE的面积;(3)如图2,点Q是折线A-B-C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN′,若点N′落在x轴上,请直接写出Q点的坐标.19.(8分)平面直角坐标系xOy 中(如图),已知抛物线2y x bx c ++=经过点10(,)A 和30B (,),与y 轴相交于点C ,顶点为P .(1)求这条抛物线的表达式和顶点P 的坐标;(2)点E 在抛物线的对称轴上,且EA EC =,求点E 的坐标;(3)在(2)的条件下,记抛物线的对称轴为直线MN ,点Q 在直线MN 右侧的抛物线上,MEQ NEB ∠∠=,求点Q 的坐标.20.(8分)如图,AB 是⊙O 的直径,点C 为⊙O 上一点,CN 为⊙O 的切线,OM ⊥AB 于点O ,分别交AC 、CN 于D 、M 两点.求证:MD=MC ;若⊙O 的半径为5,AC=45,求MC 的长.21.(8分)“分组合作学习”已成为推动课堂教学改革,打造自主高效课堂的重要措施.某中学从全校学生中随机抽取部分学生对“分组合作学习”实施后的学习兴趣情况进行调查分析,统计图如下:请结合图中信息解答下列问题:求出随机抽取调查的学生人数;补全分组后学生学习兴趣的条形统计图; 分组后学生学习兴趣为“中”的所占的百分比和对应扇形的圆心角.22.(10分)先化简2211a a a a ⎛⎫-÷ ⎪--⎝⎭,然后从22a -≤<中选出一个合适的整数作为a 的值代入求值. 23.(12分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?24.如图,点A 的坐标为(﹣4,0),点B 的坐标为(0,﹣2),把点A 绕点B 顺时针旋转90°得到的点C 恰好在抛物线y=ax 2上,点P 是抛物线y=ax 2上的一个动点(不与点O 重合),把点P 向下平移2个单位得到动点Q ,则: (1)直接写出AB 所在直线的解析式、点C 的坐标、a 的值;(2)连接OP 、AQ ,当OP+AQ 获得最小值时,求这个最小值及此时点P 的坐标;(3)是否存在这样的点P ,使得∠QPO=∠OBC ,若不存在,请说明理由;若存在,请你直接写出此时P 点的坐标.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】解:找到从左面看所得到的图形,从左面可看到从左往右三列小正方形的个数为:2,3,1.故选B.2、B【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】810 000=8.1×1.故选B.【题目点拨】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、C【解题分析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1.故选C.考点:众数;中位数.4、B【解题分析】先利用待定系数法求出直线AB的解析式,再求出将直线AB向右平移1个单位长度后得到的解析式,然后将所得解析式绕着原点旋转180°即可得到直线l.【题目详解】解:设直线AB 的解析式为y =mx +n .∵A (−2,0),B (0,1), ∴ , 解得 , ∴直线AB 的解析式为y =2x +1.将直线AB 向右平移1个单位长度后得到的解析式为y =2(x−1)+1,即y =2x +2,再将y =2x +2绕着原点旋转180°后得到的解析式为−y =−2x +2,即y =2x−2,所以直线l 的表达式是y =2x−2.故选:B .【题目点拨】本题考查了一次函数图象平移问题,掌握解析式“左加右减”的规律以及关于原点对称的规律是解题的关键. 5、C【解题分析】解:观察、分析表格中的数据可得:∵课外阅读时间为1小时的人数最多为11人,∴众数为1.∵将这组数据按照从小到大的顺序排列,第25个和第26个数据的均为2,∴中位数为2.故选C .【题目点拨】本题考查(1)众数是一组数据中出现次数最多的数;(2)中位数的确定要分两种情况:①当数据组中数据的总个数为奇数时,把所有数据按从小到大的顺序排列,中间的那个数就是中位数;②当数据组中数据的总个数为偶数时,把所有数据按从小到大的顺序排列,中间的两个数的平均数是这组数据的中位数.6、A【解题分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】70.00000025 2.510-=⨯,故选:A .【题目点拨】本题考查了用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.7、B【解题分析】一元二次方程的根的情况与根的判别式∆有关,24b ac ∆=-2(42(3)=--⨯⨯-420=>,方程有两个不相等的实数根,故选B8、C【解题分析】试题分析:根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小.因此,在﹣3,0,1这四个数中,﹣3<0<1,最大的数是1.故选C .9、C【解题分析】两条直线的交点坐标应该是联立两个一次函数解析式所组成的方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【题目详解】直线l 1经过(2,3)、(0,-1),易知其函数解析式为y=2x-1;直线l 2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l 1,l 2的交点坐标为解的方程组是:121x y x y -=-⎧⎨-=⎩. 故选C .【题目点拨】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.10、B【解题分析】∵①(2)2--=;②22--=-;③224-=-;④2(2)4-=;∴上述各式中计算结果为负数的有2个.故选B.二、填空题(本大题共6个小题,每小题3分,共18分)11、90【解题分析】【分析】观察图象可知甲车40分钟行驶了30千米,由此可求出甲车速度,再根据甲车行驶小时时与乙车的距离为10千米可求得乙车的速度,从而可求得乙车出故障修好后的速度,再根据甲、乙两车同时到达B 地,设乙车出故障前走了t 1小时,修好后走了t 2小时,根据等量关系甲车用了122133t t ⎛⎫+++ ⎪⎝⎭小时行驶了全程,乙车行驶的路程为60t 1+50t 2=240,列方程组求出t 2,再根据甲车的速度即可知乙车修好时甲车距B 地的路程.【题目详解】甲车先行40分钟(402603=h ),所行路程为30千米, 因此甲车的速度为304523=(千米/时),设乙车的初始速度为V 乙,则有4452103V ⨯=+乙, 解得:60V =乙(千米/时),因此乙车故障后速度为:60-10=50(千米/时),设乙车出故障前走了t 1小时,修好后走了t 2小时,则有121260502402145()4524033t t t t +=⎧⎪⎨⨯+++⨯=⎪⎩,解得:12732t t ⎧=⎪⎨⎪=⎩, 45×2=90(千米),故答案为90.【点评】 本题考查了一次函数的实际应用,难度较大,求出速度后能从题中找到必要的等量关系列方程组进行求解是关键.12、﹣1 C .