三角形和梯形中位线定理的应用

三角形和梯形中位线定理的应用
三角形和梯形中位线定理的应用

初中几何中三角形中位线定理的应用

初中几何中三角形中位线定理的应用 三角形中位线定理在初中教材体系中是一个很重要的定理,学好本节内容将有助于梯形中位线定理乃至整个平面几何知识的学习。它具有两个方面的特性:(1)平行于第三边,这是位置关系; (2)等于第三边的一半,这是数量关系。就第一个特性而言,中位线定理与平行线等分线段定理中的推论2(经过三角形一边的中点与另一边平行的直线,必平分第三边)存在着互逆关系。我们利用这两个特性,能证明(求解)许多几何问题,以下举例说明它的具体应用。 一、证明问题 1、证明角相等关系 例1、已知:如图在四边形ABCD 中 对角线AC=BD ,E 、F 分别为AB 、CD 中点,点O 为AC ,BD 的交点,M 、N 为EF 与BD ,AC 的交点。求证:OM=ON 分析:证明OM=ON 可转化成证明 ∠OMN=∠ONM ,由于E 、F 为AB 、CD 的中点这时只要取AD 中点H 作出△ABD 与 △ACD 的中位线,即可得到EH=21BD ,HF=21AC,因为AC=BD,从而 得到EH=HF 所以∠HEF=∠HFE,因为 EH//BD, FH//AC 所以∠HEF=∠OMN, ∠HFE=∠ANM 从而得到∠DMF=∠ANM 这样要求证问题就解决了。 证明:取AD 中点H 并分别连结EH 、HF ,即EF 与FH 分别为△ABD 与△DAC 的中位线。 ∴EH=21BD ,EH//BD ,HF=21AC ,FH//AC (三角形中位线定理) 而 AC=BD ,∴EH=HF ,∴∠HEF=∠HFE 又∵EH//BD ,HF//AC ,∴∠HEF=∠ DMF ,∠HFE=∠ANM ∴∠DMF=∠ANM ,∴OM=ON 例2、如图、四边ABCD 中,AB=CD , M 、N 分别为AD 、BC 的中点,EF ⊥MN

八年级数学梯形的中位线

N M A B C D 教学课题: §16.7梯形的中位线 (2) 课时1 教学目标: 知识与技能:1.使学生初步掌握梯形中位线的概念及其定理. 2.掌握梯形面积的第二个计算公式. 过程与方法:1.使学生会运用梯形中位线定理来解决相关问 题; 2.通过直观演示、猜想实践、归纳论证等教学环节,培养 学生类比和转化的思想方法,锻炼学生独立的思考能力、 缜密的逻辑思维能力和观察归纳的能力. 情感与态度:1.培养学生理论联系实际的科学态度,树立事物间普遍存在联系的哲学观点.2. 通过创设愉悦的学习情境,使学生自始至终处于积极思考、大胆置疑、勇于创 新、合作学习的氛围中,从而提高学习兴趣. 教学重点:梯形中位线的概念及其定理; 教学难点:梯形中位线定理的发现和论证的思想方法. 教学方法: 引导发现法 教学过程: 一、课题引入 1、叙述三角形中位线及其定理; 2、上述基础上引出梯形中位线的概念. 让学生根据上述引入过程,自己用文字概括出梯形中位线的定义; 梯形中位线定义:连结梯形两腰中点的线段叫做梯形的中位线 二、定理的发现 1、强调三角形中位线与第三边的双重关系,提出如下问题让学生思考: (1)梯形中位线与底边的位置关系如何? (2)梯形的中位线与两底之间存在怎样的数量关系? 2、用多媒体课件中的测量功能,动态地、分多次测量这三线段的长度,让同座的学生分工合作:一个观测报数,一个记录. 3、给2分钟的时间让学生处理数据,并得出结论. 4、将数量关系推广到一般,得出如下猜想: (1)梯形的中位线平行于两底; (2)梯形中位线的长度等于两底和的一半 三、定理的证明 提出论证猜想的重要性,引导学生用推理的方法证明猜想: 1、利用转化思想,提出能否将梯形的中位线问题转化为三角形的中位线问题,然后用所学知识来解决新问题? 2、如何利用所学的梯形辅助线的作法,合理地添加辅助线,使上述意图得以实现? 3、给学生5分钟,按每4个人一组,分小组让学生讨论.

三角形中线的阿波罗尼斯定理及其应用

三角形中线的阿波罗尼斯定理及其应用 阿波罗尼斯定理 三角形两边平方的和,等于所夹中线及第三边之半的平方和的2倍. 具体地说,就是:设AD 是△ABC 的中线,则)(22222BD AD AC AB +=+. 证明 如图1,作BC 边上的高AH . 由勾股定理,得 222DH AH AD +=,2 2 2BH AH AB +=, 2 2 2 CH AH AC +=. 所以222222CH BH AH AC AB ++=+. 由 CD BD =, 可 得 )(2)()(2 2 2 2 2 2 DH BD DH BD DH BD CH BH +=-++=+. 所以)(2)(22222222BD AD BD DH AH AC AB +=++=+. 该定理应用广泛,不但可以用来计算三角形中线的长度,而且对于多线段的平方和问题,尝试构造三角形的中线后运用它往往也能凑效.下面举例说明此定理的应用. 1.直接使用 当题设条件中出现三角形的中线时,可考虑使用阿波罗尼斯定理建立相关线段的联系,以助解题. 例 1 AD 、BE 、CF 是△ABC 的三条中线.若a BC =,b CA =,c AB =,则 = ++2 2 2 CF BE AD ______. (2005年山东省初中数学竞赛) 分析 AD 、BE 、CF 是△ABC 的三条中线,故可直接使用三角形中线的阿波罗尼斯定理进行计算. 解 如图2, AD 是BC 边上的中线,由阿波罗尼斯定理得 ?? ? ??+=+222 2 412BC AD AC AB . 代入已知数据,变形得2 2 2 24 12 121a b c AD - + =. 同 理 2 2 2 2 4 12 12 1b a c BE - + = ,2 2 2 2 4 12 12 1c b a CF - + = . 故()2 2 2 2 224 3c b a CF BE AD ++= ++. 例2 如图3,△ABC 的内切圆⊙O 与边CA 上的中线BM 交于点G 、H ,并且 点G 在点B 和点H 之间.已知HM BG =,2=AB ,2>BC .那么,当BC 、CA 为何值 D C B E A 图2 F A B 图1

