复变函数论第四版第二章练习
复变函数论习题集

第一章 复习题1、 设32z i =--,则arg z =_________________. A) 2ar 3ctg B) 3ar 2ctg C) 2ar 3ctg π- D) 2ar 3ctg π+ 2、设cos cos z i θ=+,则z =____________.A)1 B) cos θ C) D) θ3、设12,w z z w z z =⋅=+,则1arg w _________ ()2arg Re 0w z ≠A) = B) ≤ C) < D) ≥4、设(),,0,1,2,3,4i k k z re w k θ===则arg k w =____________.A) B) 25k θπ+ C) 25k θπ+ D) 22,0,15k n n θππ++=± 5. 若12z iz =,则1oz 与2oz 的关系是__________A)同向 B)反向 C)垂直 D)以上都不对6.复平面上三点: 134,0,34i i+-+,则__________ A)三点共圆 B)三点共线C)三点是直角∆顶点 D)三点是正∆顶点7.简单曲线(即约当曲线)是__________曲线.A)连续 B)光滑 C)无重点的连续 D)无重点光滑8.设函数w z =,其定义域E 为1z <,则值域M 为____________. A) 1w < B) [)0,1 C) ()1,1- D) {}|01,0x yi x y +≤<=9.函数1w z=将Z 平面上直线1x =变成W 平面上_________ A )直线 B )圆 C )双曲线 D )抛物线10. 4(1)i +=___________A )2B )2-C )4D )4-11.区域12z <<的边界是1z =,2z =,它们的正方向_____________A )1z =,2z =都是“逆时针”B )1z =“顺时针”, 2z =“逆时针”C )1z =,2z =都是“顺时针”D )1z =“逆时针”, 2z =“顺时针”12.极限0lim ()z z f z →与z 趋于0z 的方式__________________A )无关B )有关C )不一定有关D )与方向有关13.函数238()8z f z z +=+的不连续点集为____________A ){2,1--±B ){}2-C ){2,1D ){2,1-± 14. 53(cos sin )(cos3sin3)i i e i ϕθθθθ-=+,则ϕ=_________________ A )2θ B )4θ- C )4θ D )14θ-15.扩充复平面上,无穷远点∞的ε-邻域是指含于条件_________的点集A )z ε<B )z ε>C )1z ε<D )1z ε>二、多项选择题:1.若12z iz =,则12oz z 是______________A )锐角B )钝角C )直角D )等腰E )正 2.表示实轴的方程是_____________(其中t 是实参数) A )Re 0z = B )Im 0z = C )11z t i -=- D )12z t -= E )3z t = 3.函数2w z =将Z 平面的曲线_____________变成W 平面上的直线(,)z x iy w u iv =+=+A )3z = B) 224x y += C )224x y -=D )4xy =E )229y x -=4.函数1()1f z z=-在单位圆1z <内______________ A )连续 B )不连续 C )一致连续 D )非一致连续 E )解析5.对无穷远点∞,规定________________无意义A )运算∞+∞B )运算∞-∞C )∞的实部D )∞的虚部E )∞的幅角三、填充题:1.复数z x iy =+,当0,0x y <≥时,其幅角的主值arg z =___________________________2.复数i z r e θ=的n 将方根k k w ==____________________________________________3.具备下列性质的非空点集D 称为区域:(1)____________________________________________________(2)_________________________________________________________________4.设D 为复平面上的区域,若_____________________________________________________, 则称D 为单连通区域.5.设E 为一复数集,若_______________________________________________则称在E 上确定了一个单值函数()w f z =.6.在关系式00lim ()()z z f z f z →=中,如果__________________________________就称()f z 在点0z 为广义连续的.7.设12z z i ==,指数形式:12z z =______________________________________ 8. Z 平面上的圆周一般方程可以写成: 其中:9.考虑点集E 若 ,则称0z 为点集E 的聚点。
复变函数论第2章第2节

e z e x iy e x (cos y i sin y ).
( 2.9)
复变指数函数 e z具有下列性质
(1) 当 y 0 时 , z x , 则指数函数与通常实指 数
函数的定义一致; 当 x 0 时 , z iy , 则有欧拉公式
e iy cos y i sin y ;
y
9
定义2.6 规定函数
sin z tan z ; cos z 1 sec z ; cos z
cos z cot z ; sin z 1 csc z , sin z
分别为 z 的正切函数、余切函数 、正割函数及 余割函数 .
四个函数都在分母不为 零的点处解析 , 并且
10
(tan z ) sec2 z ;
若将 y 用复数 z 代替后 , 则有如下的复变正弦
函数、余弦函数概念 :
6
定义2.5 规定函数
iz iz e e , cos z , 2 分别为 z 的正弦函数和余弦函数.
e e sin z 2i
iz
iz
正弦函数和余弦函数有下列性质
(1) 当 z 取实数时, 与通常定义的正弦函数 和余弦
它们在各自的定义区域 内是解析的 .
以上讨论的初等解析函数 (指数函数、三角函
数、双曲函数)都是周期函数 , 它们都是单值函数 .
12
例1 求 sin(1 2i )
解 sin( 1 2i )
e
i (1 2 i )
e 2i
i (1 2 i )
e 2 i e 2 i 2i
区别;
( 2 ) 在 z 平面上, 虽然有 e z e z 2kπ i , 但 (e z ) e z 0 ,
复变函数第四版余家荣答案

复变函数第四版余家荣答案【篇一:1第一章复数与复变函数】京1第一章复数与复变函数1 复数及其代数运算1.复数的概念①在解方程时,有时会遇到负数开方的问题,但在实数范围内负数是不能开平方的。
为此,需要扩大数系。
我们给出如下的代数形式的复数定义:复数的代数定义:把有序实数对(x,y)作代数组合所确定的形如x?iy的数称为(代数形式的)复数,记为z?x?iy,2其中,i满足i??1。
我们称i为虚单位;实数x和y分别称为复数z 的实部和虚部,并记为x?rez,y?imz。
特别地,当imz?0时,z?x?i0?rez?x是实数;当rez?0时且imz?0时,z?iimz?iy称为纯虚数;虚部不为零的复数称为虚数(即不为实数的复数称为虚数);z?0当且仅当rez?0且imz?0,即复数0?0?i?0。
z1?z2当且仅当rez1?rez2且imz1?imz2。
2.复数的代数运算2.1 四则运算设z1?x1?iy1,z2?x2?iy2为任意两个复数,它们的四则运算定义为: 加法:z1?z2?(x1?x2)?i(y1?y2) 减法:z1?z2?(x1?x2)?i(y1?y2) 乘法:z1z2?(x1x2?y1y2)?i(x1y2?x2y1) 除法:z1x1x2?y1y2y1x2?x1y2(z2?0) ??i2222z2x2?y2x2?y22【注】:(1).可见,复数的四则运算,可以按照多项式的四则运算进行,只要注意将i换成?1。
(2).关于除法的具体操作可以按两种方法来进行:①.先看成分式的形式,然后分子分母同乘以一个与分母的实部相等而虚部只相差一个正负号的复数(在后面将会看到,这被定义为共轭复数),再进行简化;②.用复数z1?x1?iy1除以非零复数z2?x2?iy2,就是要求出这样一个复数z?x?iy,使得z1?z2?z。
按乘法的定义,为求出z需要解方程组?x2x?y2y?x1??x2y?xy2?y12.2 共轭复数复数x?iy和x?iy互称为对方的共轭复数,如果记z?x?iy,则用记其共轭复数,即?x?iy?x?iy。
复变函数论习题