【解题分析】∵将数轴按如图所示从某一点开始折出一个等边三角形ABC ,设点A 表示的数为x ﹣1,点B 表示的数为2x +1,点C 表示的数为﹣4,∴﹣4﹣(2x +1)=2x +1﹣(x ﹣1);∴﹣1x =9,x=﹣1.故A表示的数为:x﹣1=﹣1﹣1=﹣6,点B表示的数为:2x+1=2×(﹣1)+1=﹣5,即等边三角形ABC边长为1,数字2012对应的点与﹣4的距离为:2012+4=2016,∵2016÷1=672,C从出发到2012点滚动672周,∴数字2012对应的点将与△ABC的顶点C重合.故答案为﹣1,C.点睛:此题主要考查了等边三角形的性质,实数与数轴,一元一次方程等知识,本题将数与式的考查有机地融入“图形与几何”中,渗透“数形结合思想”、“方程思想”等,也是一道较优秀的操作活动型问题.13、144 25【解题分析】先求得OD,AE,DE的值,再利用S四边形ODEF=S△AOF-S△ADE即可. 【题目详解】如图,OA’=OA=4,则OD=34OA’=3,OD=3∴AD=1,可得DE=35,AE =45∴S四边形ODEF=S△AOF-S△ADE=12×3×4-12×35×45=14425.故答案为144 25.【题目点拨】本题考查的知识点是三角形的旋转,解题的关键是熟练的掌握三角形的旋转.14、3cm.【解题分析】根据矩形的对角线相等且互相平分可得OA=OB=OD=OC,由∠AOB=60°,判断出△AOB是等边三角形,根据等边三角形的性质求出AB即可.【题目详解】解:∵四边形ABCD是矩形,AC=6cm∴OA =OC =OB =OD =3cm ,∵∠AOB =60°,∴△AOB 是等边三角形,∴AB =OA =3cm ,故答案为:3cm【题目点拨】本题主要考查矩形的性质和等边三角形的判定和性质,解本题的关键是掌握矩形的对角线相等且互相平分. 15、y=2x+1【解题分析】分析:直接根据函数图象平移的法则进行解答即可.详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;故答案为y=2x+1.点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.16、58.7210-⨯【解题分析】科学记数法的表示形式为ax10n 的形式,其中1≤lal<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【题目详解】解:0.0000872=58.7210-⨯故答案为:58.7210-⨯【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.三、解答题(共8题,共72分)17、(1)详见解析;(2)详见解析;(3)图见解析,点P 坐标为(2,0).【解题分析】(1)根据网格结构找出点A 、B 、C 平移后的对应点的位置,然后顺次连接即可;(2))找出点A 、B 、C 关于原点O 的对称点的位置,然后顺次连接即可;(3)找出A 的对称点A ′,连接BA ′,与x 轴交点即为P .【题目详解】(1)如图1所示,△A1B1C1,即为所求:(2)如图2所示,△A2B2C2,即为所求:(3)找出A的对称点A′(1,﹣1),连接BA′,与x轴交点即为P;如图3所示,点P即为所求,点P坐标为(2,0).【题目点拨】本题考查作图-旋转变换,平移变换,轴对称最短问题等知识,得出对应点位置是解题关键.18、(1) y=(x-12)2-2;(2)△POE的面积为115或13;(3)点Q的坐标为(-54,32)或(,2)或,2).【解题分析】(1)将点B坐标代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得OPFA=OEFE=134=43,即OP=43FA,设点P(t,-2t-1),列出关于t的方程解之可得;(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得.【题目详解】解:(1)把点B(-32,2)代入y=a(x-12)2-2,解得a=1,∴抛物线的表达式为y=(x-12)2-2,(2)由y=(x-12)2-2知A(12,-2),设直线AB表达式为y=kx+b,代入点A,B的坐标得122322k bk b ⎧-=+⎪⎪⎨⎪=-+⎪⎩,解得21 kb=-⎧⎨=-⎩,∴直线AB的表达式为y=-2x-1,易求E(0,-1),F(0,-74),M(-12,0),若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△FAE,∴OP OE143FA FE34===,∴OP=43FA=43=,设点P(t ,-2t -1),则()225t 2t 13+--=, 解得t 1=-215,t 2=-23, 由对称性知,当t 1=-215时,也满足∠OPM =∠MAF , ∴t 1=-215,t 2=-23都满足条件, ∵△POE 的面积=12OE·|t|, ∴△POE 的面积为115或13; (3)如图,若点Q 在AB 上运动,过N′作直线RS ∥y 轴,交QR 于点R ,交NE 的延长线于点S ,设Q(a ,-2a -1),则NE =-a ,QN =-2a.由翻折知QN′=QN =-2a ,N′E =NE =-a ,由∠QN′E =∠N =90°易知△QRN′∽△N′SE ,∴QR N S '=RN ES '=QN EN '',即QR 1==2a 12a ES a---=-=2, ∴QR =2,ES =2a 12-- , 由NE +ES =NS =QR 可得-a +2a 12--=2, 解得a =-54, ∴Q(-54,32), 如图,若点Q 在BC 上运动,且Q 在y 轴左侧,过N′作直线RS ∥y 轴,交BC 于点R ,交NE 的延长线于点S.设NE=a,则N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR=5,SE=5-a.在Rt△SEN′中,(5-a)2+12=a2,解得a=355,∴Q(-355,2),如图,若点Q在BC上运动,且点Q在y轴右侧,过N′作直线RS∥y轴,交BC于点R,交NE的延长线于点S.设NE=a,则N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR5SE5 a.在Rt△SEN′中,5a)2+12=a2,解得a 35,∴,2).综上,点Q 的坐标为(-54,32)或(,2)或,2). 【题目点拨】 本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.19、(1)243y x x +=﹣,顶点P 的坐标为21(,﹣);(2)E 点坐标为22(,);(3)Q 点的坐标为58(,). 【解题分析】(1)利用交点式写出抛物线解析式,把一般式配成顶点式得到顶点P 的坐标;(2)设2E t (,),根据两点间的距离公式,利用EA EC =得到22222123t t ++(﹣)=(﹣),然后解方程求出t 即可得到E 点坐标;(3)直线2x =交x 轴于F ,作2MH x ⊥直线=于H ,如图,利用12tan NEB ∠=得到12tan MEQ ∠=,设243Q m m m +(,﹣),则2412HE m m QH m +=﹣,=﹣,再在Rt QHE 中利用正切的定义得到H 1tan HE 2Q HEQ ∠==,即24122m m m +﹣=(﹣),然后解方程求出m 即可得到Q 点坐标.