高考数列压轴题
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明: +… (n∈N*)
24.已知数列{an}满足:a1= ,an+1= +an(n∈N*).
(1)求证:an+1>an;
(2)求证:a2017<1;
(3)若ak>1,求正整数k的最小值.
25.已知数列{an}满足:an2﹣an﹣an+1+1=0,a1=2
(1)求a2,a3;
(I)当0≤a1≤1时,0≤an≤1;
(II)当a1>1时,an>(a1﹣1)a1n﹣1;
(III)当a1= 时,n﹣ <Sn<n.
7.已知数列{an}满足a1=1,Sn=2an+1,其中Sn为{an}的前n项和(n∈N*).
(Ⅰ)求S1,S2及数列{Sn}的通项公式;
(Ⅱ)若数列{bn}满足 ,且{bn}的前n项和为Tn,求证:当n≥2时, .
(Ⅲ)求证:对∀p∈N*,由(Ⅱ)中xn构成的数列{xn}满足0<xn﹣xn+p< .
12.已知数列{an},{bn},a0=1, ,(n=0,1,2,…), ,Tn为数列{bn}的前n项和.
求证:(Ⅰ)an+1<an;
(Ⅱ) ;
(Ⅲ) .
13.已知数列{an}满足:a1= ,an=an﹣12+an﹣1(n≥2且n∈N).
(1)证明: ;
(2)证明: .
29.已知数列{an}满足a1=2,an+1=2(Sn+n+1)(n∈N*),令bn=an+1.
(Ⅰ)求证:{bn}是等比数列;
(Ⅱ)记数列{nbn}的前n项和为Tn,求Tn;
(Ⅲ)求证: ﹣ < +…+ .
30.已知数列{an}中,a1=3,2an+1=an2﹣2an+4.
(Ⅰ)若{an}是递增数列,求a1的取值围;
(Ⅱ)若a1>2,且对任意n∈N*,都有Sn≥na1﹣ (n﹣1),证明:Sn<2n+1.
11.设an=xn,bn=( )2,Sn为数列{an•bn}的前n项和,令fn(x)=Sn﹣1,x∈R,a∈N*.
(Ⅰ)若x=2,求数列{ }的前n项和Tn;
(Ⅱ)求证:对∀n∈N*,方程fn(x)=0在xn∈[ ,1]上有且仅有一个根;
(2)证明数列为递增数列;
(3)求证: <1.
26.已知数列{an}满足:a1=1, (n∈N*)
(Ⅰ)求证:an≥1;
(Ⅱ)证明: ≥1+
(Ⅲ)求证: <an+1<n+1.
27.在正项数列{an}中,已知a1=1,且满足an+1=2an (n∈N*)
(Ⅰ)求a2,a3;
(Ⅱ)证明.an≥ .
28.设数列{an}满足 .
(1)求数列{an}的通项公式;
(2)求证: + +…+ < ;
(3)记Sn= + +…+ ,证明:对于一切n≥2,都有Sn2>2( + +…+ ).
22.已知数列{an}满足a1=1,an+1= ,n∈N*.
(1)求证: ≤an≤1;
(2)求证:|a2n﹣an|≤ .
23.已知数列{an]的前n项和记为Sn,且满足Sn=2an﹣n,n∈N*
8.已知数列{an}满足a1=1, (n∈N*),
(Ⅰ) 证明: ;
(Ⅱ) 证明: .
9.设数列{an}的前n项的和为Sn,已知a1= ,an+1= ,其中n∈N*.
(1)证明:an<2;
(2)证明:an<an+1;
(3)证明:2n﹣ ≤Sn≤2n﹣1+( )n.
10.数列{an}的各项均为正数,且an+1=an+ ﹣1(n∈N*),{an}的Biblioteka Baidun项和是Sn.
19.已知数列{an}满足an>0,a1=2,且(n+1)an+12=nan2+an(n∈N*).
(Ⅰ)证明:an>1;
(Ⅱ)证明: + +…+ < (n≥2).
20.已知数列{an}满足: .
(1)求证: ;
(2)求证: .
21.已知数列{an}满足a1=1,且an+12+an2=2(an+1an+an+1﹣an﹣ ).
(Ⅰ)求a2,a3;并证明:2 ﹣ ≤an≤ •3 ;
(Ⅱ)设数列{an2}的前n项和为An,数列{ }的前n项和为Bn,证明: = an+1.
14.已知数列{an}的各项均为非负数,其前n项和为Sn,且对任意的n∈N*,都有 .
(1)若a1=1,a505=2017,求a6的最大值;
(2)若对任意n∈N*,都有Sn≤1,求证: .