三角形中位线定理_练习题

三角形的中位线定理 1.三角形中位线的定义: 2.三角形中位线定理的证明: 如图,在△ABC 中,D 、E 是AB 和AC 的中点,求证:DE ∥BC ,DE=2 1 BC . 方法一: 方法二: 3.归纳:(1)几何语言: (2) 条中位线, 对全等, 个平行四边形 (3)面积 4.拓展:如图,在△ABC 中,D 是AB 的中点,DE ∥BC ,求证: DE= 2 1 BC . 【巩固练习】 1.如图所示,□ ABCD 的对角线AC ,BD 相交于点O ,AE=EB ,求证:OE ∥BC . 2.如图所示,在△ABC 中,点D 在BC 上且CD=CA ,CF 平分∠ACB ,AE=EB ,求证:EF= 1 2 BD . 3.已知:如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. 求证:四边形EFGH 是平行四边形. 4.如图所示,已知在□ABCD 中,E ,F 分别是AD ,BC 的中点,求证:MN ∥BC . 5.已知:△ABC 的中线BD 、CE 交于点O ,F 、G 分别是OB 、OC 的中点.

求证:四边形DEFG 是平行四边形. 6.已知:如图,E 为□ABCD 中DC 边的延长线上的一点,且CE =DC ,连结AE 分别交BC 、BD 于点F 、G ,连结AC 交BD 于O ,连结OF .求证:AB =2OF . 7.如图,在四边形ABCD 中,AD=BC ,点E ,F ,G 分别是AB ,CD ,AC 的中点. 求证:△EFG 是等腰三角形。 8.如图,在四边形ABCD 中,点E 是线段AD 上的任意一点(E 与A D ,不重合),G F H ,,分别是BE BC CE ,,的中点.求证:四边形EGFH 是平行四边形; 9.如图,点E ,F ,G ,H 分别是CD ,BC ,AB ,DA 的中点. 求证:四边形EFGH 是平行四边形. 10.已知:如图,DE 是△ABC 的中位线,AF 是BC 边上的中线, 求证:DE 与AF 互相平分 11.如图所示,在四边形ABCD 中,DC∥AB,以AD ,AC 为边作□ACED ,延长DC?交EB 于. 求证:EF=FB .(多种方法)

三角形、梯形的中位线

第3章《中心对称图形(一)》易错题集(08):3.6 三角形、梯 形的中位线 选择题 1.(2010?威海)如图,在△ABC中,D,E分别是边AC,AB的中点,连接BD.若BD 平分∠ABC,则下列结论错误的是() A.BC=2BE B.∠A=∠EDA C.BC=2AD D.BD⊥AC 2.(2009?锦州)如图所示,在△ABC中,AB=AC,M,N分别是AB,AC的中点,D,E 为BC上的点,连接DN、EM,若AB=5cm,BC=8cm,DE=4cm,则图中阴影部分的面积为() A.1cm2 B.1.5cm2C.2cm2 D.3cm2 3.(2009?绍兴)如图,D,E分别为△ABC的AC,BC边的中点,将此三角形沿DE折叠,使点C落在AB边上的点P处.若∠CDE=48°,则∠APD等于() A.42°B.48°C.52°D.58° 4.(2009?衢州)在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为() A.9.5 B.10.5 C.11 D.15.5 5.(2009?赤峰)将一张三角形纸片沿中位线剪开,拼成一个新的图形,这个新的图形可能是()

A.三角形B.平行四边形C.矩形 D.正方形 6.(2008?铜仁地区)如图,M是△ABC的边BC的中点,AN平分∠BAC,且BN⊥AN,垂足为N,且AB=6,BC=10,MN=1.5,则△ABC的周长是() A.28 B.32 C.18 D.25 7.(2008?随州)如图,点D、E、F分别是△ABC三边的中点,则下列判断错误的是() A.四边形AEDF一定是平行四边形 B.若∠A=90°,则四边形AEDF是矩形 C.若AD平分∠A,则四边形AEDF是正方形 D.若AD⊥BC,则四边形AEDF是菱形 8.(2008?嘉兴)如图,△ABC中,已知AB=8,BC=6,CA=4,DE是中位线,则DE=() A.4 B.3 C.2 D.1 9.(2008?大庆)如图,将非等腰△ABC的纸片沿DE折叠后,使点A落在BC边上的点F 处.若点D为AB边的中点,则下列结论:①△BDF是等腰三角形;②∠DFE=∠CFE; ③DE是△ABC的中位线,成立的有() A.①②B.①③C.②③D.①②③ 10.(2007?随州)如图,沿Rt△ABC的中位线DE剪切一刀后,用得到的△ADE和四边形DBCE拼图,下列图形中不一定能拼出的是()