复变函数论习题复变函数论习题第⼀章习题1、证明函数()Re f z z =在z 平⾯上处处不可导。
2、试证()2f z z =仅在原点有导数。
3、设333322()z 0()z=00x y i x y f z x y ?+++≠?=+,证明()z f 在原点满⾜C -R 条件,但不可微。
4、若复变函数()z f 在区域D 上解析,并满⾜下列条件之⼀,证明其在区域D 上必为常数。
(1)()z f 在区域D 上为实函数;(2)()*z f 在区域D 上解析;(3)()Re z f 在区域D 上是常数。
5、证明2xy 不能成为z 的⼀个解析函数得实部。
6、若z x iy =+,试证:(1)sin sin cosh cos sinh z x y i x y =+;(2)cos cos cosh sin sinh z x y i x y =-;(3)222sin sin sinh z x y +=;(4)222cos cos sinh z x y =+。
7、试证若函数()f z 和()z ?在0z 解析。
()()000f z z ?==,()00z ?'≠,则 ()()()()000lim z z z f z f z z ??→'='。
(复变函数的洛必达法则) 8、求证:0sin lim1z zz→=。
第⼆章习题9、利⽤积分估值,证明a .()22ii x iy dz π-+≤?,积分路径是联结i -到i 的右半圆周。
b .证明222iidzz+≤?积分路径是直线段。
10、不⽤计算,证明下列积分之值均为零,其中c 均为圆⼼在原点,b .256zc e dzz z ++? 。
11、计算a. ()221:21c z z dzc z z -+=-? ;b. ()()2221:21cz z dzc z z -+=-? 。
12、求积分():1z c e dz c z z =? ,从⽽证明()cos 0cos sin e d πθθθπ=?。
复变函数论第四版答案钟玉泉

