线性代数-向量及其线性运算

合集下载

向量及线性运算

向量及线性运算

按照向量与数的乘积的规定,
上式表明:一个非零向量除以它的模的结果是一个与原向量同方向的单位向量.
例1 化简

例2 试用向量方法证明:对角线互相平分的四边形必是平行四边形.

与 平行且相等,
结论得证.
习题7-1.2
四、小结
向量的概念
(注意与标量的区别)
向量的加减法
(平行四边形法则)
由三角形两边之和大于第三边的原理有
三、向量与数的乘法
结合律:
(2)分配律:
数与向量的乘积符合下列运算规律: 两个向量的平行关系
证 充分性显然; 必要性 ‖ 两式相减,得
.定理是建立数轴的理论依据
给定一个点及一个单位向量,就确定了一个数轴。 设点o及单位向量i确定了数轴ox, 如图 对于轴上任一点P,对应一个向量,
大小相等且方向相同的向量.记作
4
负向量:
5
大小相等但方向相反的向量.
6
特殊地,当两个向量中有一个零向量时,规定它们的夹角可在0与 之间任意取值.
类似地,可定义向量与一轴或空间两轴的夹角.
空间两向量的夹角的概念:
01
02
设有两个向量a,b,任取空间一点O,
称为向量a与b的夹角。
向量的共面
向量的平行(共线)
二、向量的加减法
[1] 加法:
添加标题
1
(平行四边形法则)
添加标题
2
特殊地:若
添加标题
3

添加标题
4
分为同向和反向
添加标题
5
(平行四边形法则有时也称为三角形法则)
添加标题
6
向量的加法符合下列运算规律:
(1)交换律:

线性代数第二章2-2向量及其线性运算

线性代数第二章2-2向量及其线性运算

代数形象:向 量 的 坐 标 表 示 式
a a1 a2
an

解析几何
点空间:点的集合

线性代数
向量空间:向量的集合
( n 3)
坐 标
几 何 形 象: 空间直线、曲线、 空间平面或曲面

代 数 形 象: 向量空间中的平面
( x, y, z ) ax by cz d r ( x , y, z )

四、向量空间 1、定义 设V为n维非空向量组,且满足
①对加法封闭
if V , V V ; if V , R V . ②对数乘封闭 那么就称向量组V为向量空间(Vector Space).
例1 全体n维向量所组成的集合是一个向量空间, 记作 :
第二节 向量及其线性运算
1、引入 确定小鸟的飞行状态, 需要以下若干个参数: 小鸟身体的质量m 小鸟身体的仰角ψ 鸟翼的转角ψ 鸟翼的振动频率t 小鸟身体的水平转角θ 小鸟重心在空间的位置参数 P ( x , y , z ) 还有… 所以,为确定小鸟的飞行状态,会产生一组有序数组 m t x y z
i 1,2,
, n
5、负向量: (a1, a2 ,
, an ), (a1, a2 , , an )
二、向量的运算 1、加法 a1
a2 an , b1 a2 b2 b2 bn ,
规定 a1 b1
an bn an bn
所以 V2不是一个向量空间.
例3
V3 x x1

k R,
V4 x x1

判别下列集合是否为向量空间.

向量的线性运算向量的加法和数乘

向量的线性运算向量的加法和数乘

向量的线性运算向量的加法和数乘向量的线性运算:向量的加法和数乘向量是数学中一个重要的概念,它在许多领域中都有广泛的应用。

在线性代数中,向量的线性运算是一项基础且重要的内容。

本文将重点介绍向量的加法和数乘两种线性运算,以及它们的性质和应用。

一、向量的加法向量的加法是指将两个向量相应位置上的元素进行相加得到一个新的向量。

设有两个向量:向量A = (a₁, a₂, ..., aₙ)和向量B = (b₁,b₂, ..., bₙ),则它们的加法可表示为:A +B = (a₁ + b₁, a₂ + b₂, ..., aₙ + bₙ)其中,a₁ + b₁表示A和B的第一个元素相加,a₂ + b₂表示A和B的第二个元素相加,以此类推。