三角形中位线定理的运用

教学案例:《三角形中位线定理教学设计》 ⒈创设问题情境,诱导学生发现结论 ⑴怎样测算操场中被一障碍物隔开的两点A、B的距离?小明测量的方法是:在AB外选一点C,连结AC、BC,取AC、BC的中点M、N。连结MN,量出MN=20m,这样能算出AB的长吗?AB与MN有何关系?经观察,你猜测 AB与MN的关系是:①②。 ⑵MN这条线段既特殊又重要,我们把它叫做△ABC的 中位线。即连结三角形两边点的线段叫三角 形的。 ⑶一个三角形有条中位线,画出图4的三角形的所有中位线,观察、测量发现: ( )∥( ),( )=( );( )∥( ),( )= ( );( )∥( ),( )= ( )。用语言叙述上述结论:三角形的中位 线并且 . ⑷再画出图2的△ABC的三条中线,它与中位线有何区别? 说明:⑴以上内容让学生按印发的学习提纲在课前完成。⑵三角形中位线定义的引入、定理的结论课本是直接给出的,这不符合过程性原则.我们①以“应用性问题”导入,揭示了数学知识在生产、生活中的广泛应用,强化学习动机,变“要我学”为“我要学”;②让学生通过实验操作、观察比较、估计猜测,自己发现结论,

这可培养学生对数学的内在兴趣,让学生认识到数学不是少数天才创造的,而是经过努力一般人都可以发现的,数学来源于现实世界,而又是解决实际问题的有力工具,符合从“感性到理性”的认识规律。 ⒉创设思维情境,启导学生发现证明结论的思路和方法 ⑴检查课前自学情况。教师提问有关问题,学生回答,并用多媒体展示答案。 ⑵教师指出:同学们观察发现的这些结论是否正确,还需严格证明。教师板书,学生在提纲上写已知、求证。 ⑶启导全班学生思考、讨论证法,教师巡视与学生一起研究,收集信息,了解情况。 ①本题与以前学过的哪些知识、方法有关?是什么关系?学生进行联想,回答。△ADE与△ABC有何关系?若过D作平行于BC的直线,发现什么(用多媒体演示)?②怎样证一条线段等于另一条的一半?学生回答:截(把长的平分)与补(把短的加倍)。经过探讨,学生不难发现以下三种证法:(过程略) 证法㈠:利用相似三角形证法㈡: 证法㈢: 说明:定理的证明,不拿现成的方法给学生,而是创设思维情境,启导学生“联想”到学过的有关知识和方法,使新旧知识得到顺利同化,并引导学生展开讨

三角形中位线定理的证明

备课偶得—— 三角形中位线定理的再证明 王贵林 皖南陵县烟墩镇烟墩中心初级中学 241313 三角形中位线定理:三角形的中位线平行第三边且等于第三边长的半。 关于它的证明方法,课本上给出了一种证法。笔者在备课中发现它的证法有8种之多,而且非常有趣,这里写出来与同仁共享,企斧正。 已知:如图1,△ABC 中,D 、E 分别为AB 、AC 的中点,求证:D E ∥BC 且 证法一、(构造法)如图2,延长DE 到F ,使EF=DE ,连结AF 、CF 、 DC ∵E 为AC 中点 ∴AE=CE ∵EF=DE ∴四边形ADCF 为平行四边形 ∴CF AD ∵D 为AB 中点 ∴AD=BD ∴BD CF ∴四边形DBCF 为平行四边形 ∴DF BC ∴DE=EF ∴DE ∥BC 且 证法二、(构造法)如图3,过CF 作CF ∥AB 交DE 的延长线于F ,则 ∠A=∠ACF ∵E 为AC 中点 ∴AE=CF ∴△AD E ≌△CFE (ASA ) ∴CF=AD ∵D 为AB 中点 ∴AD=BD ∴CF=BD ∵CF ∥BD ∴CF BD ∴四边形DBCF 为平行四边形 ∴DF BC ∴△ADE ≌△CFE ∴DE=EF ∴D E ∥BC 且 证法三、(同一法)如图4,过D 作D E ′∥BC ,交AC 于E ′,过E ′作E ′F ∥AB ,交BC 于F ,则 ∠B=∠ADE ′=∠E ′FC ,∠AE ′D=∠C 四边形DBFE ′是平行四边形 ∴E ′F=BD ∵D 为AB 中点 ∴AD=BD ∴E ′F=AD ∴△ADE ′≌△E ′FC (AAS ) ∴AE ′=CE ′即E ′为AC 中点 ∵E 为AC 中点 ∴E 与E ′重合即DE ∥BC ,△ADE ≌△EFC ,四边形DBFE 为平行四边形 ∴DE=CF DE=BF 即 ∴DE ∥BC 且 图1 B C A D E 图2 B C A D E F 图3 B C A D E F C 图4 B A D E F E ′ 图5 B C A D E 1 2 DE BC =1 2 DE BC =1 2DE BC =12 DE BC =1 2DE BC =

沪教版八年级数学-三角形梯形的中位线-学生版讲义

三角形、梯形的中位线 知识精要 一、三角形的中位线 1)、三角形的中位线定义: 在△ABC 中①、BC AB F E 、为、 的中点 ②、∵M 、N 分别是BC 、AC 的中点 ∴线段EF 是 △ABC 的 ∴ 线段MN 是△ABC 的 2)、三角形有 条中位线,它们构成的三角形叫 。 3)、三角形的中位线定理: 4)、在△ABC 中,AB =3,BC =5,CA =7,顺次连结三边中点得△DEF 的周长为___ ______. 5)、在△ABC 中,D 、E 、F 分别 为AB 、BC 、CA 的中点,△DEF 的周长为10,则△ABC 的周长是 6)、三角形的三条中位线的长分别是3,4,5,则这个三角形的周长是_ 结论:中点三角形的周长等于原三角形的 . 7)、一个三角形的面积是40,则它的中点三角形的面积是__ 结论:中点三角形的面积是原三角形面积的_ 二、中点四边形 1、定义:顺次连接四边形各边中点的四边形叫 2、中点四边形的形状与原四边形的对角线数量和位置有关 1)、原四边形的对角线相等时,中点四边形是 ; 2)、原四边形的对角线垂直时,中点四边形是 ; 3)、原四边形的对角线既相等又垂直时,中点四边形是 ; 4)、原四边形的对角线既不相等又不垂直时,中点四边形是 。 5)、任意四边形的中点四边形是 ;菱形的中点四边形是 ; 矩形、等腰梯形的中点四边形是 ;正方形的中点四边形是 。 三、梯形中位线 1、定义:联结梯形两腰中点的线段叫做梯形的中位线。