复变函数论第四版答案钟玉泉第二章 解析函数(一)1.证明:0>∃δ,使{}0001/),(t t t t δδ+-∈∀,有)()(01t z t z ≠,即C 在)(0t z 的对应去心邻域内无重点,即能够联结割线)()(10t z t z ,是否就存在数列{}01t t n →,使)()(01t z t z n =,于是有0)()(lim )(0101001=--='→t t t z t z t z n n t t n此与假设矛盾.01001),(t t t t t >⇒+∈δ因为 [])()(a r g )()(a r g 010101t z t z t t t z t z -=-- 所以 []])()(lim arg[)()(arglim )()(arg lim 0101010101010101t t t z t z t t t z t z t z t z t t t t t t --=--=-→→→因此,割线确实有其极限位置,即曲线C 在点)(0t z 的切线存在,其倾角为)(arg 0t z '.2.证明:因)(),(z g z f 在0z 点解析,则)(),(00z g z f ''均存在.所以 )()()()()()(lim )()()()(lim )()(lim 00000000000z g z f z z z g z g z z z f z f z g z g z f z f z g z f z z z z z z ''=----=--=→→→ 3.证明:()()()()()3322,0,0,,0,00x y x y u x y x y x y ≠⎧-⎪=+⎨⎪=⎩()()()()()3322,0,0,,0,00x y x y v x y x y x y ≠⎧+⎪=+⎨⎪=⎩于是()()()00,00,00,0limlim 1x x x u x u xu xx →→-===,从而在原点()f z 满足C R -条件,但在原点,()()()()()'0,00,0x x u iv u iv f f z z z+-+-= ()()()()()()333311i x y i zx y z ⎡⎤+--+⎣⎦=⎡⎤+⎣⎦当z 沿0y x =→时,有()()()'212f f z i z x --+= 故()f z 在原点不可微.4.证明:(1)当0≠z 时,即y x ,至少有一个不等于0时,或有y x u u ≠,,或有y x u u ≠-,故z 至多在原点可微.(2)在C 上处处不满足C R -条件. (3)在C 上处处不满足C R -条件. (4)221yx yix z z z z ++==,除原点外, 在C 上处处不满足C R -条件. 5.解:(1) y x y x v xy y x u 22),(,),(==,此时仅当0==y x 时有 xy v xy u x v y u x y y x 22,22-=-===== 且这四个偏导数在原点连续,故)(z f 只在原点可微. (2) 22),(,),(y y x v x y x u ==,此时仅当y x =这条直线上时有 00,22=-=====x y y x v u y v x u且在y x =这四个偏导数连续,故)(z f 只在y x =可微但不解析. (3) 333),(,2),(y y x v x y x u ==,且00,9622=-=====x y y x v u y v x u 故只在曲线0212312=-x y 上可微但不解析.(4) 32233),(,3),(y y x y x v xy x y x u -=-=在全平面上有 xy v xy u y x v y x u x y y x 66,33332222-=-=-=-==-= 且在全平面上这四个偏导数连续,故可微且解析. 6.证明:(1)y y x x iu v iv u z f D yi x z -=+='=∈+=∀)(0,(2)设().f z u iv =+则()f z u iv =-,由()f z 与()f z 均在D 内解析知,,x y y x u v u v ==-,,x y y x u v u v =-=结合此两式得0x y x y u u v v ====,故,u v 均为常数,故)(z f 亦为常数. (3)若0)(=≡C z f ,则显然0)(≡z f ,若0)(≠≡C z f ,则此时有0)(≠z f ,且2)()(C z f z f ≡,即)()(2z f C z f ≡也时解析函数,由(2)知)(z f 为常数.(4)设().f z u iv =+,若C y x u ≡),(,则0,0≡≡y x u u ,由C R -条件得 0,0≡=≡-=x y y x u v u v 因此v u ,为常数, 则)(z f 亦为常数.7.证明:设,f u iv g i f p iQ =+==+则,,f u iv g v iu =-=-由 ()f z 在D 内解析知,x y y x u v u v ==-从而 ,x x y v y y x p v u Q p v u Q x ==-====- 因而()g z 亦D 内解析.8.解:(1)由32233),(,3),(y y x y x v xy x y x u -=-=,则有 222233,6,6,33y x v xy v xy u y x u y x y x -==-=-=故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 22236)33()(z xyi y x i v u z f x x =+-=+='(2) ()()()(),cos sin ,cos sin x x u x y e x y y y v x y e y y x y =-⋅=- ()cos sin cos x x y u e x y y y y v =-+=()s i n s i n c o sx y x u e x y y y y v =--+=- 故()f z 在z 平面上解析,且()()()'cos 1sin sin 1cos x xf z e y x y y ie y x y y =⋅+-+⋅+-⎡⎤⎡⎤⎣⎦⎣⎦(3)由xshy y x v xchy y x u cos ),(,sin ),(==,则有x c h y v x s h y v x s h y u x c h y u y x y x c o s ,s i n ,s i n ,c o s =-===故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且z x s h y i x c h y i v u z f x x c o s s i n c o s)(=-=+=' (4)由xshy y x v xchy y x u sin ),(,cos ),(-==,则有x c h y v x s h y v x s h y u x c h yu y x y x s i n ,c o s ,c o s ,s i n -=-==-= 故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且z x s h y i x c h yi v u z f x x s i n c o s s i n )(-=--=+=' 9.证明:设,i z x yi re θ=+=则cos ,sin ,x r y r θθ== 从而cos sin ,sin cos r x y x y u u u u u r u r θθθθθ=+=-+cos sin ,sin cos ,r x y x y v u v v v r v r θθθθθ=+=-+再由11,r r u v v u r rθθ==-,可得,x y y x u v u v ==-,因此可得()f z 在点z 可微且()()()'11cos sin sin cos x y r r f z u iu r u u i r u u r r θθθθθθ=-=--+()()1c o s s i n s i n c o s r i u i u r θθθθθ=--+()()c o s s i n s i n c o s r r i u iv θθθθ=-++()()c o s s i n r r i u iv θθ=-+ ()()1c o s s i n r r r r ru i v u i v i zθθ=+=++10.解:(1)x y i x z i e e e 2)21(22--+--== (2)222222y zxyiy zz e e e -+-==(3) 22222211x yi xy ix iyx yx yx y ze eeee--++++===⋅所以22221Re cos x yx y x y z e e ++⎛⎫= ⎪⎝⎭11.证明:(1)因为)sin (cos y i y e e e e e x yi x yi z z +=⋅==+ 因此 )sin (cos y i y e e x z -=而)sin (cos y i y e e e e e x yi x yi z z -=⋅==--,得证.(2)因为 ie e z iziz 2sin --=所以 z ie e i e e z iziz z i z i sin 22sin =+=-=--- (3)因为2cos iziz e e z -+=所以z e e e e z iziz z i z i cos 22cos =+=+=-- 12.证明:分别就m 为正整数,零,负整数的情形证明,仅以正整数为例 当1=m 时,等式自然成立. 假设当1-=k m 时,等式成立.那么当k m =时,kz z k z k z e e e e =⋅=-1)()(,等式任成立. 故结论正确.13.解:(1) )1sin 1(cos 333i e e e e i i +=⋅=+(2) ()()()11cos 12i i i i e e i ---+-=()112i i i e e -+++=c o s 11s i n 1122e i e e e ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭14.证明:(1)由于z z g z z f ==)(,sin )(在点0=z 解析 且01)0(,0)0()0(≠='==g g f 因此 11cos sin lim0===→z z zz z(2)由于0)(,1)(=-=z g e z f z 在点0=z 解析,且01)0(,0)0()0(≠='==g g f因此 11lim0==-=→z z z z e ze(3)由于z z z g z z z z f sin )(,cos )(-=-=在点0=z 解析, 且1)0(,0)0()0(,0)0()0(,0)0()0(='''=''=''='='==g g f g f g f 因此 3cos 1sin cos 1lim sin cos lim00=-+-=--→→zzz z z z z z z z z 15.证明:2cos iziz e e z -+=)c o s ()c o s (c o s nb a b a a +++-+=222)()()()(nb a i nb a i b a i b a i ia ia e e e e e e +-++-+-++++++ =⎥⎦⎤⎢⎣⎡--⋅+--⋅+-+ib bn i ia ib b n i ia e e e e e e 111121)1()1(=)2cos(2sin 21sinnb a b bn ++=右边同理证明(2).16.证明:(1) z i e e i i e e i e e iz zz z z iz i iz i sinh 222)sin()()(=-⋅=-=-=--- (2) z e e e e iz z z iz i iz i cosh 22)cos()()(=+=+=-- (3) z i ie e i e e iz iziz iz iz sin 22)sinh(=-⋅=-=--(4) z z iz i iz cos )cos()cos()cosh(=-=⋅= (5) z i zzi iz iz iz tanh cosh sinh )cos()sin()tan(===(6) z i zzi iz iz iz tan cos sin )cosh()sinh()tanh(===17.证明:(1) 1)(sin )(cos )(222222=+=+=-iz iz ishz z ch z sh z ch(2) 111sec 2222222=+=+=+zch zsh z ch z sh z ch z th z h (3) )sin()sin()cos()cos()cos()(21212121iz iz iz iz iz iz z z ch -=+=+2121s h z s h z c h z c h z +=18.证明:(1) xshy i xchy iy x yi x yi x z cos sin )sin(cos )cos(sin )sin(sin +=+=+= (2) xshy i xchy iy x yi x yi x z sin cos )sin(sin )cos(cos )cos(cos +=-=+= (3) y x y xsh y xch xshy i xchy z 22222222sinh sin cos sin cos sin sin +=+=+= (4) y x y xsh y xch xshy i xchy z 22222222sinh cos sin cos sin cos cos +=+=-=19.证明: chz e e e e shz zz z z =+='-='--2)2()( s h z e e e e c h z zz z z =-='+='--2)2()(20.解:(1) )31arg(31ln )31ln(i i i i z +++=+= )23(2ln ππk i ++= ),1,0( ±=k(2)由于2ln iz π=,则有i i e z i=+==2sin2cos2πππ(3)由于)2(1ππk e e i z +=-=,故)2(ππk i z += (4)z z sin cos -=,即1tan -=z ,所以 ππk i i i z +-=+-=411ln 21(5) 设,z x iy =+由12tgz i =+得()()sin 122cos iz iz iz iz zi e e i e e z--=+→-=-+ 2255izi e →=-+22cos 25y e x -→=-,1sin 25x =41ln 5,54y e y -→==且1112,222tg x x arctg π⎡⎤⎛⎫=-=-+ ⎪⎢⎥⎝⎭⎣⎦11ln 5224z arctg i π⎡⎤⎛⎫→=-++ ⎪⎢⎥⎝⎭⎣⎦ 21.证明:因)1arg(1ln )1ln()1ln(-+-=-=-θθθi i i re i re re z ,所以)cos 21ln(21)sin ()1(ln 1ln )]1Re[ln(222θθθθr r r re re z i i -+=+-=-=- 22.解: 32)(3)()(πθk z ik ez r z w +=,)2,1,0;2)(0;(=<<∈k z G z πθ利用i i w -=)(定2,=k k ,再计算)(2i w -23.解: 2,22ππii e i e ==-,由32)2(-=-w 定1,=k k ,再计算i e i w π451)(=24.解: )24(2ln )]2)1(arg(1[ln )1ln()1(πππk i k i i i i i i ieeei +-+++++===+)24(2ln ππk i ee+-⋅= ),2,1,0( ±±=kππk i k i i i i e e e e 23ln )]23(arg 3[ln 3ln 3-++⋅=== ),2,1,0( ±±=k25.解:z 在z 平面上沿0=z 为圆心,1>R 为半径的圆周C 从A 走到B ,经过变换4z w =,其象点w 在w 平面上沿以0=w 为心,14>R 为半径的象圆周从A '走到B ',刚好绕1+=w w 的支点-1转一整周,故它在B '的值为B w '+1.因此1)()(4+-=-=R z f z f AB.26.证明:()f z =可能的支点为0,1,∞由于 3|12+,故()f z 的支点为0,1z =,因此在将z 平面沿实轴从0到期割开后,就可保证变点z 不会单绕0或者说转一周,于是在这样割开后的z 平面上()f z 就可以分出三个单值解析分支. 另由已知 ()a r g f z π=得()()arg c i f zi f i e π∆=()2a r g 1a r g3c c i z z e⎡⎤∆-+∆⎣⎦=32342i ππ⎡⎤+⋅⎢⎥⎣⎦=712i eπ=.(二)1.证明:由()21z f z z =-得()()2'2211z f z z +=-,从而于是()f z 在D 必常数()()()()()()22'2222111111z zf z zz f z z z z+-+⋅==---()4242121Re m z I z i z z -+=+- 所以 ()()4'421Re 12Re zf z z f z z z ⎛⎫-⋅= ⎪ ⎪+-⎝⎭由于1z <,因此410,z ->且()24422212Re 1210z z z z z+-≥+-=->故()()'Re 0f z z f z ⎛⎫⋅> ⎪ ⎪⎝⎭.2.证明:同第一题221Im 2111)()(1zzi z z z z f z f z -+-=-+='''+. 3.证明:题目等价域以下命题:设1,E E 为关于实轴对称的区域,则函数在E 内解析)(z f ⇒在1E 内解析.设)(z f 在E 内解析,对任意的10E z ∈,当1E z ∈时,有E z E z ∈∈,0,所以 )()()(lim )()(lim0000000z f z z z f z f z z z f z f z z z z '=--=--→→ 这是因为)(z f 在E 内解析,从而有)()()(lim 0000z f z z z f z f z z '=--→,由0z 的任意性可知, )(z f 在1E 内解析. 4.证明:(1)由于)(21),(21z z iy z z x -=+=,根据复合函数求偏导数的法则,即可得证. (2))(21)(21x vy u i y v x u z v i z u z f ∂∂+∂∂+∂∂-∂∂=∂∂+∂∂=∂∂所以x v y u y v x u ∂∂-=∂∂∂∂=∂∂,,得 0=∂∂zf5.证明: x y sh y sh x y xch yi x z 222222sin )sin 1(sin )sin(sin +=-+=+= 所以 z x y sh shy sin sin 22=+≤ 而 z y s h y Im =≥ ,故左边成立.右边证明可应用z sin 的定义及三角不等式来证明. 6.证明:有 R ch y ch y sh y sh x z 2222221sin sin ≤=+≤+= 即 c h Rt ≤s i n 又有 R ch y ch y sh y x z 2222221sinh cos cos ≤=+≤+= 7.证明:据定义,任两相异点21,z z 为单位圆1<z ,有212221212121)32()32()()(z z z z z z z z z f z f -++-++=--0112222121=-->--≥++=z z z z 故函数)(z f 在1<z 内是单叶的.8.证明:因为)(z f 有支点-1,1,取其割线[-1,1],有(1) 10182)(,8)(arg ie c e i f z f ππ-=-=∆(2) i c c e i f z f i z f 852)(,85)(arg ,811)(arg 32πππ=--=∆-=∆9.解: 因为)(z f 有支点∞±,,1i ,此时支割线可取为:沿虚轴割开],[i i -,沿实轴割开],1[+∞,线路未穿过支割线,记线路为C ,)]arg())(arg()1arg([21)(arg i z i z z z f c c c c ⋅∆+--∆+-∆=∆ 2]0[21ππ-=-= 故 i z f 5)(-=.10.证明:因为()f z =的可能支点为0,1,z =∞,由题知()f z 的支点为0,1,z =于是在割去线段0Re 1≤≤的平面上变点就不可能性单绕0或1转一周,故此时可出两二个单值解析分支,由于当z 从支割线上岸一点出发,连续变动到1z =-时,只z 的幅角共增加2π,由已知所取分支在支割线上岸取正值,于是可认为该分支在上岸之幅角为0,因而此分支在1z =-的幅角为2π,故()21i f e π-==,i f 162)1(-=-''.。
《复变函数论》试题库及答案