需要注意的是,参与加法运算的两个向量必须有相同的维度,即拥有相同数量的元素。

向量的加法具有以下性质:1. 交换律:对于任意两个向量A和B,有A + B = B + A。

即向量的加法满足交换律,顺序可以交换而不影响结果。

2. 结合律:对于任意三个向量A、B和C,有(A + B) + C = A + (B +C)。

即向量的加法满足结合律,可以按照任意顺序进行多次加法运算。

3. 零向量:对于任意向量A,存在一个全零向量0,使得A + 0 = A。

即任何向量与零向量进行加法运算,结果仍为原向量本身。

向量的加法有着广泛的应用,例如在力学中,将多个力的作用效果用向量的加法表示;在几何学中,将多个向量的位移用向量的加法表示等等。

二、向量的数乘向量的数乘是指将一个实数乘以一个向量的每个元素得到一个新的向量。

设有一个向量A = (a₁, a₂, ..., aₙ),实数k,则它们的数乘可表示为:kA = (ka₁, ka₂, ..., kaₙ)即向量A的每个元素都乘以k得到新的元素。

这里的实数k称为标量,而向量A称为向量kA的标量倍。

需要注意的是,标量与向量进行数乘时,不改变向量的维度。

向量的数乘具有以下性质:1. 结合律:对于任意实数k₁和k₂以及向量A,有(k₁k₂)A =k₁(k₂A)。

向量的线性运算

向量的线性运算

向量的线性运算向量是线性代数中的重要概念,线性运算是对向量进行数学操作的方法。

本文将介绍向量的线性运算包括加法、减法、数乘,以及向量的线性组合。

一、向量的加法向量的加法是指将两个向量相加得到一个新的向量,符号为“+”。

设有向量A和向量B,记作A+B=C,其中C是向量A和向量B的和向量。

向量的加法满足以下几个性质:1. 交换律:A+B=B+A2. 结合律:(A+B)+C=A+(B+C)3. 零向量:对于任意向量A,有A+0=A,其中0是零向量,即所有分量都为0的向量。

二、向量的减法向量的减法是指将一个向量减去另一个向量得到一个新的向量,符号为“-”。

设有向量A和向量B,记作A-B=C,其中C是向量A和向量B的差向量。

向量的减法可以转化为向量的加法,即A-B=A+(-B),其中-表示取反操作。

三、向量的数乘向量的数乘是指将一个向量乘以一个实数得到一个新的向量。

设有向量A和实数k,记作kA=B,其中B是向量A的数乘结果。

向量的数乘满足以下性质:1. 分配律:k(A+B)=kA+kB2. 结合律:(kl)A=k(lA),其中k和l为实数四、向量的线性组合向量的线性组合是指将若干个向量按照一定的权重进行相加得到一个新的向量。