(Ⅰ)0<xn+1<xn;
(Ⅱ)2xn+1﹣xn≤ ;
(Ⅲ) ≤xn≤ .
3.数列{an}中,a1= ,an+1= (n∈N*)
(Ⅰ)求证:an+1<an;
(Ⅱ)记数列{an}的前n项和为Sn,求证:Sn<1.
4.已知正项数列{an}满足an2+an=3a2n+1+2an+1,a1=1.
(1)求a2的值;
15.已知数列{an}中,a1=4,an+1= ,n∈N*,Sn为{an}的前n项和.
(Ⅰ)求证:n∈N*时,an>an+1;
(Ⅱ)求证:n∈N*时,2≤Sn﹣2n< .
16.已知数列{an}满足,a1=1,an= ﹣ .
(1)求证:an≥ ;
(2)求证:|an+1﹣an|≤ ;
(3)求证:|a2n﹣an|≤ .
高考数列压轴题
一.解答题(共50小题)
1.数列{an}满足a1=1,a2= + ,…,an= + +…+ (n∈N*)
(1)求a2,a3,a4,a5的值;
(2)求an与an﹣1之间的关系式(n∈N*,n≥2);
(3)求证:(1+ )(1+ )…(1+ )<3(n∈N*)
2.已知数列{xn}满足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),证明:当n∈N*时,
17.设数列{an}满足:a1=a,an+1= (a>0且a≠1,n∈N*).
(1)证明:当n≥2时,an<an+1<1;
(2)若b∈(a2,1),求证:当整数k≥ +1时,ak+1>b.
18.设a>3,数列{an}中,a1=a,an+1= ,n∈N*.
(Ⅰ)求证:an>3,且 <1;(Ⅱ)当a≤4时,证明:an≤3+ .
(2)证明:对任意实数n∈N*,an≤2an+1;
(3)记数列{an}的前n项和为Sn,证明:对任意n∈N*,2﹣ ≤Sn<3.
5.已知在数列{an}中, .,n∈N*
(1)求证:1<an+1<an<2;
(2)求证: ;
(3)求证:n<sn<n+2.
6.设数列{an}满足an+1=an2﹣an+1(n∈N*),Sn为{an}的前n项和.证明:对任意n∈N*,
(Ⅱ)证明: +… (n∈N*)
24.已知数列{an}满足:a1= ,an+1= +an(n∈N*).
(1)求证:an+1>an;
(2)求证:a2017<1;
(3)若ak>1,求正整数k的最小值.
25.已知数列{an}满足:an2﹣an﹣an+1+1=0,a1=2
(1)求a2,a3;
(I)当0≤a1≤1时,0≤an≤1;
(II)当a1>1时,an>(a1﹣1)a1n﹣1;
(III)当a1= 时,n﹣ <Sn<n.
7.已知数列{an}满足a1=1,Sn=2an+1,其中Sn为{an}的前n项和(n∈N*).
(Ⅰ)求S1,S2及数列{Sn}的通项公式;
(Ⅱ)若数列{bn}满足 ,且{bn}的前n项和为Tn,求证:当n≥2时, .
(Ⅲ)求证:对∀p∈N*,由(Ⅱ)中xn构成的数列{xn}满足0<xn﹣xn+p< .
12.已知数列{an},{bn},a0=1, ,(n=0,1,2,…), ,Tn为数列{bn}的前n项和.
求证:(Ⅰ)an+1<an;
(Ⅱ) ;
(Ⅲ) .
13.已知数列{an}满足:a1= ,an=an﹣12+an﹣1(n≥2且n∈N).
(1)证明: ;
(2)证明: .
29.已知数列{an}满足a1=2,an+1=2(Sn+n+1)(n∈N*),令bn=an+1.
(Ⅰ)求证:{bn}是等比数列;
(Ⅱ)记数列{nbn}的前n项和为Tn,求Tn;
(Ⅲ)求证: ﹣ < +…+ .
30.已知数列{an}中,a1=3,2an+1=an2﹣2an+4.
(Ⅰ)若{an}是递增数列,求a1的取值围;
(Ⅱ)若a1>2,且对任意n∈N*,都有Sn≥na1﹣ (n﹣1),证明:Sn<2n+1.
11.设an=xn,bn=( )2,Sn为数列{an•bn}的前n项和,令fn(x)=Sn﹣1,x∈R,a∈N*.
(Ⅰ)若x=2,求数列{ }的前n项和Tn;
(Ⅱ)求证:对∀n∈N*,方程fn(x)=0在xn∈[ ,1]上有且仅有一个根;
(2)证明数列为递增数列;
(3)求证: <1.