《复变函数论》试题库《复变函数》考试试题(一)一、判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析.( ) 2.有界整函数必在整个复平面为常数.( ) 3.若}{n z 收敛,则}{Re n z 与}{Im n z 都收敛.() 4.若f(z)在区域D 内解析,且0)('z f ,则Cz f )((常数).( ) 5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( ) 6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点.()7.若)(lim 0z f z z存在且有限,则z 0是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D zz f . ()9.若f(z)在区域D 内解析, 则对D 内任一简单闭曲线C0)(Cdzz f .()10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.()二.填空题(20分)1、1||00)(z z n z z dz__________.(n 为自然数)2.zz 22cos sin _________.3.函数z sin 的周期为___________.4.设11)(2zz f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz 的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若nnz lim ,则nz z z nn...lim21______________.8.)0,(Re nz ze s ________,其中n 为自然数.9.zzsin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0z f z z.三.计算题(40分):1. 设)2)(1(1)(z z z f ,求)(z f 在}1||0:{z z D内的罗朗展式.2..cos 11||z dz z3. 设Cdzz f 173)(2,其中}3|:|{z z C ,试求).1('i f 4. 求复数11z z w的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 试证:()(1)f z z z 在割去线段0Re 1z的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z上岸取正值的那支在1z的值.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f 在D 内连续,则u(x,y)与v(x,y)都在D 内连续.( ) 2. cos z 与sin z 在复平面内有界.( ) 3. 若函数f(z)在z 0解析,则f(z)在z 0连续. ( ) 4. 有界整函数必为常数.( ) 5. 如z 0是函数f(z)的本性奇点,则)(lim 0z f zz 一定不存在.( ) 6. 若函数f(z)在z 0可导,则f(z)在z 0解析.()7. 若f(z)在区域D 内解析, 则对D 内任一简单闭曲线C0)(Cdzz f .() 8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f(z)在区域D 内解析,则|f(z)|也在D 内解析. ()10. 存在一个在零点解析的函数f(z)使0)11(n f 且,...2,1,21)21(nn n f .( )二. 填空题. (20分)1. 设i z,则____,arg __,||zzz 2.设C iyx zy xi xy x z f ),sin(1()2()(222,则)(lim 1z f iz ________.3.1||00)(z z nz zdz_________.(n 为自然数)4. 幂级数nn nz 的收敛半径为__________ .5. 若z 0是f(z)的m 阶零点且m>0,则z 0是)('z f 的_____零点.6. 函数e z的周期为__________. 7. 方程083235zzz 在单位圆内的零点个数为________.8. 设211)(zz f ,则)(z f 的孤立奇点有_________.9. 函数||)(z z f 的不解析点之集为________.10. ____)1,1(Res 4zz .三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z 处的值.3. 计算积分:i iz z Id ||,积分路径为(1)单位圆(1||z )的右半圆.4. 求dzzzz 22)2(sin .四. 证明题. (20分)1. 设函数f(z)在区域D 内解析,试证:f(z)在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一. 判断题. (20分). 1. cosz 与sin z 的周期均为k2. ( )2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z)在z 0处解析,则f (z)在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z)在z 0解析,则f (z)在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{z z D上解析,且)1|(|1|)(|z z f ,则)1|(|1|)(|z z f . ()8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( )9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0z z f . ( )二. 填空题. (20分) 1. 设11)(2zz f ,则f (z)的定义域为___________.2. 函数e z的周期为_________. 3. 若nnni n n z )11(12,则nz nlim __________.4. zz22cos sin ___________.5.1||00)(z z nz zdz_________.(n 为自然数)6. 幂级数n nnx 的收敛半径为__________.7. 设11)(2zz f ,则f (z )的孤立奇点有__________.8.设1ze,则___z.9. 若0z 是)(z f 的极点,则___)(lim 0z f zz.10.____)0,(Res n zze .三. 计算题. (40分) 1.将函数12()zf z z e 在圆环域0z内展为Laurent 级数.2. 试求幂级数nnnznn!的收敛半径.3. 算下列积分:Czzz ze )9(d 22,其中C 是1||z .4. 求0282269z zzz在|z|<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ||时nz M z f |||)(|,证明)(z f 是一个至多n 次的多项式或一常数。
复变函数论第2章第3节

