水中钢吊箱承台施工工法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水中钢吊箱承台施工工法
中铁十五局集团第四工程有限公司
前言
福州市六一路闽江大桥重建工程,主桥为46+75+80+75+46米5孔一联的预应力砼变截面连续箱梁,1#~4#墩为水中钻孔灌注桩,直径¢1.8米,每个承台4根桩基,承台8个均位于水面以下,每个承台尺寸为顺桥向6.7m,横向8.1 m,承台顶面标高+1.5 m,底面标高-1.5 m。左、右幅承台间净距7.41 m,分离式墩身,桥址位于闽江下游,水深13米左右,平常水位+3~+5.0 m,设计流速2.38m/s,百年一遇洪水最高设计水位+8.34米,每天涨落潮两次,墩位处于径流和潮流的过渡段,受径流作用,又受潮流的影响,为深水基础。工期紧,施工难度大,技术含量高,为确保工程质量,加快施工进度,为此成立了攻关小组,召开多次专题方案论证会,经过方案比选,可操作性研究,优化设计,1#~4#墩承台采用水中钢吊箱围堰施工,与传统的钢吊箱施工方法有所不同,采用水上封底后,利用千斤顶和精制¢32螺纹钢吊装就位,精度可达到1mm,水下用高标号混凝土封喇叭口,即提高了封底混凝土质量,有减少了封底混凝土数量,即提高了工作效率,有节约了成本,施工方法简单,可操作性强,工艺新颖、质量可靠,在施工期间多次受到了福州市委、市政府的表扬,在福州市电台、电视台进行了多次报道。经集团公司批准,《深水基础钢吊箱围堰承台、墩身施工技术》为2004年度集团公司立项科技开发项目,编号为:局科字2004B06,并于2004年12月28日通过了集团公司组织的专家评审,正在申报总公司和集团公司科技成果进步奖。经过不断完善总结施工技术、结合国家有关规范、标准,总结形成本工法。
一、工法特点
(1)具有结构设计合理,安装方便,便于施工,质量稳定,提高了工程进度,缩短了工期,节约了成本。
(2)钢吊箱围堰即是用于水下施工的临时性挡水设施,侧板、底板有兼作承台底模与侧模。
(3)与传统的钢吊箱施工方法有所不同,采用水上封底后,利用千斤顶和精制¢32螺纹钢吊装就位,精度可达到1mm。
二、适用范围
适用于铁路、公路、市政桥梁工程的深水承台、墩身施工。
三、工法原理
钢吊箱围堰是为承台施工而设计的临时阻水结构,其作用是通过吊箱围堰侧板和底板上的封底混凝土围水,为承台施工提供无水的干处施工环境。
四、施工工艺
1、工艺流程(见图2)。
2、关键技术
1)钢吊箱围堰的设计技术
钢吊箱围堰的设计,要充分利用钻孔作业平台定位桩搭设钢吊箱工作平台,宜采用钢护筒搭设扁担梁吊装钢吊箱。
钢吊箱围堰是用于水下施工的临时性挡水设施,侧板、底板是钢吊箱围堰的主要阻水结构并兼作承台底模与侧模。
根据自然水位变化及钢吊箱施工作业时段,设计施工受力结构主要按照最高水位时,吊箱内抽干水后侧板所受水压力为设计依据,最低水位时,现浇承台砼侧压力进行校核,考虑最高水位时,钢吊箱抗浮措施。
钢吊箱围堰的设计为有底单壁钢结构,采用型钢与钢板焊接成型,护筒位置在底板设喇叭口,按实测桩位偏差设计,为防止渗漏,宜采用整体焊接或分节焊接组装而成,侧模与侧模的连接采用螺杆与大楔杆的连接方法,侧模与底模采用螺杆连接,采用水上拆卸作业,减少水下作业,提高工作效率。宜在水上浇注封底混凝施工后,同吊箱吊装到设计标高,用高标号混凝土在水下封喇叭口。