2、梯形中位线定理: 热身练习 1.若三角形三条中位线长分别是3cm 、4cm 、5cm ,则这个三角形的面积是 cm 2。 2.梯形的上底长为6,下底长为10,则由中位线所分得的两个梯形的面积之比为 . 3. 梯形的两条对角线的中点的连线长为7,上底长为8,则下底长为 . 4. 若等腰梯形的腰长是5cm ,中位线是6cm ,则它的周长是 cm . 5. 已知等腰梯形的上、下底长分别为 2cm 和6cm ,且它的两条对角线互相垂直,则这个梯形的面积为 cm 2. 6. 已知三角形三边长分别为a 、b 、c ,它的三条中位线组成一个新的三角形,这个新三角形的三条中位线又组成一个小三角形,这个小三角形的三条中位线又组成一个新小三角形,则最小的三角形的周长是( ) A. (a+b+c) B. (a+b+c) C. (a+b+c) D. (a+b+c) 7.若等腰梯形较长的底等于对角线,较短的底等于高,则较短的底和较长的底的长的长度之比是 ( ) A.1:2 B. 2:3 C.4:1 D. 3:5 8.直角梯形中,上底和斜腰长均为a ,且斜腰和下底的夹角是60°,则梯形中位线长为( ) A. B. a C. D. 都不对 9.在梯形ABCD 中,AB//CD ,DC :AB=1:2,E 、F 分别是两腰BC 、AD 的中点,则 ( ) A. 1:4 B. 1:3 C. 1:2 D. 3:4 10. 如图,在直角梯形ABCD 中,点O 为CD 的中点,AD ∥BC,试判断OA 与OB 的关系? (10题图) (11题图) 11. 如图,梯形ABCD 中,AD ∥BC ,点E 是AB 中点,连结EC 、ED 、CE ⊥DE ,CD 、AD 与BC 三条线段之间有什么样的数量关系?请说明理由. 精解名题 例1.已知:如图所示,Rt △ABC 中,∠=ACB D E 90°,、分别为AB 、BC 的中点,点F 在AC 的延长线上,∠=∠FEC B 。

三角形中位线在初中几何中的应用

1 初中几何中三角形中位线定理的应用 三角形中位线定理在初中教材体系中是一个很重要的定理,学好本节内容将有助于梯形中位线定理乃至整个平面几何知识的学习。它具有两个方面的特性:(1)平行于第三边,这是位置关系;(2)等于第三边的一半,这是数量关系。就第一个特性而言,中位线定理与平行线等分线段定理中的推论2(经过三角形一边的中点与另一边平行的直线,必平分第三边)存在着互逆关系。我们利用这两个特性,能证明(求解)许多几何问题,以下举例说明它的具体应用。 一、证明问题 1、证明角相等关系 例1、已知:如图在四边形ABCD 中 对角线AC=BD ,E 、F 分别为AB 、CD 中点,点O 为AC ,BD 的交点,M 、N 为EF 与BD ,AC 的交点。求证:OM=ON 分析:证明OM=ON 可转化成证明 ∠OMN=∠ONM ,由于E 、F 为AB 、CD 的中点这时只要 取AD 中点H 作出△ABD 与 △ACD 的中位线,即可得到EH= 21BD ,HF=2 1 AC,因为AC=BD,从而得到EH=HF 所以∠HEF=∠HFE,因为 EH//BD, FH//AC 所以∠HEF=∠OMN, ∠HFE=∠ANM 从而得到∠DMF=∠ANM 这样要求证问题就解决了。 证明:取AD 中点H 并分别连结EH 、HF ,即EF 与FH 分别为△ABD 与△DAC 的中位线。 ∴EH= 21BD ,EH//BD ,HF=2 1 AC ,FH//AC (三角形中位线定理)而 AC=BD ,∴EH=HF ,∴∠HEF=∠HFE 又∵ EH//BD ,HF//AC ,∴∠HEF=∠DMF ,∠HFE=∠ANM ∴∠DMF=∠ANM ,∴OM=ON 例2、如图、四边ABCD 中,AB=CD , M 、N 分别为AD 、BC 的中点,EF ⊥MN 交AB 于E ,交CD 于F ,求证: ∠AEF=∠DFE 分析:欲证:∠AEF=∠DFE 。由MN ⊥EF 想到延长BA ,CD 与MN 的延长线交于P 、Q 只需证明∠EPN=∠Q ,如何利用中点的条件? 想到三角形的中位线,连线BD ,取BD 的中点G ,则有 12GM AB ∥,1 2 GN CD ∥,由于AB=CD ,进而有GM=GN , ∠GMN=∠GNM 然后再转化∠EPN=∠Q ,从而证出结论。 证明:延长BA ,CD 分别与NM 的延长线交于P 、Q 连结BD , 取BD 的中点G ,连结GM 、GN 。∵G 、M 分别为△ABD 的边BD 、AD 的中点∴ 12GM AB ∥。同理可证:12 GN AB ∥,又∵AB=CD ,∴GM=GN ,∴∠GMN=∠GNM , ∵GM//AB ,GN=CD ,∴∠GMN=∠EPN ,∠GNM=∠Q ,∴∠EPN=∠Q ,又 EF ⊥MN ,