设有向量A1、A2、...、An和实数k1、k2、...、kn,向量的线性组合记作k1A1+k2A2+...+knAn。

向量的线性组合可以看作是向量的加法和数乘运算的组合。

向量的线性运算在向量空间中有着重要的应用。

通过向量的线性组合,我们可以表示出向量空间中的各种线性关系,诸如线性相关性、线性无关性、生成子空间等概念。

在实际问题中,向量的线性运算也有广泛的应用。

例如,物理学中常用向量的线性组合来表示力、速度、加速度等物理量;经济学中则常用向量的线性组合来表示商品的组合、市场的供求关系等。

综上所述,向量的线性运算包括加法、减法、数乘和线性组合。

通过这些运算,我们可以对向量进行各种数学操作,方便地进行向量的运算和分析,也为解决实际问题提供了有力的工具。

向量的线性运算

向量的线性运算

向量的线性运算线性运算是数学中的一个重要概念,它在许多不同领域中都有广泛的应用。

在线性代数中,线性运算指的是对向量进行加法、标量乘法和一些其他操作的过程。

这些操作可以用于解决很多实际问题,在计算机科学、物理学、工程学以及经济学等领域都有重要应用。

在线性代数中,一个向量通常可以表示为一个由多个数值组成的有序集合。

例如,一个二维向量可以表示为(x, y),其中x和y分别表示向量在x和y轴上的分量。

对于一个n维向量,可以用类似的方式表示为(x1, x2, ..., xn)。

首先,让我们来看一下向量的加法。

向量的加法是指两个向量按照对应分量相加的操作。

例如,对于向量a=(2, 3)和向量b=(1, -1),它们的和a+b=(2+1, 3+(-1))=(3, 2)。

向量的加法可以用于解决很多实际问题,如计算机图形学中的坐标变换、力学中的力合成等。

其次,我们来介绍一下向量的标量乘法。

向量的标量乘法是指一个向量与一个实数相乘的操作。

例如,对于向量a=(2, 3)和标量c=2,它们的标量乘积c*a=(2*2, 3*2)=(4, 6)。

向量的标量乘法可以用于调节向量大小、计算向量的线性组合等。

除了加法和标量乘法之外,还有一些其他的向量运算。

例如,向量的点积和向量的叉积是两个非常重要的运算。

向量的点积是指两个向量按照对应分量相乘再相加的操作。

例如,对于向量a=(2, 3)和向量b=(1, -1),它们的点积a·b=2*1+3*(-1)=2-3=-1。

向量的点积可以用于计算向量的长度、计算向量之间的夹角等。

向量的叉积是指两个三维向量按照一定规则进行运算得到的新向量。

向量的叉积在物理学中常用于计算力学中的力矩、电磁学中的磁场等。

线性运算在许多实际问题中都有广泛的应用。

在计算机科学中,线性运算被广泛应用于计算机图形学中的坐标变换、计算机视觉中的特征提取等。

在物理学中,线性运算被广泛应用于力学中的力合成、电磁学中的电磁场计算等。

向量的线性运算及其性质

向量的线性运算及其性质

向量的线性运算及其性质向量是线性代数中的重要概念,是指由一组数按照一定规律排列而成的有序数列。

向量的线性运算是指在向量空间中,对两个或多个向量进行数学运算的过程,其中包括向量加法和数量乘法等两种基本运算。

一、向量加法向量加法是向量运算中最基本的一种运算方式。

在向量空间中,向量加法的定义是两个向量相同位置上的数值相加。

例如,对于向量a=(a1,a2,a3)和b=(b1,b2,b3),它们的加法定义为:a+b=(a1+b1,a2+b2,a3+b3)在向量加法中,满足加法交换律和结合律。

即对于任意向量a,b,c,有:a+b=b+a(a+b)+c=a+(b+c)此外,零向量也是一个特殊的向量,它的各个分量都为0,记为0。

对于任意向量a,都有:a+0=a二、数量乘法数量乘法是指一个向量乘以一个常数。

常数也称为标量,表示为k。

例如,对于向量a=(a1,a2,a3),其数量乘法定义为:ka=(ka1,ka2,ka3)在数量乘法中,也满足交换律和结合律。

即对于任意向量a,b 和任意实数k,有:k(a+b)=ka+kb(k1k2)a=k1(k2a)此外,特别地,当k=0时,有:0a=0这个公式表示了任何向量与零向量相乘结果都是零向量。