(1)设计参数
①施工水位、最高水位、最低水位,设计流速,设计流量;
②承台底面标高、顶面标高、厚度及承台平面尺寸;
③钢板、钢管、型钢、拆装梁、φ32精制螺纹钢的材料质量;
④C50封底混凝土与护筒之间的摩阻力取经验值300KN/m2。
(2)结构设计
①工况条件根据钢吊箱围堰施工工作时段及设计受力状态,可按以下几个工况进行分析:下沉阶段;封底混凝土施工阶段;抽水后承台施工阶段。
②根据水文资料分析,确定钢吊箱施工水位为及钢吊箱的高度。一般钢吊箱的高度比最高水位高1.0—1.5m。
③结构设计条件综合各工况条件、水位条件确定钢吊箱结构设计条件。
④封底混凝土的厚度根据钢吊箱的自重、封底混凝土重、浮力、喇叭口混凝土与护筒的粘结力计算确定。
(3)结构型式
根据钢吊箱使用功能,将其分为侧板、底板、内支撑、吊挂系统四大部分。其中,侧板、底板是吊箱围堰的主要阻水结构,根据现场及设计情况,宜选用单壁侧板结构(见图1)。
①吊箱底板:由底模托梁和底模组成,底模为肋板式焊接结构,喇叭口位置根据
护筒位置确定(施工时根据桩位实测偏差可做适当调整),内径比护筒直径大400mm以上,喇叭口上部设计一圈与封底混凝土高度一致的钢板,作为封底混凝土喇叭口的腹板,喇叭口下部设置φ8钢筋一圈并焊接弯钩防止袋装料滑下水中。
②侧板:采用单壁结构,为肋板式焊接结构,由型钢和钢板焊接而成。侧板与侧板连接采用螺栓、拉杆及钢楔杆连接,侧板与底板采用螺栓连接,宜用加长套筒在水上拆卸。
③吊箱内支撑:内支撑由内圈梁,水平撑杆及竖向支架三部分组成。内圈梁根据侧板受力情况按不同的高程设计,在吊箱侧板的内侧形成水平环,安装在侧板内壁竖向支撑上。内圈梁的作用主要是承受侧板传递的荷载,并将其传给水平撑杆。水平撑杆一般设计为井字、十字等结构,杆端焊接钢板用螺栓与内圈梁连接成一体,水平撑杆各杆间宜焊接在一起。竖向支架底端焊接到底板上,上端与水平撑杆焊接。竖向支架的作用主要是支撑水平撑杆。
④吊箱吊挂系统:吊挂系统由扁担梁、吊杆及钢护筒组成,吊挂系统的作用是承担吊箱自重及封底混凝土的重量。
扁担梁2排,均设在钢护筒顶,由2根拆装梁或型钢加工成一排扁担梁,焊接在护筒顶部。扁担梁的作用是支承吊杆并将吊杆荷载传递给钢护筒。
吊杆:吊杆是由φ32 mm精轧螺纹粗钢及与之配套的连接器、螺帽组成,共8根吊杆,吊杆下端固定到侧板的内圈梁上,上端固定到吊挂系统的扁担梁上。吊杆的作用是将吊箱自重及封底混凝土的重量传给扁担梁。
⑤下沉起吊系统:起吊系统由吊点、吊杆、千斤顶组成,吊点分上吊点、下吊点,上吊点设在扁担梁上,下吊点设在吊箱上层内圈梁上,上、下吊点共8个。
⑥吊箱定位系统:钢吊箱下沉入水后受流水压力的作用,吊箱围堰会向下游漂移,为便于调整吊箱位置,确保顺利下沉,在吊箱侧板内壁与钢护筒之间设上下两层导向系统,每层8个导向。
(4)设计计算
①荷载取值依据由《铁路桥涵设计规范》(TBJ-96)荷载组合;
水平荷载:∑Hj=静水压力+流水压力+风力+其他;
竖直荷载:∑Gj=吊箱自重+封底混凝土重+浮力+其他;其中:单位面积上的静水压力按10KN/㎡计,水压随高度按线性分布;流水压力按桥址处实测流速,风速很小,