三角形中位线定理 知识讲解

三角形中位线定理 【学习目标】 1. 理解三角形的中位线的概念,掌握三角形的中位线定理. 2. 掌握中点四边形的形成规律. 【要点梳理】 要点一、三角形的中位线 1.连接三角形两边中点的线段叫做三角形的中位线. 2.定理:三角形的中位线平行于第三边,并且等于第三边的一半. 要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系. (2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个 小三角形的周长为原三角形周长的1 2 ,每个小三角形的面积为原三角形 面积的1 4 . (3)三角形的中位线不同于三角形的中线. 要点二、顺次连接特殊的平行四边形各边中点得到的四边形的形状 (1)顺次连接平行四边形各边中点得到的四边形是平行四边形. (2)顺次连接矩形各边中点得到的四边形是菱形. (3)顺次连接菱形各边中点得到的四边形是矩形. (4)顺次连接正方形各边中点得到的四边形是正方形. 要点诠释:新四边形由原四边形各边中点顺次连接而成. (1)若原四边形的对角线互相垂直,则新四边形是矩形. (2)若原四边形的对角线相等,则新四边形是菱形. (3)若原四边形的对角线垂直且相等,则新四边形是正方形. 【典型例题】 类型一、三角形的中位线 1、(优质试题?北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN. (1)求证:BM=MN; (2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长. 【思路点拨】(1)根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明.

三角形 梯形的中位线精典例题

三角形梯形的中位线精典例题 10.三角形、梯形的中位线 知识考点: 掌握三角形、梯形的中位线定理,并会用它们进行有关的论证和计算。 精典例题: 【例1】如图,梯形ABCD中,AD∥BC,M是腰AB的中点,且AD+BC=DC。求证:MD⊥MC。 分析:遇到腰上中点的问题构造梯形中位线可证明,也可以因为腰上有中点,延长DM与CB的延长线交于E点进行证明。 ADACDMNQPEGFBCBDMC例1图 AB 例2图问题图 【例2】如图,△ABC的三边长分别为AB=14,BC=16,AC=26,P为∠A的平分线AD上一点,且BP⊥AD,M为BC 的中点,求PM的长。 分析:∠A的平分线与BP边上的垂线互相重合,通过作辅助线延长BP交AC于点Q,△ABP≌△AQP知AB=AQ=14,又知M是BC的中点,所以PM是△BQC的中位线,于是本题得以解决。

答案:PM=6 探索与创新: 【问题一】 E、F为凸四边形ABCD的一组对边AD、BC 的中点,若EF= 1(AB?CD),2问:ABCD为什么四边形?请说明理。 分析与结论:如图,利用三角形和梯形的中位线定理,连结AC,取AC的中点G,连EG、FG,则EG∥ 111CD,FG∥AB,∴EG+FG=(AB?CD),即EG+FG=EF,则222G点在EF上,EF∥CD,EF∥AB,故AB∥CD。 若AD∥BC,则凸四边形ABCD为平行四边形;若AD不平行于BC,则凸四边形ABCD为梯形。 评注:利用中位线构造出 11CD、AB,其关键是连AC,并取其中点G。 22跟踪训练: 一、填空题: 1、三角形各边长为5、9、12,则连结各边中点所构成的三角形的周长是。 2、一个等腰梯形的周长为100cm,如果它的中位线与腰长相等,它的高为20cm,那么这个 梯形的面积是。 3、若梯形中位线被它的两条对角线分成三等分,则梯形的两底之比为。

三角形中位线定理模型应用的思维导图

三角形中位线定理模型应用的思维导图 三角形中位线定理是一个重要知识点,更是一种重要的解题工具,熟练掌握定理的两种模型,能助力数学解题效率,提升数学核心素养. 一、定理模型构建 1.双中点模型 如图1 条件:在△ABC 中,点D 是边AB 的中点,点E 是边AC 的中点; 结论:12;2DE BC BC DE DE BC ?==????? ?数量关系:或位置关系:∥. 2.中点+平行线模型 如图1 条件:在△ABC 中,点D 是边AB 的中点,DE ∥BC ; 结论:12;2.DE BC BC DE E AC ?==????? ?数量关系:或位置关系:点是的中点 证明:如图2,过点C 作CF ∥AB ,交DE 的延长线于点F.∵DE ∥BC ,CF ∥AB, ∴四边形BDFC 是平行四边形,∴BD=CF. ∵AD=BD ,∴AD=CF. ∵CF ∥AB, ∴∠A=∠ACF ,∠ADE=∠EFC ,∴△ADE ≌△CFE ,∴AE=EC ,∴点E 是AC 的中点, DE 是△ABC 的中位线,∴DE=1 2BC. 二、定理常用模型 1.双中点模型 此条件下,完全具备定理的条件,可以直接使用. 2.构造托底平行线型 如图3,在△ABC 中,点D 是边AB 的中点,点E 为AC 上一点,连接DE ,过点B 作BF ∥DE ,则DE 是△ABF 的中位线,定理可用 .

3.构造中点平底线型 如图4,在△ABC 中,点D 是边AB 的中点,过点D 作DE ∥BC ,则DE 是△ABC 的中位线,定理可用. 三、应用剖析 1.平行四边形中构造使用定理 例1 (2020?陕西)如图5,在平行四边形ABCD 中,AB=5,BC=8.E 是边BC 的中点,F 是平行四边形ABCD 内一点,且∠BFC=90°.连接AF 并延长,交CD 于点G .若EF ∥AB ,则DG 的长为 ( ) A. 5 2 B .32 C . 3 D .2 解析:如图5,延长CD ,交BF 的延长线于点H ,∵E 是边BC 的中点,∠BFC=90°,∴EB=EF=EC=1 2BC=4,∵EF ∥AB ,CD ∥AB ,∴EF ∥CD ,∵E 是边BC 的中点,∴EF 是三角形BCH 的中位线, ∴CH=8,DH=5,易证△ABF ≌△GHF ,∴AB=GH=5,∴AH=CG=BH-BA=BC-BA=8-5=3, ∴DG=GH-DH=5-3=2,∴选D. 点评:解答时,把握三个关键,一是直角三角形斜边中线原理;二是三角形中位线定理;三是构造中点型全等三角形法,这些都是解题的核心要素. 例2(2020?凉山州)如图6,平行四边形ABCD 的对角线AC 、BD 相交于点O ,OE ∥AB 交