【题目详解】解:(1)抛物线解析式为13y x x =(﹣)(﹣), 即243y x x +=﹣, 221y x =(﹣)﹣,∴顶点P 的坐标为21(,﹣); (2)抛物线的对称轴为直线2x =,设2E t (,), EA EC =,22222123t t ∴++(﹣)=(﹣),解得2t =,∴E 点坐标为22(,); (3)直线2x =交x 轴于F ,作MN ⊥直线x=2于H ,如图,MEQ NEB ∠∠=,而BF 1tan EF 2NEB ∠==, 1tan 2MEQ ∴∠=, 设243Q m m m +(,﹣),则22432412HE m m m m QH m ++=﹣﹣=﹣,=﹣, 在Rt QHE 中,H 1tan HE 2Q HEQ ∠==, 24122m m m ∴+﹣=(﹣),整理得2650m m +﹣=,解得11m =(舍去),25m =, ∴Q 点的坐标为58(,).【题目点拨】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和锐角三角函数的定义;会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式.20、(1)证明见解析;(2)MC=154. 【解题分析】【分析】(1)连接OC ,利用切线的性质证明即可;(2)根据相似三角形的判定和性质以及勾股定理解答即可.【题目详解】(1)连接OC ,∵CN 为⊙O 的切线,∴OC ⊥CM ,∠OCA+∠ACM=90°,∵OM ⊥AB ,∴∠OAC+∠ODA=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACM=∠ODA=∠CDM,∴MD=MC;(2)由题意可知AB=5×2=10,∵AB是⊙O的直径,∴∠ACB=90°,∴∵∠AOD=∠ACB,∠A=∠A,∴△AOD∽△ACB,∴OD AOBC AC==,可得:OD=2.5,设MC=MD=x,在Rt△OCM中,由勾股定理得:(x+2.5)2=x2+52,解得:x=154,即MC=154.【题目点拨】本题考查了切线的判定和性质、相似三角形的判定和性质、勾股定理等知识,准确添加辅助线,正确寻找相似三角形是解决问题的关键.21、(1)200人;(2)补图见解析;(3)分组后学生学习兴趣为“中”的所占的百分比为30%;对应扇形的圆心角为108°. 【解题分析】试题分析:(1)用“极高”的人数÷所占的百分比,即可解答;(2)求出“高”的人数,即可补全统计图;(3)用“中”的人数÷调查的学生人数,即可得到所占的百分比,所占的百分比360,⨯即可求出对应的扇形圆心角的度数.试题解析:()15025%200÷=(人).()2学生学习兴趣为“高”的人数为:20050602070---=(人).补全统计图如下:()3分组后学生学习兴趣为“中”的所占的百分比为:60100%30%.200⨯= 学生学习兴趣为“中”对应扇形的圆心角为:30%360108.⨯=22、-1【解题分析】先化简,再选出一个合适的整数代入即可,要注意a 的取值范围.【题目详解】 解:2211a a a a ⎛⎫-÷ ⎪--⎝⎭ (1)(1)12a a a a a ---=•- 1(1)12a a a a a -+-=•- 2a =, 当2a =-时,原式212-==-. 【题目点拨】 本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.23、(1)甲、乙两种套房每套提升费用为25、1万元;(2)甲种套房提升2套,乙种套房提升30套时,y 最小值为2090万元.【解题分析】(1)设甲种套房每套提升费用为x 万元,根据题意建立方程求出其解即可;(2)设甲种套房提升m 套,那么乙种套房提升(80-m )套,根据条件建立不等式组求出其解就可以求出提升方案,再表示出总费用与m 之间的函数关系式,根据一次函数的性质就可以求出结论.【题目详解】(1)设乙种套房提升费用为x 万元,则甲种套房提升费用为(x ﹣3)万元,则6257003x x=-, 解得x=1.经检验:x=1是分式方程的解,答:甲、乙两种套房每套提升费用为25、1万元;(2)设甲种套房提升a 套,则乙种套房提升(80﹣a )套,则2090≤25a+1(80﹣a )≤2096,解得48≤a≤2.∴共3种方案,分别为:方案一:甲种套房提升48套,乙种套房提升32套.方案二:甲种套房提升49套,乙种套房提升31套,方案三:甲种套房提升2套,乙种套房提升30套.设提升两种套房所需要的费用为y 万元,则y=25a+1(80﹣a )=﹣3a+2240,∵k=﹣3,∴当a 取最大值2时,即方案三:甲种套房提升2套,乙种套房提升30套时,y 最小值为2090万元.【题目点拨】本题考查了一次函数的性质的运用,列分式方程解实际问题的运用,列一元一次不等式组解实际问题的运用.解答时建立方程求出甲,乙两种套房每套提升费用是关键,是解答第二问的必要过程.24、(1)a=12;(2)OP+AQ 的最小值为P 的坐标为(﹣1,12);(3)P (﹣4,8)或(4,8), 【解题分析】(1)利用待定系数法求出直线AB 解析式,根据旋转性质确定出C 的坐标,代入二次函数解析式求出a 的值即可; (2)连接BQ ,可得PQ 与OB 平行,而PQ=OB ,得到四边形PQBO 为平行四边形,当Q 在线段AB 上时,求出OP+AQ 的最小值,并求出此时P 的坐标即可;(3)存在这样的点P ,使得∠QPO=∠OBC ,如备用图所示,延长PQ 交x 轴于点H ,设此时点P 的坐标为(m ,12m 2),根据正切函数定义确定出m 的值,即可确定出P 的坐标.【题目详解】解:(1)设直线AB 解析式为y=kx+b , 把A (﹣4,0),B (0,﹣2)代入得:402k b b -+=⎧⎨=-⎩,解得:122kb⎧=-⎪⎨⎪=-⎩,∴直线AB的解析式为y=﹣12x﹣2,根据题意得:点C的坐标为(2,2),把C(2,2)代入二次函数解析式得:a=12;(2)连接BQ,则易得PQ∥OB,且PQ=OB,∴四边形PQBO是平行四边形,∴OP=BQ,∴5(等号成立的条件是点Q在线段AB上),∵直线AB的解析式为y=﹣12x﹣2,∴可设此时点Q的坐标为(t,﹣12t﹣2),于是,此时点P的坐标为(t,﹣12 t),∵点P在抛物线y=12x2上,∴﹣12t=12t2,解得:t=0或t=﹣1,∴当t=0,点P与点O重合,不合题意,应舍去,∴OP+AQ的最小值为5P的坐标为(﹣1,12);(3)P(﹣4,8)或(4,8),如备用图所示,延长PQ交x轴于点H,设此时点P 的坐标为(m ,12m 2), 则tan ∠HPO=2212m OH PH m m ==, 又,易得tan ∠OBC=12, 当tan ∠HPO=tan ∠OBC 时,可使得∠QPO=∠OBC , 于是,得212m =, 解得:m=±4, 所以P (﹣4,8)或(4,8).【题目点拨】此题属于二次函数综合题,涉及的知识有:二次函数的图象与性质,待定系数法求一次函数解析式,旋转的性质,以及锐角三角函数定义,熟练掌握各自的性质是解本题的关键.。

