睿达杯练习100题(七年级)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
睿达杯练习100题(七年级)
1..
2.若,则n表示的数是.
3.计算:.
4.计算:.
5.360的所有因数的和是.
6.正因数个数恰好为6的最小正整数.
7.两个正整数的最小公倍数为168,两数之差为35,则这两个数为与.
8.现有三个自然数,它们的和是1111,这样的三个自然数的公约数中,最大的可以是。
9.设A、B是自然数,且,若的最大公约数是,最小公倍数是,则当最小时,
求的值.答:的值为.
10.一个六位数的3倍等于,则这个六位数等于.
11.已知四位数满足,则为.
12.若a,c,d是整数,b是正整数,且满足,,,那么的最大值是.
13.若,则的大小关系是.
14.若,,则.
15.自动扶梯匀速往上运行,男孩和女孩要从扶梯上楼,已知男孩每分走20级,女孩每分走15级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上,那么扶梯有级.
16.某人沿着马路以每分钟75米的速度步行,每7.2分钟有一辆快345公交车迎面开过,每12分钟有一辆快345公交车从后面追过,如果公交车发车时间间隔相同,速度相同,则这个公交车发车间隔
为分钟.
17.已知甲、乙两车分别从A、B两地同时相向开出,甲车的速度是50千米/时,乙车的速度是40千米/时,当甲车驶过A、B距离的多50千米时,与乙车相遇.A、B两地相距千米.
18.两条公路成十字交叉,甲从十字路口南1200米处向北直行,乙从十字路口处向东直行.甲、乙同时出发10分钟,两人与十字路口的距离相等,出发后100分钟,两人与十字路口的距离再次相等,此时他们距离十字路口米.
19.甲、乙两车同时从A、B两地相对开出,两车第一次在距A地95千米处相遇,相遇后两车继续行驶,各自达到A、B两地后,立即原路返回,第二次在距B地25千米处相遇,则A、B两地间的距离是______千米.
20.三年前,父亲年龄是儿子年龄的倍;两年之后,父亲年龄是儿子年龄的倍,儿子今年几岁?答:儿子今年岁.
21.甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么甲、乙的年龄相差岁.
22.甲、乙、丙三人现在的年龄和是113岁,当乙的岁数是丙的岁数的一半时,丙38岁;当乙岁数是丙岁数的一半时,甲是17岁,则乙现在岁.
23.某商场对顾客实行优惠,规定:①如一次购物不超过200元,则不予折扣;②如一次购物超过200元但不超过500元的,按标价给予九折优惠;③如一次购物超过500元的,其中500元按第②条给予优惠,超过500元的部分则给予八折优惠.某人两次去购物,分别付款168元和423元;如果他只去一次购物同样的商品,则应付款是.
24.一池水,甲、乙两管同时开,5小时灌满,乙、丙两管同时开,4小时灌满.现在先开乙管6小时,还需甲、丙两管同时开2小时才能灌满.则乙单独开小时可以灌满.
25.甲乙两队挖一条水渠,甲队单独挖需8天完成,乙队单独挖需12天完成.现两队同时挖了几天后,乙队调走,余下的甲队在三天内挖完,乙队挖了天
26.一项工程,甲单独做需要10小时完成,乙单独做需要8小时完成,丙单独做需要6小时完成,如果先由甲工作1小时,再由乙工作1小时,再由丙工作1小时......如此下去,那么完成工作需
要小时.
27.学校组织学生步行去野外实习,每分钟走80米,走9分钟后,班长发现有重要东西还在学校,就以原速返回,找到东西再出发时发现又耽搁了18分钟,为了在到达目的地之前赶上队伍他改骑自行车,速度为260米/分,当他追上学生队伍时距目的地还有120米.走完全程学生队伍需要分.
28.游泳者在河中逆流而上.于桥A下面将水壶遗失被水冲走.继续前游20分钟后他发现水壶遗失,于是立即返回追寻水壶.在桥A下游距桥A 2公里的桥B下面追到了水壶.那么该河水流的速度是每小时公里.
29.放有小球的1993个盒子从左到右排成一行,如果最左面的盒里有7个小球,且每四个相邻的盒里共有30个小球,那么最右面的盒里有个小球.
30.黑白两色的盒子如下图依次排列,且其中分别放有与盒子颜色相同的球,每个黑盒子中的球的个数不超过,每个白盒子中的球的个数彼此不同,且所有盒子中都有球,若盒子中球的总数是,则黑球最多有多少个?答:.
31.将满足条件“至少出现一个数字0且是4的倍数的正整数”从小到大排成一列数:20,40,60,80,100,104,….则这列数中的第158个数为.
32.有一列数:,,,,,,,,,,,……,则是这一列数中的第个数.
33.恰有35个连续自然数的算术平方根的整数部分相同,那么这个相同整数是.
34.已知多项式是二次多项式,.
35.若与的和是单项式,则.
36.已知,那么从小到大的顺序是.
37.若都是正数,且,则a、b、c、d中,最大的一个是.
38.化简:= .
39.若那么代数式.
40.若的值恒为常数,则此常数的值为.
41.已知m,n为整数,且,则.
42.已知:abc≠0,且M=,当a、b、c取不同的值时,M有可能为.
43.若,则的所有可能值是.
44.设,则的值是。
45.若,,且,则= .
46.若,,,则化简得.
47.若m= -1998,则.
48.已知,那么为.
49.已知都不等于0,且的最大值为,最小值为,则
= .
50.满足的的取值范围为.
51.已知,则.
52.实数a在数轴上的位置如图所示,则化简后为.
53.设a=-1,a在两个相邻整数之间,则这两个整数是.
54.m取整数值时,分式的值是正整数.