22.6 三角形梯形的中位线(2)

课题:22.6(2)梯形的中位线 教学目标 1、理解梯形的中位线概念; 2、经历探索梯形中位线性质的过程,体会转化的思想方法; 3、掌握梯形的中位线的性质定理,能运用梯形中位线定理进行计算和论证.教学重点及难点 重点:掌握梯形中位线定理,并能应用定理进行计算和证明; 难点:识图,认识梯形中位线的性质. 教学过程设计 一、情景引入 1、温故知新 (1)结合图形,讲出三角形中位线定义及其性质; 几何语言:因为……,所以……. (2)习题评析 ①联结三角形各边中点得到的三角形,它的周长为原三角形周长的, 面积为原三角形面积的; ②三角形的一条中位线分原三角形所成的一个小三角形与一个梯形的面积 比是; ③以等腰梯形两底的中点及两对角线的中点为顶点的四边形是; ④顺次联结对角线互相垂直的四边形各边中点所成的四边形是. 2、思考:什么是梯形的中位线?梯形中位线有什么性质? 二、学习新课 1、概念辨析 (1)梯形中位线定义:联结梯形两腰的中点的线段叫做梯形的中位线. 如图,已知点E、F分别是梯形的腰AB、CD中点,则EF为梯形ABCD的 中位线. 探讨1:如何添加辅助线 探讨2:如何利用中点条件添加辅助线?

探讨3:能否运用三角形的中位线定理得出梯形的中位线定理? (3)结论1 梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半. (4)结论2 梯形面积公式:梯形面积=中位线×高. 2、例题分析 例 1 如图,一把梯子每一横档都互相平行,高度相等,已知最上面两条横档的长度分别为6、7,那么下面几根横档的长度分别为多少? 【分析】利用梯形中位线定理可以先得出第三条边,其余的就 迎刃而解了. 例2 如图,在梯形ABCD 中,AD//BC ,E 为AB 的中点,AD+BC=DC . 求证:DE ⊥EC . 【分析】利用梯形中位线定理解题,即可考虑添加中位线. 由已知条件,联想到利用梯形ABCD 的中位线,并且可知中位线的长是DC 的一半;又梯形中位线与上、下底平行,于是可以从几对等角中获得结论. B B 另外,也有一种常用的添加辅助线方法,可以探讨是否可行. 3、问题拓展 当梯形的上底收缩为一点时,梯形成为三角形.因此可以说,三角形中位线定理是梯形中位线定理的特殊情况. 三、巩固练习 1、联结三角形各边中点得到的三角形,它的周长为原三角形周长的 ;面积为原三角形面积的 . 2、三角形的一条中位线分原三角形所成的一个小三角形与一个梯形的面积比 .

《三角形中位线定理》教案

4.5三角形中位线定理 【教案背景】 1、面向学生:初二学生 2、课时:1课时 3、学科:数学 4、学生准备:提前预习本节课的内容,2张三角形纸,剪刀. 【教材分析】 1、教材的地位和作用: 本节教材是浙江教育出版社的八年级数学下册第四章第五节的内容。三角形中位线既是前面已学过的平行线、全等三角形、平行四边形性质等知识内容的应用和深化,同时为进一步学习等腰三角形的中位线打下基础,尤其是在判定两直线平行和论证线段倍分关系时常常用到。在三角形中位线定理的证明及应用中,处处渗透了归纳、类比、转化等化归思想,它是数学解题的重要思想方法,对拓展学生的思维有着积极的意义。 2、教学目标 (一)知识目标 (1)理解三角形中位线的概念 (2)会证明三角形的中位线定理 (3)能应用三角形中位线定理解决相关的问题; (二)过程与方法目标 进一步经历“探索—发现—猜想—证明”的过程,发展推理论证的能力。体会合情推理与演绎推理在获得结论的过程中发挥的作用。 (三)情感目标 通过拼图活动,来激发学生的求知欲,进一步培养学生合作、交流的能力和团队精神,培养学生实事求是、善于观察、勇于探索、严密细致的科学态度。 3.重点与难点 重点:理解并应用三角形中位线定理。 难点:三角形中位线定理的证明和运用。 【教学方法】 学生在前面的数学学习中具有了一定的合作学习的经验,为了让学生进一步经历、猜测、证明的过程,我采取:启发式教学,在课堂教学,我始终贯彻“教师为主导,学生为主体,探究为主线”的教学思想,通过引导学生实验、观察、比较、分析和总结,使学生充分地参与教学全过程。

【教学过程】 本节课分为五个环节:设景激趣,引入新课概念学习,感悟新知拼图活动,探索定理巩固练习,强化新知小结归纳,作业布置 (一)设景激趣,导入新课 动手实践探索(请您做一做:让学生拿出自己预先准备好的三角形纸板) 1、找出三边的中点 2、连接6点中的任意两点 3、找找哪些线是你已经学过的,哪些是未曾学过的 设计意图: 在本环节,让学生经过动手操作,学生会发现有3条是已经学过的中线,有3条是没有学过的。最终给出三角形中位线的定义。也引出了本节课的课题:三角形的中位线。这样做,既让学生得出三角形中位线的概念又让学生在无形中区分了三角形的中线和三角形中位线 (二)概念学习,感悟新知 三角形中位线的定义: 连接三角形两边中点的线段,叫做三角形的中位线 如图,DE、EF、DF是三角形的3条中位线。 跟踪训练: ①如果D、E分别为AB、AC的中点,那么DE为△ABC的; ②如果DE为△ABC的中位线,那么D、E分别为AB、AC的。设计意图: 学以致用,为了及时的使学生加深三角形中位线的概念印象,为后面的探究打下基础,设立了以上两道简单的抢答题,让学生学会及时的从图中找出信息。 (三)拼图活动、探索定理 C B A F E D C B E D