26.已知数列{an}满足:a1=1, (n∈N*)
(Ⅰ)求证:an≥1;
(Ⅱ)证明: ≥1+
(Ⅲ)求证: <an+1<n+1.
27.在正项数列{an}中,已知a1=1,且满足an+1=2an (n∈N*)
(Ⅰ)求a2,a3;
(Ⅱ)证明.an≥ .
28.设数列{an}满足 .
(1)求数列{an}的通项公式;
(2)求证: + +…+ < ;
(3)记Sn= + +…+ ,证明:对于一切n≥2,都有Sn2>2( + +…+ ).
22.已知数列{an}满足a1=1,an+1= ,n∈N*.
(1)求证: ≤an≤1;
(2)求证:|a2n﹣an|≤ .
23.已知数列{an]的前n项和记为Sn,且满足Sn=2an﹣n,n∈N*
8.已知数列{an}满足a1=1, (n∈N*),
(Ⅰ) 证明: ;
(Ⅱ) 证明: .
9.设数列{an}的前n项的和为Sn,已知a1= ,an+1= ,其中n∈N*.
(1)证明:an<2;
(2)证明:an<an+1;
(3)证明:2n﹣ ≤Sn≤2n﹣1+( )n.
10.数列{an}的各项均为正数,且an+1=an+ ﹣1(n∈N*),{an}的Biblioteka Baidun项和是Sn.
19.已知数列{an}满足an>0,a1=2,且(n+1)an+12=nan2+an(n∈N*).
(Ⅰ)证明:an>1;
(Ⅱ)证明: + +…+ < (n≥2).
20.已知数列{an}满足: .
(1)求证: ;
(2)求证: .
21.已知数列{an}满足a1=1,且an+12+an2=2(an+1an+an+1﹣an﹣ ).
(Ⅰ)求a2,a3;并证明:2 ﹣ ≤an≤ •3 ;
(Ⅱ)设数列{an2}的前n项和为An,数列{ }的前n项和为Bn,证明: = an+1.
14.已知数列{an}的各项均为非负数,其前n项和为Sn,且对任意的n∈N*,都有 .
(1)若a1=1,a505=2017,求a6的最大值;
(2)若对任意n∈N*,都有Sn≤1,求证: .
(Ⅰ)0<xn+1<xn;
(Ⅱ)2xn+1﹣xn≤ ;
(Ⅲ) ≤xn≤ .
3.数列{an}中,a1= ,an+1= (n∈N*)
(Ⅰ)求证:an+1<an;
(Ⅱ)记数列{an}的前n项和为Sn,求证:Sn<1.
4.已知正项数列{an}满足an2+an=3a2n+1+2an+1,a1=1.
(1)求a2的值;
15.已知数列{an}中,a1=4,an+1= ,n∈N*,Sn为{an}的前n项和.
(Ⅰ)求证:n∈N*时,an>an+1;
(Ⅱ)求证:n∈N*时,2≤Sn﹣2n< .
16.已知数列{an}满足,a1=1,an= ﹣ .
(1)求证:an≥ ;
(2)求证:|an+1﹣an|≤ ;
(3)求证:|a2n﹣an|≤ .
高考数列压轴题
一.解答题(共50小题)
1.数列{an}满足a1=1,a2= + ,…,an= + +…+ (n∈N*)
(1)求a2,a3,a4,a5的值;
(2)求an与an﹣1之间的关系式(n∈N*,n≥2);
(3)求证:(1+ )(1+ )…(1+ )<3(n∈N*)
2.已知数列{xn}满足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),证明:当n∈N*时,
17.设数列{an}满足:a1=a,an+1= (a>0且a≠1,n∈N*).
(1)证明:当n≥2时,an<an+1<1;
(2)若b∈(a2,1),求证:当整数k≥ +1时,ak+1>b.
18.设a>3,数列{an}中,a1=a,an+1= ,n∈N*.
(Ⅰ)求证:an>3,且 <1;(Ⅱ)当a≤4时,证明:an≤3+ .
(2)证明:对任意实数n∈N*,an≤2an+1;
(3)记数列{an}的前n项和为Sn,证明:对任意n∈N*,2﹣ ≤Sn<3.
5.已知在数列{an}中, .,n∈N*
(1)求证:1<an+1<an<2;
(2)求证: ;
(3)求证:n<sn<n+2.
6.设数列{an}满足an+1=an2﹣an+1(n∈N*),Sn为{an}的前n项和.证明:对任意n∈N*,