北京市第四中学2024届中考冲刺卷数学试题含解析

北京市第四中学2024届中考冲刺卷数学试题含解析

北京市第四中学2024学年中考冲刺卷数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为()A.(3,-1)B.(2,﹣1)C.(1,-3)D.(﹣1,3).若不考虑接缝,它是一个半径为12cm,圆心角为60的扇形,2.小明将某圆锥形的冰淇淋纸套沿它的一条母线展开则()A.圆锥形冰淇淋纸套的底面半径为4cmB.圆锥形冰淇淋纸套的底面半径为6cmC.圆锥形冰淇淋纸套的高为235cmD.圆锥形冰淇淋纸套的高为63cm3.如图,在扇形CAB中,CA=4,∠CAB=120°,D为CA的中点,P为弧BC上一动点(不与C,B重合),则2PD+PB 的最小值为()A.B.C.10 D.=,4.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当AB2∠=时,AC等于()B60A.2B.2C.6D.225.将(x+3)2﹣(x﹣1)2分解因式的结果是()A.4(2x+2)B.8x+8 C.8(x+1)D.4(x+1)6.截至2010年“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为29,28,29,31,31,31,29,31,则由年龄组成的这组数据的中位数是()A.28 B.29 C.30 D.317.如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中x的值是().A.3-B.3C.2D.88.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.4233π-B.833π-C.8233π-D.843π-9.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A.4 B.3 C.2 D.110.如图,直线y=kx+b与x轴交于点(﹣4,0),则y>0时,x的取值范围是()A.x>﹣4 B.x>0 C.x<﹣4 D.x<0二、填空题(共7小题,每小题3分,满分21分)11.如图,在每个小正方形边长为1的网格中,ABC△的顶点A,B,C均在格点上,D为AC边上的一点.线段AC的值为______________;在如图所示的网格中,AM是ABC△的角平分线,在AM上求一点P,使CP DP的值最小,请用无刻度的直尺,画出AM和点P,并简要说明AM和点P的位置是如何找到的(不要求证明)___________.12.如图的三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠三角形,使点C落在AB边的点E处,折痕为BD.则△AED的周长为____cm.13.如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=23+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为__.14.点(a-1,y1)、(a+1,y2)在反比例函数y=kx(k>0)的图象上,若y1<y2,则a的范围是________.15.若正多边形的一个内角等于140°,则这个正多边形的边数是_______.16.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为__.17.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O的切线:若⊙O 的半径为2,则图中阴影部分的面积为_____.三、解答题(共7小题,满分69分)18.(10分)如图,是5×5正方形网格,每个小正方形的边长为1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.(1)在图(1)中画出一个等腰△ABE,使其面积为3.5;(2)在图(2)中画出一个直角△CDF,使其面积为5,并直接写出DF的长.19.(5分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地要走多少千米?开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)20.(8分)某村大力发展经济作物,其中果树种植已初具规模,该村果农小张种植了黄桃树和苹果树,为进一步优化种植结构,小张将前年和去年两种水果的销售情况进行了对比:前年黄桃的市场销售量为1000千克,销售均价为6元/千克,去年黄桃的市场销售量比前年减少了m%(m≠0),销售均价与前年相同;前年苹果的市场销售量为2000千克,销售均价为4元/千克,去年苹果的市场销售量比前年增加了2m%,但销售均价比前年减少了m%.如果去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,求m的值.21.(10分)化简:(x-1-2x2x1-+)÷2x xx1-+.22.(10分)为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。

九年级数学下学期中段满分集训模拟试卷浙教版四(解析版)

九年级数学下学期中段满分集训模拟试卷浙教版四(解析版)

初中数学浙教版九年级下学期数学期中模拟试卷(四)考试时间:120分钟满分:120分姓名:__________ 班级:__________考号:__________题号一二三总分评分一、单选题:1.如果|a|=3,|b|=1,那么a+b的值一定是( )A. 4B. 2C. -4D. ±4或±2【答案】 D【考点】绝对值及有理数的绝对值,代数式求值【解析】【分析】首先根据绝对值的意义求得a,b的值,则a与b的对应值有四种可能性,再分别代入a+b,根据有理数的加法法则计算即可.【解答】∵|a|=3,|b|=1,∴a=±3,b=±1.①当a=3,b=1时,a+b=4;②当a=3,b=-1时,a+b=2;③当a=-3,b=1时,a+b=-2;④当a=-3,b=-1时,a+b=-4.∴a+b=±4或±2.故选D.【点评】本题主要考查绝对值的定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:互为相反数的两个数的绝对值相等.2.太阳半径约为69.6万km,将数据69.6万用科学记数法表示是( )A. 696×103B. 69.6×104C. 6.96×105D. 0.696×106【答案】 C【考点】科学记数法—表示绝对值较大的数【解析】【解答】69.6万=6.96×105故答案为:C.【分析】把69.6万化成a×10n(1≤a<10,n为整数)的形式即可.3.在平行四边形、等腰梯形、等腰三角形、矩形、菱形五个图形中,既是中心对称图形又是轴对称图形的有()A. 1个B. 2个C. 3个D. 4个【答案】 B【考点】轴对称图形,中心对称及中心对称图形【解析】【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。

初中数学北京四中初三上期中考模拟试数学考试卷含详细答案

初中数学北京四中初三上期中考模拟试数学考试卷含详细答案

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:下列说法正确的有()个。

①菱形的对角线相等;②对角线互相垂直的四边形是菱形;③有两个角是直角的四边形是矩形;④正方形既是菱形又是矩形;⑤矩形的对角线相等且互相垂直平分。

A. 1B. 2C. 3D.4试题2:关于方程的理解错误的是()A. 这个方程是一元二次方程B. 方程的解是C. 这个方程可以化成一元二次方程的一般形式D. 这个方程可以用公式法求解试题3:一个暗箱中放有a个除颜色外其他完全相同的球,这a个球中只有2个红球,每次将球搅拌均匀后,任意摸出1个球记下颜色,再放回暗箱,通过大量重复试验后发现,摸到红球的频率稳定在20%,那么可以估算a的值是()A. 15B.10C. 4D.3试题4:关于x的一元二次方程有两个相等的实数根,则m的值是()A. 不存在B、4;C、0; D、0或4;评卷人得分如图在△ABC中,DE∥FG∥BC,AD:AF:AB=1:3:6,则=()A.1:8:27B.1:4:9C.1:8:36D. 1:9:36试题6:如图,在菱形ABCD中,AB=13,对角线AC=10,若过点A作AE⊥BC,垂足为E,则AE的长为( )A. 8B.C.D.试题7:如图,ABCD是正方形,E是边CD上(除端点外)任意一点,AM⊥BE于点M,CN⊥BE于点N,下列结论一定成立的有()个。