九年级数学上册中位线应用三角形中位线定理“四会”素材新版华东师大版

应用三角形中位线定理“四会” 三角形中位线定理在一个题设下,有两个结论:一是线段的位置关系,另一个是线段之间的数量关系.这个定理在证明、计算、作图中都有广泛的应用,是三角形的最重要的性质之一,当三角形中有中点时,往往借助三角形中位线来解决相关问题.那么在学习了三角形中位线定理后,我们应该会解决哪些问题呢?本文所要阐述的就是这个问题. 一、会求值 例1:如图1,在菱形ABCD 中,E 、F 分别是AB 、AC 的中点,如果2EF =,那么ABCD 的周长是( ). A .4 B .8 C .12 D .16 析解:因为E 、F 分别是AB 、AC 的中点,所以EF 是 ABC ?的中位线,则12 EF BC =,24BC EF ==.故菱形ABCD 的周长为416BC =,选D . 二、会证明 例2:如图2,在ABC ?中,90BAC ∠=,延长BA 到点D ,使12 AD AB =,点E 、F 分别为边BC 、AC 的中点.求证DF BE =. 分析:由题意知点E 是Rt ABC ?斜边中点,作出斜边中线AE 后,有12AE BC = .另外,点F 又是AC 的中点,所以EF 是ABC ?的中位线,EF ∥AB 且12 EF AB =.这样,就可证得四边形AEFD 是平行四边形,从而有12 DF AE BC BE ===,问题得证. 证明:连接AE ,则12AE BC BE = =. ∵E 、F 分别为边BC 、AC 的中点, ∴EF 是ABC ?的中位线, ∴EF ∥AB ,12EF AB = . 又∵12 AD AB =, ∴EF AD =. 而EF ∥AD , ∴四边形AEFD 是平行四边形,

三角形梯形中位线定理教师版

三角形、梯形中位线定理应用练习课 一、复习题组 1.知识要点 A 1,三角形中位线性质定理的条件是,(1) 如图结论是; DE三角形中位线判定定理的条件是,CB结 论是。1)(图AD如图2,梯形中位线性质定理的条件是,(2) 结论是;EF梯形中位线判定定理的条件是, CB 2 结论是。(图)2.基本方法三角形、梯形中位线定理不仅反映了线段的相等关系,也反映了线段间的倍半关系。此外,证明线 段相等或倍半关系还有其他方法,你能指出一些其他的常用方法吗?全等三角形对应边相等; (1) (2) 等角对等边,等腰三角形“三线合一”性质;线段垂直平分线上的点到线段两端点的距离相等;(3) 角平分线上的点到角的两边距离相等;(4) (5) 直角三角形斜边上的中线等于斜边的一半;30°角所对的直角边等于斜边的一半;(6) 直角三角形中,(7) 平行四边形(包括矩形、菱形、正方形)的性质;(8) 等腰梯形的两腰相等,两条对角线相等。 二、基本题组 1.顺次连结四边形各边中点所得的四边形是;.顺次连结平行四边形各边中点所得的四边形是;2 .顺次连结矩形各边中点所得的四边形是;3 4.顺次连结菱形各边中点所得的四边形是;5.顺次连结正方形各边中点所得的四边形是;.顺次连结梯形各边中点所得的四边形是。6 7.顺次连结直角梯形各边中点所得的四边形是。8.顺次连结等腰梯形各边中点所得的四边形是。1 / 8 .顺次连结对角线的四边形各边中点所得的四边形是菱形;9 .顺次连结对角线的四边形各边中点所得的四边形是矩形;10 11.顺次连结对角线的四边形各边中点所得的四边形是正方形。

系统小结,深刻理解 的周长比为,面积比为。各边的中点,则△DEF与△ABCD、E、F是△ABC 12.已知,AC的四等分点,BC=28的四等分点,D'、E'、F' 是13.如图3,在△ABC中,D、E、F是AB FF' = EE' =,。则DD'=,边的三等分点,若BC=18,边的三等分点,D'、E' 是AC 14.如图4,在△ABC中,D、E是AB ,EE' =。则DD'= CD于是AB的三等分点,EE' // FF' // BC,分别交.如图155,在梯形ABCD中,AD//BC,E、F FF' = 。AD=10,则EE' =, E'、F'。若BC=28,A AADDD' EDED'E'E'FEFF'E'F'CCCBBB(图5)) (图4) 3 (图.直角三角形斜边上的中线与连结两直角边中点的线段的关系是()16 D.垂直平分且相等.相等且平分B.相等且垂直C.垂直平分 A )17.以等腰梯形两底中点和两条对角线中点为顶点的四边形是(.正方形.矩形C.菱形 D B A.平行四边形、教练题组三 □E为边作AD、AC,ACED,以,在梯形例1.已知:如图6ABCD中,AB//CD EB的延长线交于F。DC FCD求证:EF = FB。1 〖注〗本题先由学生讨论,拓宽证题思路,再补充、归纳;BA)6 2 〖注〗本题证法较多,关键是如何添加辅助线,主要方法如下。(图 2 / 8

三角形中位线定理的应用2

三角形中位线定理的应用 三角形中位线定理是平面几何中十分重要的性质,它说明中位线的位置与第三边平行,长度是第三边的一半,应用它可解许多几何题,如:1.说明线段的倍分关系 例1如图1,AD是△ABC的中线,E为AD的中点,BE交AC于F, AF=1 3 AC.试说明EF= 1 4 BF. 解:取CF的中点H,联结DH,则DH为△CBF的中位线. 又因为AF=1 3 AC,即F为AH的中点,则EF为△ADH的中位线,故DH= 1 2BF,EF= 1 3 DH,所以EF= 1 4 BF. 2.说明两线平行 例2如图2,自△ABC的顶点A向∠B和∠C的平分线作垂线,D、E为 垂足.试说明DE∥BC. 解:延长AE、AD交BC与BC的延长线于N、M.由∠1=∠2,BD⊥AM,可得AD=DM.同理可得AE=EN.故DE为△ANM的中位线.所以DE∥MN,即DE∥BC.