即当自变量从起点z0 沿 L 连续变到终点z 时 , 辐角函数 Argz 从初值 arg z0 连续变动到终值arg z .
arg z 依赖于起点的初值和辐 角改变量 .
多值函数应用起来很不 方便,总希望能将 Argz
分解为若干单值连续函 数. 由
arg z arg z0 L Argz
可知 , 即使固定起点z0 , 取定初值 arg z0 , 由于 L Argz
状无关 .
由辐角改变量
0 , z 0 在 L 外部 L Argz 2π , z 0 在 L 内部 可知 , 只要能使区域内任一简 单闭曲线都不围绕原
点z 0 , 辐角改变量在这个区域 内就与区域的形状
无关 .
因此, 将复平面 C 沿负实轴 (包括无穷远点 ) “剪开”
到 L1 , 而在连续变形中, L0 Argz 的值也要连续变
到 L1 Argz 的值, 就不能从原来的值作2π 的跳跃 ,
从而只能保持原值.
因此 , 若 L0 , L1 为 C {0} 中的简单曲线, 则
当且仅当 L0 ~ L1 时 , 有 L0 Argz L1 Argz . 若 L1
原点旋转的圈数 .
那么, 起点和终点相同的不同 在什么条件下,
曲线上的辐角改变量相 等呢?当且仅当在区域C
才有 {0}内两曲线 L0 与 L1“伦移” : L0 ~ L1 时,
L0 Argz L1 Argz .
(区域 D 内 L0 与 L1 伦移 L0 ~ L1 ,其几何意义是存
在一个连续曲线族 φ i , 通过它可使 L0 连续变形到
z1 是 L 的终点 . 当 z 沿 L 从 z0 连续变 动到 z1 时 , oz 所旋转的角称作 Argz
复变函数论习题及答案

第一章习题1.设12z -=,求||z 及Arg z .2.设12z z i ==,试用指数形式表 z 1 z 2及12z z .3.解二项方程440(0).z a a +=> 4.证明2222121212||||2(||||)z z z z z z ++-=+,并说明其几何意义。
5.设z 1、z 2、z 3三点适合条件: 1231230 |z ||||| 1.z z z z z ++=++=及试证明z 1、z 2、z 3是一个内接于单位圆周||1z =的正三角形的顶点。
6.下列关系表示的点z 的轨迹的图形是什么?它是不是区域? (1)1|212|||,()z z z z z z -=-≠;(2)|||4|z z ≤-;(3)111z z -<+;(4)0arg(1) 2Re 34z z π<-<≤≤且;(5)|| 2 z >且|3|1z ->; (6)Im 1 ||2z z ><且;(7)||2 0arg 4z z π<<<且;(8)131 2222i i z z ->->且.7.证明:z 平面上的直线方程可以写成 .az az c += (a 是非零复常数,c 是实常数)8.证明:z 平面上的圆周可以写成0Azz z z C ββ+++=.其中A 、C 为实数,0,A β≠为复数,且2||.AC β> 9.试证:复平面上的三点1,0,a bi a bi +-+共直线。
10.求下列方程(t 是实参数)给出的曲线: (1)(1)z i t =+; (2)cos sin z a t ib t =+;(3)i z t t =+; (4)22i z t t =+.11.函数1w z =将z 平面上的下列曲线变成w 平面上的什么曲线(,z x iy w u iv =+=+)?(1)224;x y +=(2)y x =;(3)x = 1; (4)( x -1)2+y 2=1. 12.试证:(1)多项式1010()(0)n n n p z a z a z a a -=+++≠在z 平面上连续;(2)有理分式函数101101()n n nm m m a z a z a f z b z b z b --+++=+++(000,0a b ≠≠)在z 平面上除分母为的点外都连续。
复变函数论第2章第3节