①△ABM≌△BCN;②△BCN≌△CEN;③AM-CN=MN;④M有可能是线段BE的中点A. 1B.2C. 3D. 4在研究相似问题时,甲、乙同学的观点如下:甲:将邻边边长为5和8的矩形按图①的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形相似。

乙:将边长5、12、13的三角形按图②的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似。

浙江地区2024届中考四模数学试题含解析

浙江地区2024届中考四模数学试题含解析

浙江地区2024届中考四模数学试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图所示,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C′处,折痕为EF ,若∠ABE=20°,那么∠EFC′的度数为( )A .115°B .120°C .125°D .130°2.如图,AB 为⊙O 的直径,CD 是⊙O 的弦,∠ADC=35°,则∠CAB 的度数为( )A .35°B .45°C .55°D .65°3.已知点()P m,n ,为是反比例函数3y=-x上一点,当-3n<-1≤时,m 的取值范围是( ) A .1m<3≤B .-3m<-1≤C .1<m 3≤D .-3<m -1≤4.下列各组数中,互为相反数的是( ) A .﹣2 与2B .2与2C .3与13D .3与35.如图,E 为平行四边形ABCD 的边AB 延长线上的一点,且BE:AB=2:3,△BEF 的面积为4,则平行四边形ABCD 的面积为()A .30B .27C .14D .326.下列说法中,正确的是( )A.两个全等三角形,一定是轴对称的B.两个轴对称的三角形,一定是全等的C.三角形的一条中线把三角形分成以中线为轴对称的两个图形D.三角形的一条高把三角形分成以高线为轴对称的两个图形7.如图,BC平分∠ABE,AB∥CD,E是CD上一点,若∠C=35°,则∠BED的度数为()A.70°B.65°C.62°D.60°8.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB’C’D’,图中阴影部分的面积为().A.12B.33C.313-D.314-9.某圆锥的主视图是一个边长为3cm的等边三角形,那么这个圆锥的侧面积是()A.4.5πcm2B.3cm2C.4πcm2D.3πcm210.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )A.能中奖一次B.能中奖两次C.至少能中奖一次D.中奖次数不能确定二、填空题(共7小题,每小题3分,满分21分)11.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是.12.如图,在□ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是________.13.函数y=231xx+-中自变量x的取值范围是_____.14.某自然保护区为估计该地区一种珍稀鸟类的数量,先捕捉了20只,给它们做上标记后放回,过一段时间待它们完全混合于同类后又捕捉了20只,发现其中有4只带有标记,从而估计该地区此种鸟类的数量大约有______只.15.化简:2222444221(1)2a a aa a a a--+÷-+++-=____.16.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为.17.已知关于x的不等式组521x ax-≥⎧⎨-⎩只有四个整数解,则实数a的取值范是______.三、解答题(共7小题,满分69分)18.(10分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.请根据所给信息,解答以下问题: 表中a=___ ;b=____ 请计算扇形统计图中B组对应扇形的圆心角的度数; 已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.19.(5分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.20.(8分)解不等式组43(2)52364x xxx--<-⎧⎪⎨-≥-⎪⎩并写出它的整数解.21.(10分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售每吨获利(元) 1000 2000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?22.(10分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC 不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段AM最短时,求重叠部分的面积.23.(12分)某商城销售A,B两种自行车.A型自行车售价为2 100元/辆,B型自行车售价为1 750元/辆,每辆A 型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.()1求每辆A,B两种自行车的进价分别是多少?()2现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.24.(14分)某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)分别求出y1、y2的函数关系式(不写自变量取值范围);通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】分析:由已知条件易得∠AEB=70°,由此可得∠DEB=110°,结合折叠的性质可得∠DEF=55°,则由AD∥BC可得∠EFC=125°,再由折叠的性质即可得到∠EFC′=125°.详解:∵在△ABE中,∠A=90°,∠ABE=20°,∴∠AEB=70°,∴∠DEB=180°-70°=110°,∵点D沿EF折叠后与点B重合,∴∠DEF=∠BEF=12∠DEB=55°,∵在矩形ABCD中,AD∥BC,∴∠DEF+∠EFC=180°,∴∠EFC=180°-55°=125°,∴由折叠的性质可得∠EFC′=∠EFC=125°.故选C.点睛:这是一道有关矩形折叠的问题,熟悉“矩形的四个内角都是直角”和“折叠的性质”是正确解答本题的关键.2、C【解题分析】分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B 即可求得.详解:∵∠ADC=35°,∠ADC与∠B所对的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故选C.点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.3、A【解题分析】直接把n的值代入求出m的取值范围.【题目详解】解:∵点P(m,n),为是反比例函数y=-3x图象上一点,∴当-1≤n<-1时,∴n=-1时,m=1,n=-1时,m=1,则m的取值范围是:1≤m<1.故选A.【题目点拨】此题主要考查了反比例函数图象上点的坐标性质,正确把n的值代入是解题关键.4、A【解题分析】根据只有符号不同的两数互为相反数,可直接判断.【题目详解】-2与2互为相反数,故正确;2与2相等,符号相同,故不是相反数;3与13互为倒数,故不正确;3与3相同,故不是相反数.故选:A.