3.说明线段相等 例3如图3,D、E分别是△ABC的边AB、AC上的点,且BD=CE,M、N分别为BE、CD的中点,直线MN分别交AB、AC于P、Q.试说明AP=AQ. 解:取BC中点F,联结MF与NF. 因为BM=ME,BF=FC. 所以MF∥CE,且MF=1 2 CE. 同理可得NF∥BD,且NF=1 2 BD.且又BD=CE,所以MF=NF,故∠3=∠4, 又∠1=∠4,∠2=∠3,所以∠1=∠2,故AP=AQ. 4.说明两角相等 例4如图4,在△ABC中,M、N分别在AB、AC上,且BM=CN,D、E 分别为MN与BC的中点,AP∥DE交BC于P.试说明∠BAP=∠CAP. 解:联结BN并取中点Q,联结DQ与EQ,则DQ∥BM,且DQ=1 2 BM, EQ∥CN,且EQ=1 2 CN,又BM=CN,所以DQ=EQ,故∠1=∠2,因为AB∥DQ, DE∥AP,所以∠1=∠BAP.因为QE∥NC,DE∥AP,所以∠2=∠CAP,所以∠BAP=∠CAP.

中考几何之三角形梯形的中位线

中考数学一轮复习之三角形、梯形的中位线 知识考点: 掌握三角形、梯形的中位线定理,并会用它们进行有关的论证和计算。 精典例题: 【例1】如图,梯形ABCD 中,AD ∥BC ,M 是腰AB 的中点,且AD +BC =DC 。求证:MD ⊥MC 。 分析:遇到腰上中点的问题构造梯形中位线可证明,也可以因为腰上有中点,延长DM 与CB 的延长线交于E 点进行证明。 例1图 N M D C B A 【例2】如图,△ABC 的三边长分别为AB =14,BC =16,AC =26,P 为∠A 的平分线AD 上一点,且BP ⊥AD ,M 为BC 的中点,求PM 的长。 例2图 Q P M D C B A 分析:∠A 的平分线与BP 边上的垂线互相重合,通过作辅助线延长BP 交AC 于点Q ,由△ABP ≌△AQP 知AB =AQ =14,又知M 是BC 的中点,所以PM 是△BQC 的中位线,于是本题得以解决。 答案:PM =6

探索与创新: 【问题一】 E 、F 为凸四边形ABCD 的一组对边AD 、BC 的中点,若EF =)(2 1 CD AB +,问:ABCD 为什么四边形?请说明理由。 问题图 G F E D C B A 分析与结论:如图,利用三角形和梯形的中位线定理,连结AC ,取AC 的中点G ,连EG 、FG ,则EG ∥ 21CD ,FG ∥21AB ,∴EG +FG =)(2 1 CD AB +,即EG +FG =EF ,则G 点在EF 上,EF ∥CD ,EF ∥AB ,故AB ∥CD 。 (1)若AD ∥BC ,则凸四边形ABCD 为平行四边形; (2)若AD 不平行于BC ,则凸四边形ABCD 为梯形。 评注:利用中位线构造出21CD 、2 1 AB ,其关键是连AC ,并取其中点G 。

《中位线定理》教学设计

《中位线定理》教学设计 《中位线定理》教学设计 莱州市程郭中学曲晓梅 【教案背景】 1、面向学生:初三 2、课时:1 3、学科:数学 4、学生准备:提前预习本节课的内容,若干张三角形纸板,彩色油性笔,剪刀 【教材分析】 1、教材的地位和作用: 本节课是初三数学下册第八章第四节第一课时的内容。三角形中位线既是前面已学过的平行线、全等三角形、平行四边形性质等知识内容的应用和深化,同时为进一步学习梯形的中位线打下基础,尤其是在判定两直线平行和论证线段倍分关系时常常用到。在三角形中位线定理的证明及应用中,处处渗透了归纳、类比、转化等化归思想,它是数学解题的重要思想方法,对拓展学生的思维有着积极的意义。 2、教学目标: 知识目标: (1)理解三角形中位线的概念 (2)会证明三角形的中位线定理 (3)能应用三角形中位线定理解决相关的问题; 过程与方法目标: 进一步经历“探索一发现一猜想一证明”的过程,发展推理论证的能力。体会合情推

理与演绎推理在获得结论的过程中发挥的作用。 情感目标 通过拼图活动,来激发学生的求知欲,进一步培养学生合作、交流的能力和团队精神,培养学生实事求是、善于观察、勇于探索、严密细致的科学态度。 3、教学重难点: 重点:理解并应用三角形中位线定理。难点:三角形中位线定理的证明和运用。 【教学方法】 学生在前面的数学学习中具有了一定的合作学习的经验,为了让学生进一步经历、猜测、证明的过程,我采取:启发式教学,在课堂教学,我始终贯彻教师为主导,学生为主体,探究为主线”的教学思想,通过引导学生实验、观察、比较、分析和总结,使学生充分地参与教学全过程。

相关文档
最新文档