arg z 依赖于起点的初值和辐 角改变量 .
多值函数应用起来很不 方便,总希望能将 Argz
分解为若干单值连续函 数. 由
arg z arg z0 L Argz
可知 , 即使固定起点z0 , 取定初值 arg z0 , 由于 L Argz
在 C {0} 内与 L 的形状有关 , 对于任意 一 z C {0} , arg z 都不是惟一的. 因此, C {0} 内 arg z 是不能分 在 解为单值连续函数的. 这样自然会想到, 缩小区域是
y
z1
z
L
z0
0
在 L 上的改变量 , 简称 辐角改变量 ,
x
记作 L Argz .
例如 , 对下图中的三条具有相 同起点
y
z1
z
L
L Argz
z0
x
和终点简单曲线, 有
y
1 i
L1
0
y
L2
1 i
y
1 i
o
1 i
x
o
1 i
x
o
1 i
x
L3
π 3π 5π L1 Argz ; L2 Argz ; L3 Argz . 2 2 2
否可行呢 ? 而问题的关键在于寻找 这样的区域, 使得 辐角改变量只与起点、 终点位置有关而与曲线 的形
状无关 .
由辐角改变量
0 , z 0 在 L 外部 L Argz 2π , z 0 在 L 内部 可知 , 只要能使区域内任一简 单闭曲线都不围绕原
点z 0 , 辐角改变量在这个区域 内就与区域的形状
的射线φ φ0 变成 z 平面上从原点发出的射 θ nφ , 线
第四版复变函数答案

1 − cosϕ + isinϕ = 2sin (4)
= 2sin
2
ϕ
2
+ i2sin
ϕ
2
cos
ϕ
2
= 2sin
ϕ⎛
ϕ ϕ⎞ ⎜ sin + icos ⎟ 2⎝ 2 2⎠
π −ϕ 2
ϕ⎛
⎜ cos 2⎝
ϕ i π −ϕ π −ϕ ⎞ + isin ⎟ = 2sin e 2 2 ⎠ 2
, (0 ≤ ϕ ≤ π) ;
(3 + 4i )(2 − 5i ) = 5
2i
29 , 2
26 ⎡ (3 + 4 i )(2 − 5 i ) ⎤ ⎡ (3 + 4 i )(2 − 5 i ) ⎤ = arg ⎢ Arg ⎢ + 2kπ = 2 arctan − π + 2kπ ⎥ ⎥ 2i 2i 7 ⎣ ⎦ ⎣ ⎦ = arctan 26 + (2k − 1)π , 7 k = 0,±1,±2, " .
n n
i
arg a n
时,有
⎛ i arg a ⎞ | z + a| = ⎜ e n ⎟ + |a|e i arg a = (1 + a )e i arg a = 1 + |a| ⎜ ⎟ ⎝ ⎠
故 1+ | a | 为所求。 8.将下列复数化成三角表示式和指数表示式。 (1)i; (4) 1 − cosϕ + isinϕ (0 ≤ ϕ ≤ π ) ; 解: (1) i = cos
i π π + isin = e 2 ; 2 2 π
(2)-1;
2i (5) ; −1+ i
《复变函数论》第二章

第二章 复变函数第一节 解析函数的概念及C.-R.方程1、导数、解析函数定义2.1:设()w f z =是在区域D 内确定的单值函数,并且0z D ∈。
如果极限00,0()()limz z z Df z f z z z →∈--存在,为复数a ,则称)(z f 在0z 处可导或可微,极限a 称为)(z f 在0z 处的导数,记作0'()fz ,或z z dw dz=。
定义2.2:如果()f z 在0z 及0z 的某个邻域内处处可导,则称()f z 在0z 处解析;如果()f z 在区域D 内处处解析,则我们称()f z 在D 内解析,也称()f z 是D 的解析函数。
解析函数的导(函)数一般记为'()f z 或d ()d f z z。
注解1、εδ-语言,如果任给0ε>,可以找到一个与ε有关的正数()0δδε=>,使得当z E ∈,并且0||z z δ-<时,00()()||f z f z a z z ε--<-,则称)(z f 在0z 处可导。
注解2、解析性与连续性:在一个点的可导的函数必然是这个点的连续函数;反之不一定成立;注解3、解析性与可导性:在一个点的可导性是一个局部概念,而解析性是一个整体概念;注解4、函数在一个点解析,是指在这个点的某个邻域内解析,因此在此点可导;反之,在一个点的可导性不能得到在这个点解析。
解析函数的四则运算:()f z 和()g z 在区域D 内解析,那么()()f z g z ±,()()f z g z ,()/()f z g z (分母不为零)也在区域D内解析,并且有下面的导数的四则运算法则:(()())''()'()[()()]''()()()'()f zg z f z g z f z g z f z g z f z g z ±=±=+2()'()()()'()()[()]'f z f z g z f z g z g z g z -⎡⎤=⎣⎦。
复变函数论第2章第1节

所以 , 函数 f ( z ) z 在 z 平面上处处不可微.
练习 : 证明函数 f ( z ) | z |2 在 z 0 处可导,且导数等于 0. 8
2 解析函数及其简单性质
定义2.2 如果函数 f ( z )在 区域 D内可微 ,则称 f ( z )
为区域 D 内的 解析函数 (全纯函数或正则函数),
证明: 由于 f ( z z ) f ( z ) z z z lim lim z 0 z 0 z z x iy z z z z lim lim lim x 0 x iy z 0 z 0 z z
y 0
其极限为1 ; 当 z 取实数 ( y 0) 趋于零时, 其极限为 1 . 当 z 取纯虚数 (x 0) 趋于零时,
当点 z z 沿平行于实轴的方向 (y 0 , x 0) 趋于点 z 时 , ( 2.4) 成为
x u x v lim i lim f ( z ) x 0 x x 0 x
u v 且有 , 必存在, 于是知 x x u v i f ( z ) x x
u v i f ( z ) y y
( 2.6)
16
u v u v i f ( z ) ( 2.5) i f ( z ) ( 2.6) x x y y
比较 ( 2.5) 及 ( 2.6) 式 ,可知 f ( z ) 可微条件为
u v u v , . x y y x
( 2.5)
15
u i v lim f ( z ) ( 2.4) x 0 x i y y 0
同样,当点 z z 沿平行于虚轴的方向 ( x 0 ,
y 0)趋于点 z 时 , ( 2.4) 成为
《复变函数》第四版习题解答第2章