【题目点拨】此题主要考查了相反数,关键是观察特点是否只有符号不同,比较简单.5、A【解题分析】∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴22 BEF BEFCDF AEDS SBE BES CD S AE∆∆∆∆⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴44925 BEF BEFCDF AEDS SS S∆∆∆∆==,,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四边形ABFD=S△AED-S△BEF=25-4=21,∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,故选A.【题目点拨】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.6、B【解题分析】根据轴对称图形的概念对各选项分析判断即可得解.解:A. 两个全等三角形,一定是轴对称的错误,三角形全等位置上不一定关于某一直线对称,故本选项错误;B. 两个轴对称的三角形,一定全等,正确;C. 三角形的一条中线把三角形分成以中线为轴对称的两个图形,错误;D. 三角形的一条高把三角形分成以高线为轴对称的两个图形,错误. 故选B. 7、A 【解题分析】由AB ∥CD ,根据两直线平行,内错角相等,即可求得∠ABC 的度数,又由BC 平分∠ABE ,即可求得∠ABE 的度数,继而求得答案. 【题目详解】 ∵AB ∥CD,∠C=35°, ∴∠ABC=∠C=35°, ∵BC 平分∠ABE , ∴∠ABE=2∠ABC=70°, ∵AB ∥CD ,∴∠BED=∠ABE=70°. 故选:A. 【题目点拨】本题考查了平行线的性质,解题的关键是掌握平行线的性质进行解答. 8、C 【解题分析】设B ′C ′与CD 的交点为E ,连接AE ,利用“HL ”证明Rt △AB ′E 和Rt △ADE 全等,根据全等三角形对应角相等∠DAE =∠B ′AE ,再根据旋转角求出∠DAB ′=60°,然后求出∠DAE =30°,再解直角三角形求出DE ,然后根据阴影部分的面积=正方形ABCD 的面积﹣四边形ADEB ′的面积,列式计算即可得解. 【题目详解】如图,设B ′C ′与CD 的交点为E ,连接AE ,在Rt △AB ′E 和Rt △ADE 中,AE AEAB AD '=⎧⎨=⎩, ∴Rt △AB ′E ≌Rt △ADE (HL ),∴∠DAE=∠B′AE,∵旋转角为30°,∴∠DAB′=60°,∴∠DAE=12×60°=30°,∴DE=1×33=33,∴阴影部分的面积=1×1﹣2×(12×1×33)=1﹣33.故选C.【题目点拨】本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.9、A【解题分析】根据已知得出圆锥的底面半径及母线长,那么利用圆锥的侧面积=底面周长×母线长÷2求出即可.【题目详解】∵圆锥的轴截面是一个边长为3cm的等边三角形,∴底面半径=1.5cm,底面周长=3πcm,∴圆锥的侧面积=×3π×3=4.5πcm2,故选A.【题目点拨】此题主要考查了圆锥的有关计算,关键是利用圆锥的侧面积=底面周长×母线长÷2得出.10、D【解题分析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.【题目详解】解:根据随机事件的定义判定,中奖次数不能确定.故选D.【题目点拨】解答此题要明确概率和事件的关系:()P A0=①,为不可能事件;()P A1=②为必然事件;()0P A1③<<为随机事件.二、填空题(共7小题,每小题3分,满分21分)11、1【解题分析】∵四边形ABCD为正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,∴△AEB≌△AFD,∴S△AEB=S△AFD,∴它们都加上四边形ABCF的面积,可得到四边形AECF的面积=正方形的面积=1.12、2【解题分析】试题解析:连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD=12DE=1.∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠1,∴∠1=∠1,∴AD=DG .∵AG ⊥DE ,∴OA=12AG .在Rt △AOD 中,, ∴AG=2AO=2.故答案为2.13、x≥﹣32且x≠1. 【解题分析】根据分式有意义的条件、二次根式有意义的条件列式计算.【题目详解】由题意得,2x+3≥0,x-1≠0,解得,x≥-32且x≠1, 故答案为:x≥-32且x≠1. 【题目点拨】本题考查的是函数自变量的取值范围,①当表达式的分母不含有自变量时,自变量取全体实数.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.14、1【解题分析】求出样本中有标记的所占的百分比,再用样本容量除以百分比即可解答.【题目详解】解:()20420÷÷2020%=÷100=只.故答案为:1.【题目点拨】本题考查的是通过样本去估计总体,总体百分比约等于样本百分比.15、2a a - 【解题分析】先利用除法法则变形,约分后通分并利用同分母分式的减法法则计算即可.【题目详解】原式()()22222(1)222(1)(2)222a a a a a a a a a a +-++-=⋅-==+----, 故答案为2a a - 【题目点拨】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.16、1.【解题分析】∵AB =5,AD =12,∴根据矩形的性质和勾股定理,得AC =13.∵BO 为R t△ABC 斜边上的中线∴BO =6.5∵O 是AC 的中点,M 是AD 的中点,∴OM 是△ACD 的中位线∴OM =2.5∴四边形ABOM 的周长为:6.5+2.5+6+5=1故答案为117、-3<a ≤-2【解题分析】分析:求出不等式组中两不等式的解集,根据不等式取解集的方法:同大取大;同小取小;大大小小无解;大小小大取中间的法则表示出不等式组的解集,由不等式组只有四个整数解,根据解集取出四个整数解,即可得出a 的范围. 详解:0521x a x ①②,-≥⎧⎨->⎩ 由不等式①解得:x a ≥;由不等式②移项合并得:−2x >−4,解得:x <2,∴原不等式组的解集为2a x ,≤<由不等式组只有四个整数解,即为1,0,−1,−2,可得出实数a 的范围为3 2.a -<≤-故答案为3 2.a -<≤-点睛:考查一元一次不等式组的整数解,求不等式的解集,根据不等式组有4个整数解觉得实数a 的取值范围.三、解答题(共7小题,满分69分)18、(1)0.3,45;(2)108︒;(3)16【解题分析】(1)根据频数的和为样本容量,频率的和为1,可直接求解;(2)根据频率可得到百分比,乘以360°即可;(3)列出相应的可能性表格,找到所发生的所有可能和符合条件的可能求概率即可.【题目详解】(1)a=0.3,b=45(2)360°×0.3=108° (3)列关系表格为:由表格可知,满足题意的概率为:16. 考点:1、频数分布表,2、扇形统计图,3、概率19、(1)见解析;(2)见解析【解题分析】(1)从所给的条件可知,DE 是△ABC 中位线,所以DE ∥BC 且2DE=BC ,所以BC 和EF 平行且相等,所以四边形BCFE 是平行四边形,又因为BE=FE ,所以四边形BCFE 是菱形.(2)因为∠BCF=120°,所以∠EBC=60°,所以菱形的边长也为4,求出菱形的高面积就可.【题目详解】解:(1)证明:∵D 、E 分别是AB 、AC 的中点,∴DE ∥BC 且2DE=BC .又∵BE=2DE ,EF=BE ,∴EF=BC ,EF ∥BC .∴四边形BCFE 是平行四边形.又∵BE=FE ,∴四边形BCFE 是菱形.(2)∵∠BCF=120°,∴∠EBC=60°.∴△EBC 是等边三角形.∴菱形的边长为4,高为∴菱形的面积为4×20、不等式组的解集是5<x ≤1,整数解是6,1【解题分析】先分别求出两个不等式的解,求出解集,再根据整数的定义得到答案.【题目详解】43(2)52364x x x x --<-⎧⎪⎨-≥-⎪⎩①② ∵解①得:x >5,解不等式②得:x ≤1,∴不等式组的解集是5<x ≤1,∴不等式组的整数解是6,1.【题目点拨】本题考查求一元一次不等式组,解题的关键是掌握求一元一次不等式组的方法21、(1)应安排4天进行精加工,8天进行粗加工(2)①20001000(140)W m m =+-=1000140000m +②安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元【解题分析】解:(1)设应安排x 天进行精加工,y 天进行粗加工,根据题意得12{515140.x y x y +=+=, 解得4{8.x y ==,答:应安排4天进行精加工,8天进行粗加工.(2)①精加工m 吨,则粗加工(140m -)吨,根据题意得20001000(140)W m m =+-=1000140000m + ②要求在不超过10天的时间内将所有蔬菜加工完,14010515m m -∴+≤ 解得5m ≤ 05m ∴<≤ 又在一次函数1000140000W m =+中,10000k =>, W ∴随m 的增大而增大,∴当5m =时,10005140000145000.W =⨯+=最大∴精加工天数为55÷=1,粗加工天数为(1405)159-÷=.∴安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元.22、(1)证明见解析;(2)能;BE=1或116;(3)9625 【解题分析】(1)证明:∵AB =AC ,∴∠B =∠C ,∵△ABC ≌△DEF ,∴∠AEF =∠B ,又∵∠AEF +∠CEM =∠AEC =∠B +∠BAE ,∴∠CEM =∠BAE ,∴△ABE ∽△ECM ;(2)能.∵∠AEF =∠B =∠C ,且∠AME >∠C ,∴∠AME >∠AEF ,∴AE≠AM ;当AE =EM 时,则△ABE ≌△ECM ,∴CE =AB =5,∴BE =BC−EC =6−5=1,当AM =EM 时,则∠MAE =∠MEA ,∴∠MAE +∠BAE =∠MEA +∠CEM ,即∠CAB =∠CEA ,又∵∠C =∠C ,∴△CAE ∽△CBA , ∴CE AC AC CB=,∴CE =2256CB AC =, ∴BE =6−256=116; ∴BE =1或116; (3)解:设BE =x ,又∵△ABE ∽△ECM , ∴CM CE BE AB=,即:65CM x x -=, ∴CM =22619(3)5555x x x , ∴AM =5−CM 2116(3)55x , ∴当x =3时,AM 最短为165, 又∵当BE =x =3=12BC 时, ∴点E 为BC 的中点, ∴AE ⊥BC ,∴AE =4, 此时,EF ⊥AC ,∴EM 22125CM , S △AEM =116129625525. 23、(1)每辆A 型自行车的进价为2 000元,每辆B 型自行车的进价为1 600元;(2)当购进A 型自行车34辆,B 型自行车66辆时获利最大,最大利润为13300元.【解题分析】(1)设每辆B 型自行车的进价为x 元,则每辆A 型自行车的进价为(x +10)元,根据题意列出方程,求出方程的解即可得到结果;(2)由总利润=单辆利润×辆数,列出y 与x 的关系式,利用一次函数性质确定出所求即可.【题目详解】(1)设每辆B 型自行车的进价为x 元,则每辆A 型自行车的进价为(x+10)元,根据题意,得=,解得x=1600,经检验,x=1600是原方程的解,x+10=1 600+10=2 000,答:每辆A型自行车的进价为2 000元,每辆B型自行车的进价为1 600元;(2)由题意,得y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000,根据题意,得,解得:33≤m≤1,∵m为正整数,∴m=34,35,36,37,38,39,1.∵y=﹣50m+15000,k=﹣50<0,∴y随m的增大而减小,∴当m=34时,y有最大值,最大值为:﹣50×34+15000=13300(元).答:当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.【题目点拨】本题主要考查一次函数的应用、分式方程的应用及一元一次不等式组的应用.仔细审题,找出题目中的数量关系是解答本题的关键.24、(1)y1=273x-+;y2=13x2﹣4x+2;(2)5月出售每千克收益最大,最大为73.【解题分析】(1)观察图象找出点的坐标,利用待定系数法即可求出y1和y2的解析式;(2)由收益W=y1-y2列出W与x的函数关系式,利用配方求出二次函数的最大值.【题目详解】解:(1)设y1=kx+b,将(3,5)和(6,3)代入得,3563k bk b+=⎧⎨+=⎩,解得237kb⎧=-⎪⎨⎪=⎩.∴y1=﹣23x+1.设y2=a(x﹣6)2+1,把(3,4)代入得,4=a(3﹣6)2+1,解得a=13.∴y2=13(x﹣6)2+1,即y2=13x2﹣4x+2.(2)收益W=y1﹣y2,=﹣23x+1﹣(13x2﹣4x+2)=﹣13(x﹣5)2+73,∵a=﹣13<0,∴当x=5时,W最大值=73.故5月出售每千克收益最大,最大为73元.【题目点拨】本题考查了一次函数和二次函数的应用,熟练掌握待定系数法求解析式是解题关键,掌握配方法是求二次函数最大值常用的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京四中中考数学全真模拟试题(4)浙教版第Ⅰ卷 (机读卷 共32分)一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑. 1.5-的相反数是( )A .5B .5-C .15 D .15- 2.在第十一届全国人民代表大会第二次会议上,温家宝总理在政府报告中指出:2008年我国粮食连续五年增产,总产量为52850万吨,创历史最高水平.将52850用科学记数法表示应为( )A .528510⨯B .352.8510⨯ C .35.28510⨯ D .45.28510⨯ 3.五边形的内角和是( )A .180°B .360°C .540°D .720° 4.我国部分城市五月某一天最高温度如下表,这些数据的众数和中位数分别是( )A .29,28B .31,29C .26,30D .25,315.若两圆的半径分别是2cm 和5cm ,圆心距为3cm ,则这两圆的位置关系是( ) A .外离 B .相交 C .外切 D .内切 6.如图,有4张形状、大小、质地均相同的卡片,正面分别写有一个实数,背面完全相同.现将这4张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出卡片正面的实数是无理数的概率是A .12B .14C .34D .17.已知:2222233+=⨯,2333388+=⨯,244441515+=⨯,255552424+=⨯,…,若 21010b ba a+=⨯符合前面式子的规律,则a b +的值为( )A .179B .140C .109D .210 8.将一正方体纸盒沿下右图所示的粗实线剪开,展开成平面图,其展开图的形状为( ).纸盒剪裁线正方体纸盒0.16—32A . B. C. D.第Ⅱ卷 (非机读卷 共88分)二、填空题(共4道小题,每小题4分,共16分) 9.在函数y =x 的取值范围是______________.10.