(2)由于 ∂u = 6x2 , ∂u = 0 , ∂v = 0 , ∂v = 9 y2
∂x
∂y
∂x
∂y
在 z 平面上处处连续,且当且仅当 2x2 = 3y2 ,即 2x ± 3y = 0 时,u,v 才满足 C-R 条件,故
f ( z ) = u + i v = 2x3 + 3y3i 仅在直线 2x ± 3y = 0 上可导,在 z 平面上处处不解析。
解 (1)由于 ∂u = 2x, ∂u = 0, ∂v = 0, ∂v = −1
∂x
∂y ∂x ∂y
在 z 平面上处处连续,且当且仅当 x = − 1 时,u,v 才满足 C-R 条件,故 f (z) = u + i v = x − i y 仅在
2
直线 x = − 1 上可导,在 z 平面上处处不解析。 2
(5)命题假。如函数 f (z) = z Re z = x2 + i xy 仅在点 z=0 处满足 C-R 条件,故 f (z)仅在点 z=0
处可导。
(6)命题真。由 u 是实常数,根据 C-R 方程知 v 也是实常数,故 f (z) 在整个 D 内是常数;
后面同理可得。
7.如果 f (z) = u + i v 是 z 的解析函数,证明:
解
(1)命题假。如函数 f (z) =| z |2 = x 2 + y 2 在 z 平面上处处连续,除了点 z=0 外处处不可导。 (2)命题假,如函数 f (z) =| z |2 在点 z=0 处可导,却在点 z=0 处不解析。
(3)命题假,如果 f (z)在z0点不解析,则z0称为f (z)的奇点。如上例。 (4)命题假,如 f (z) = sin x ch y, g(z) = i cos x sh y , z = (π / 2, 0) 为它们的奇点,但不 是 f (z) + g(z) 的奇点。
高等教育出版社《复变函数》与《积分变换》第四版课后习题参考答案

+
1 zn
= 2cos nt
;
(2) zn − 1 = 2 i sin nt zn
解 (1) zn + 1 = eint + e−int = eint + eint = 2sin nt zn
(2) zn
−
1 zn
= eint
− e−int
= eint
− eint
= 2 i sin nt
14.求下列各式的值
故 n = 4k, k = 0, ±1, ±2,"。
16.(1)求方程 z3 + 8 = 0 的所有根 (2)求微分方程 y'''+8y = 0 的一般解。
( )1
π i
(1+
2k
)
解 (1) z = −8 3 = 2e 3 ,k=0,1,2。
即原方程有如下三个解:
1 + i 3, −2, 1 − i 3 。
+
4 i)(2
2i
−
5i)⎤
⎥⎦
+
2kπ
=
2 arctan
26 7
−
π
+
2kπ
= arctan 26 + (2k −1)π ,
7
k = 0,±1,±2," .
( ) ( ) (4) i8 − 4i21 + i = i2 4 − 4 i2 10i + i = (−1)4 − 4(− )1 10i + i
34
= 1 [5x + 3y − 4]+ i(− 3x + 5y −18) = 1 + i
复变函数练习题及答案

复变函数卷答案与评分标准一、填空题:1.叙述区域内解析函数的四个等价定理。
定理1 函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件:(1)(,)u x y ,(,)v x y 在D 内可微,(2)(,)u x y ,(,)v x y 满足C R -条件。
(3分)定理2 函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件:(1),,,x y x y u u v v 在D 内连续,(2)(,)u x y ,(,)v x y 满足C R -条件。
(3分)定理3 函数()f z 在区域D 内解析的充要条件:()f z 在区域D 内连续,若闭曲线C 及内部包含于D ,则()0C f z dz =⎰ 。
(3分) 定理4 函数()f z 在区域D 内解析的充要条件:()f z 在区域D 内每一点a ,都能展成x a -的幂级数。
(3分)2.叙述刘维尔定理:复平面上的有界整函数必为常数。
(3分)3、方程2z e i =+的解为:11ln 5arctan 222i k i π++,其中k 为整数。
(3分) 4、设()2010sin z f z z+=,则()0Re z s f z ==2010。
(3分) 二、验证计算题(共16分)。
1、验证()22,2u x y x y x =-+为复平面上的调和函数,并求一满足条件()12f i i =-+的解析函数()()(),,f z u x y iv x y =+。
(8分)解:(1)22u x x ∂=+∂,222u x ∂=∂;2u y y∂=-∂,222u y ∂=-∂。
由于22220u u y x∂∂+=∂∂,所以(,)u x y 为复平面上的调和函数。
(4分) (2)因为()f z 为解析函数,则(),u x y 与(),v x y 满足C.-R.方程,则有22v u x y x∂∂==+∂∂,所以(,)2222()v x y x dy xy y C x =+=++⎰ 2,v u y x y∂∂=-=∂∂又2()v y C x x ∂'=+∂ ,所以 ()0C x '=,即()C x 为常数。
复变函数习题答案

习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++. ①解:i 4πππecos isin 44-⎛⎫⎛⎫⎛⎫=-+-== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭②解:()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i①解: ∵设z =x +iy 则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++, ()222Im z a xy z a x a y -⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+-∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩ . ∴当2n k =时,()()Re i 1kn =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=.()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数. 证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明:∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z w z w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了. 下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--++ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--=== 其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根. ⑴i 的三次根.()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=z .2551cos πi sin πi 662=+=z3991cos πi sin πi 662=+=-z ⑵-1的三次根()()132π+π2ππcos πisin πcos isin 0,1,233k k k ++=+=∴1ππ1cosisin 332=+=z 2cos πisin π1=+=-z3551cos πi sin π332=+=--z的平方根.解:πi 4e ⎫=⎪⎪⎝⎭)()1π12i 44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe ,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1 从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
复变函数第二章单元测试题.doc