如图,点A 、B 、C 是⊙O 上三点,∠C 为20°,则∠AOB 的度数 为__________°.11.分解因式:2242x x ++=____________________.12.如图,小正方形方格的边长为1cm ,则AB ⌒的长为___________cm .三、解答题(共5道小题,共25分) 13.(本小题满分5分)计算:112sin 60(2009)2-⎛⎫+- ⎪⎝⎭.14.(本小题满分5分)解不等式组()2035148x x x -<⎧⎪⎨+-⎪⎩≥,15.(本小题满分5分)已知:如图,AB ∥DE ,∠A =∠D ,且BE =CF , 求证:∠ACB =∠F . 16.(本小题满分5分)先化简,再求值:2314223a a a a +-⎛⎫+÷⎪--⎝⎭,其中2410a a -+=.17.(本小题满分5分)AOBA B C DFAOCBCBDA图1图2AD 'BCACE OBD F 如图,反比例函数ky x=的图象与一次函数y mx b =+的图象交于(13)A ,,(1)B n -,两点.求反比例函数与一次函数的解析式.四、解答题(共2道小题,共10分) 18.(本小题满分5分)如图1,矩形纸片ABCD 中,AB =4,BC =43,将矩形纸片沿对角线AC 向下翻折,点D 落在点D ’处,联结B D ’,如图2,求线段BD ’ 的长.19.(本小题满分5分)如图,点D 是⊙O 直径CA 的延长线上一点,点B 在⊙O 上,且AB =AD =AO . (1)求证:BD 是⊙O 的切线;(2)若点E 是劣弧BC 上一点,弦AE 与BC 相交于点F ,且CF =9,cos∠BFA =32,求EF 的长.五、解答题(本题满分5分)图1ACE DB20.某校学生会准备调查本校初中三年级同学每天(除课间操外)课外锻炼的平均时间.(1)确定调查方式时,①甲同学说:“我到1班去调查全体同学”;②乙同学说:“我到体育场上去询问参加锻炼的同学”;③丙同学说:“我到初中三年级每个班去随机调查一定数量的同学”.上面同学说的三种调查方式中最为合理的是___________(填写序号); (2)他们采用了最为合理的调查方式收集数据,并绘制出如图1所示的条形统计图和如图2所示的扇形统计图,请将图1补充完整;(3)若该校初中三年级共有240名同学,则其中每天(除课间操外)课外锻炼平均时间不大于20分钟的人数约为__________人. (注:图2中相邻两虚线形成的圆心角为30°)六、解答题(共2道小题,共10分) 21.(本小题满分5分)列方程或方程组解应用题:2008年5月12日14时28分在我国四川省汶川地区发生了里氏8.0级强烈地震,灾情牵动全国人民的心.“一方有难、八方支援”,某厂计划加工1500顶帐篷支援灾区,在加工了300顶帐篷后,由于情况紧急,该厂又增加了人员进行生产,将工作效率提高到原来的1.5倍,结果提前4天完成任务.问该厂原来每天加工多少顶帐篷.22.(本小题满分5分)把两个三角形按如图1放置,其中90ACB DEC ==︒∠∠, 45A =︒∠,30D =︒∠,且6AB =,7DC =.把△DCE 绕点C 顺时针旋转15°得到△D 1CE 1,如图2,这时AB 与CD 1相交于点O ,与D 1E 1相交于点F .(1)求1ACD ∠的度数;(2)求线段AD 1的长; (3)若把△D 1CE 1绕点C 顺时针再旋转30°得到△D 2CE 2,这时点B 在△D 2CE 2的内部、外部、还是边上?请说明理由.七、解答题(本题满分7分)B 图2A E 1C D 1O F23.如图1,在ABC △中,ACB ∠为锐角,点D 为射线BC 上一点,联结AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB AC =,90BAC =∠,①当点D 在线段BC 上时(与点B 不重合),如图2,线段CF BD 、所在直线的位置关系为 __________ ,线段CF BD 、的数量关系为 ;②当点D 在线段BC 的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB AC ≠,BAC ∠是锐角,点D在线段BC 上,当ACB ∠满足什么条件时,CF BC ⊥(点C F 、不重合),并说明理由.八、解答题(本题满分7分)24. 如图,在平面直角坐标系中,直线1(0)2y x b b =-+>分别交x 轴、y 轴于A B 、两点.点(40)C ,、(80)D ,,以CD 为一边在x 轴上方作矩形CDEF ,且:1:2CF CD =.设矩形CDEF 与ABO △重叠部分的面积为S . (1)求点E 、F 的坐标;(2)当b 值由小到大变化时,求S 与b 的函数关系式; (3)若在直线1(0)2y x b b =-+>上存在点Q ,使OQC ∠等于90,请直接..写出b 的取值范围.九、解答题(本题满分8分)图1图2C图3E25.已知抛物线223y x bx c =-++与x 轴交于不同的两点()10A x ,和()20B x ,,与y 轴交于点C ,且12x x ,是方程2230x x --=的两个根(12x x <).(1)求抛物线的解析式;(2)过点A 作AD ∥CB 交抛物线于点D ,求四边形ACBD 的面积; (3)如果P 是线段AC 上的一个动点(不与点A 、C 重合),过点P 作平行于x 轴的直线l 交BC 于点Q ,那么在x 轴上是否存在点R ,使得△PQR 为等腰直角三角形?若存在,求出点R 的坐标;若不存在,请说明理由.中考数学模拟试题(4)答案及评分参考一、选择题(共8道小题,每小题4分,共32分)1.A ; 2.D ; 3.C ; 4.B ; 5.D ; 6.B ; 7.C ; 8.A . 二、填空题(共4道小题,每小题4分,共16分)9.x ≥1; 10.40; 11.()221x +; 12. 三、解答题(共5道小题,共25分)13.解:112sin 60(2009)2-⎛⎫+- ⎪⎝⎭ 14. ()2035148x x x -<⎧⎪⎨+-⎪⎩≥, ①,②212=+-+…………4分 解:解不等式①,得x >2; · 2分3=-5分 解不等式②,得1x -≥; 4分在数轴上表示不等式①、②的解集,∴原不等式组的解集为x >2. 5分15.证明: ∵AB ∥DE ,∴∠B =∠DEF , ···················· 1分∵BE =CF , ∴BE +CE =CF +CE ,即BC =EF , ············ 2分 ∵∠A =∠D ,∴△ABC ≌△DEF . ·················· 4分 ∴∠ACB =∠F . ························· 5分16.解:2314223a a a a +-⎛⎫+÷ ⎪--⎝⎭2314223a a a a +-⎛⎫=-÷ ⎪--⎝⎭22423a a a +-=÷-………2分 ()()23222a a a a +=⋅-+-2344a a =-+ ················· 4分∵2410a a -+= ∴241a a -=-当241a a -=-时, 原式3114==-+.················ 5分 17.解:(1)∵点A (13),在反比例函数ky x =的图象上,∴3k =, …………………1分∴反比例函数的解析式为3y x =, ················ 2分∵点B (1)n -,在反比例函数3y x=的图象上,∴31n=-,∴3n =-,····················· 3分 ∴点B 的坐标为(31)--,,∵点A 、点B 在一次函数y mx b =+的图象上. ∴331m b m b +=⎧⎨-+=-⎩,∴12m b =⎧⎨=⎩ ∴一次函数的解析式为2y x =+ ················· 5分。

相关文档
最新文档