灵魂在不知不觉中数数目──巴哈「马太受难曲」曾庆豹一、音乐语言是最纯粹的语言关于上帝之言,我们并不缺乏,只是缺乏倾听,甚至是缺乏一种预备好倾听的状态。
上帝之言是一种独特的语言,是神性家园的本体之说,上帝之言把我们从物化的世界移居于意义的世界。
不要忘记大地是上帝用「说」的方式创造的,因此在人与上帝之间,存在著某种非文字、非说话的语言,一种只有人可以进入神圣家园的语言。
神学的语言应该是这么一种语言,它不是提供我们对上帝的认知,而是对上帝的信仰。
大概没有一种语言能像音乐语言那样可以增进我们对上帝信仰,我猜想,上帝在创世时的「说」很可能是一种美丽的旋律,我们被造的存在分享著这种语言的神秘,人与上帝之间有著某种本体的「说」与「听」之间的亲缘。
基督言成肉身的「道」不能与老庄的「道」混为一谈,基督言成肉身成了上帝向世人直接的「说」,神性与人性的二一性向我们昭示永恒神秘之语言,我们当静寍于倾听的状态中,在基督成了肉身中,从马槽的婴孩哭泣声到十字架的沉默受难,上帝的声音以纯粹的语言向我们直扑而来。
音乐语言是一种纯粹的语言,一种经过提纯后的语言。
音乐艺术使气质和心灵都获得了提升,比一般比说话要来得深刻,比文字要来得动人,有种向人直扑而来,令人无法抗拒的感觉。
在音乐那里,不是任何的「说」可以表达的情绪语言,如叹息、呻吟、咆哮,都一一获得了净化。
日常语言是具体的,内容是有条件、有限度的;音乐语言则是抽象的、象徵的、感性的,表现无限且难以捉摸的深情感动。
音乐语言的媒介和一般的语言是很不一样,它已超越一般语言可以表达的范围和界域,婉如数学般的抽象,接近于「纯粹」的神秘。
神性的语言是作为最终的救赎之物惠赐予了我们,基督之言成肉身----返回神性家园的途径。
二、非语言的神学家有人如此问道:这世界上还有比被钉十字架上的耶稣更感人的场面吗?可有比《马太受难曲》这阕音乐更能代表耶稣的悲情、更能阐述耶稣的受难吗?音乐史的确存在著许多以耶稣的受难为题材的作品,巴哈自己也写了另一阕《约翰受难曲》,但是比较之下,《马太受难曲》对耶稣受难的深刻描绘,关于人性挣扎的苦楚和神性救赎的恩宠,简直就是登峰造极之作。
复变答案第二章

3. 奇点的定义 若函数 f ( z ) 在 z 0 处不解析,则称 z 0是 f ( z ) 的奇点. 若 z 0 是 f ( z ) 的奇点, 但在 z 0 的某邻域内, 除 z 0 外, 没有其他的奇点,则称 z 0 是函数 f ( z ) 的孤立奇点.
二、解析函数的概念
1. 解析函数的定义
z0
如果函数 f ( z ) 在 z0 及 z0 的邻域内处处可 导, 那么称 f ( z ) 在 z0 解析. 如果函数 f ( z )在 区域 D内每一点解析, 则称 f ( z )在 区域 D内解析. 或称 f ( z )是 区域 D 内的一 G 个解析函数(全纯函数或正则函数).
u u v v 2 x, 0, y, x. x y x y
四个偏导数均连续
仅当 x y 0 时, 满足柯西-黎曼方程,
故函数 w z Re z 仅在 z 0 处可导, 且 f ( z ) 0.
在复平面内处处不解析 .
例7 证明 f ( z ) x 2 iy在复平面上不解析 .
2z z 3 的解析性区域及该区 例3 求函数 f ( z ) 2 z 1 域上的导数.
5
解
函数 f ( z )不解析. 当z 2 1 0 ,即z 2 i 时, 所以 f ( z )在复平面内除 z i 外处处解析,
z i 为它的奇点.
(10z 4 1)( z 2 1) ( 2 z 5 z 3) 2 z f ( z ) ( z 2 1)2 6 z 6 10z 4 z 2 6 z 1 . 2 2 ( z 1)
例6 判定下列函数在何处可导, 在何处解析:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复变函数论 第二章 练习题 2014-03-25
一、复函数的可导(可微)、解析------充分掌握解析的定义,并特别留意在一点处解析和一点处可导的区别,切实掌握C.-R.方程及有关定理及公式,熟练掌握复函数可导的必要定理、充要和充分条件,复函数解析的等价性定理。
1. 函数Im Re w z z z =-在其可导处的导数为( )
2. 讨论函数21,
0,()0,0,
z e z f z z -⎧⎪≠=⎨⎪=⎩ 在原点处的可微性。
3. 设2224()(),0,()0,0,x x y y ix z f z x y
z ⎧+-≠⎪=+⎨⎪=⎩
证明:当沿任何向径0y m x
=→时,()(0)0,f z f z -→但(0)f '不存在。
4.设()f z p iq =+为z x iy =+的解析函数且已知222222()2()0xyp y x q xy x y +-++=,求().f z
5. 证明函数5
4,0,()||0,0,z z f z z z ⎧≠⎪=⎨⎪=⎩
在原点不可微但在原点满足C._R.条件。
6.设3232()()f z my nx y i x lxy =+++在z 平面上解析,其中,,,z x iy n m l =+为实数,求,,l m n 之值。
7.设()f z 在区域D 上解析,证明()f z 在区域1{:}D z z D =∈中解析。
8.如果函数()f z u iv =+在区域D 内解析,并且满足条件892003u v +=,试证()f z 在D 必为常数。
9. 设31
(),{|Re },2f z z D z z ==≥
取1211(1),(1),22
z z ==通过计算1212
()()f z f z z z --,验证中值定理在复数域内不成立。
* 10. 设()f z u iv =+在有界闭区域D 上连续且在其内解析不为常数,证明:(,)u x y 在且只在D 的边界上取得最大值和最小值.
二、充分掌握复指数函数、复正弦、余弦函数; 充分掌握初等函数中的多值函数(根式函数、对数函数)及主值的概念,能计算一般幂函数和一般指数函数,理解多值函数的単值解析分支并能计算其函数
1.(阅读 数学分析 下册P64页关于复指数函数的定义)
2.比较复指数和实指数函数之间的区别
3. 设函数1
()z f z e -=除0z =处在C 上有定义,证明:
1)在去心半圆"0||1,|arg |"2z z π
<≤≤上函数有界;2)在上述去心半圆上()f z 连续,
但不一致连续;3)在去心扇形"0||1,|arg |"2z z πα<≤≤<
上一致连续。
4.证明: 012sin()sin sin ;2sin 2
n k n y n x ky x y y =+⎛⎫+=+⋅ ⎪⎝⎭∑012cos()cos sin ;2sin 2
n k n y n x ky x y y =+⎛⎫+=+⋅ ⎪⎝⎭∑其中sin 02y ≠,这里,x y 为实数. 5. 函数()2arg(3)f z z =-在复平面除去实轴上一区间( )外是解析的;
6.(34)Ln i -+=( ),主值为( )
7.计算下列各值
1).3i e
π+;2).t a n ()4i π-;3).(23)L n i -+;4)
.5)
.(2)-.。