三、线性组合如果给定一个向量集合,可以通过线性组合的方式来构造出一个新的向量。

线性组合的形式是将每个向量分别与对应的系数相乘后相加,例如:k1a1+k2a2+k3a3其中k1,k2,k3为实数,a1,a2,a3为向量。

线性组合可以看作是向量加法和数量乘法的叠加,它有着很多重要的性质。

线性组合是向量空间中的重要概念,它可以用于描述向量之间的关系。

四、向量空间向量空间是指一组向量所组成的空间,其中的向量可以进行向量加法和数量乘法等线性运算。

向量空间必须满足以下条件:1. 零向量存在并唯一。

2. 加法和数量乘法满足交换律、结合律和分配律。

3. 对于任意向量a,都有它的相反向量-b,使得a+b=0。

线性代数--向量组线性相关性

线性代数--向量组线性相关性

第四章 向量组的线性相关性§4.1 向量及其运算1.向量:个数构成的有序数组, 记作n n a a a ,,,21L ),,,(21n a a a L =α, 称为维行向量.n –– 称为向量i a α的第i 个分量R ∈i a –– 称α为实向量(下面主要讨论实向量) 零向量 )0,,0,0(L =θ;负向量 ),,,()(21n a a a −−−=−L α 2.线性运算:),,,(21n a a a L =α, ),,,(21n b b b L =β相等:若, 称),,2,1(n i b a i i L ==βα=.加法:=+βα),,,(2211n n b a b a b a +++L数乘:),,,(21n ka ka ka k L =α减法:=−βα=−+)(βα),,,(2211n n b a b a b a −−−L 3.算律:),,,(21n a a a L =α,),,,(21n b b b L =β,),,,(21n c c c L =γ(1) αββα+=+ (5) αα=1(2) )()(γβαγβα++=++ (6) αα)()(l k l k =(3) αθα=+ (7) βαβαk k k +=+)((4) θαα=−+)( (8) αααl k l k +=+)(4.列向量:个数构成的有序数组, 记作, n n a a a ,,,21L ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a M 21α或者, 称为维列向量.T 21),,,(n a a a L =αn 零向量: 负向量: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000M θ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−=−n a a a M 21)(α 5.内积:设实向量),,,(21n a a a L =α, ),,,(21n b b b L =β, 称 实数n n b a b a b a +++=L 2211],[βα为α与β的内积. 算律:),,,(21n a a a L =α,),,,(21n b b b L =β,),,,(21n c c c L =γ(1) ],[],[αββα=(2) ],[],[βαβαk k = (为常数)k (3) ],[],[],[γβγαγβα+=+(4) θα≠时, 0],[>αα;θα=时, 0],[=αα. (5)],[],[],[2ββααβα⋅≤证(5) R ∈∀t , 由0],[≥++βαβαt t 可得0],[],[2],[2≥++t t βββααα ⇒≤0Δ0],[],[4],[42≤⋅−ββααβα],[],[],[2ββααβα⋅≤⇒6.范数:设实向量α, 称实数],[ααα=为α的范数.性质:(1) θα≠时, 0>α;θα=时, 0=α.(2) αα⋅=k k )R (∈∀k(3) βαβα+≤+(4) βαβα−≤−证(3) ],[],[2],[],[2βββαααβαβαβα++=++=+()2222βαββαα+=++≤7.夹角:设实向量θα≠,θβ≠, 称 βαβαϕ],[arccos= )π0(≤≤ϕ为α与β之间的夹角. 正交:若0],[=βα, 称α与β正交, 记作βα⊥.(1) θα≠,θβ≠时, βα⊥2π=⇔ϕ; (2) θα=或θβ=时, βα⊥有意义, 而ϕ无意义.单位化:若θα≠, 称ααα10=为与α同方向的单位向量.§4.2 向量组的线性相关性1.线性组合:对n 维向量α及m αα,,1L , 若有数组使m k k ,,1L 得m m k k ααα++=L 11, 称α为m αα,,1L 的线性组合,或称α可由m αα,,1L 线性表示.例1 , , , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=1011β⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1112β⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=1133β⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1354β 判断4β可否由321,,βββ线性表示?解 设3322114ββββk k k ++=,比较两端的对应分量可得, 求得一组解为.故 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−321111110311k k k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=135⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡120321k k k 3214120ββββ++=, 即4β可由321,,βββ线性表示.[注] 取另一组解时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡032321k k k 3214032ββββ++=. 2.线性相关:对n 维向量组m αα,,1L , 若有数组不全m k k ,,1L 为0, 使得 θαα=++m m k k L 11, 则称向量组m αα,,1L 线性相关;否则,称为线性无关.线性无关:对维向量组n m αα,,1L , 仅当数组全m k k ,,1L 为0时, 才有 θαα=++m m k k L 11, 称向量组m αα,,1L 线性无关;否则,称为线性相关.[注] 对于单个向量α:若θα=, 则α线性相关;若θα≠, 则α线性无关.例2 判断例1中向量组4321,,,ββββ的线性相关性. 解 设θββββ=+++44332211k k k k , 比较对应分量可得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−0001111311053114321k k k k 即0=Ax .因为未知量的个数是4, 而4rank <A , 所以0=Ax 有非零解, 由定义知4321,,,ββββ线性相关.例3 已知向量组321,,ααα线性无关, 证明向量组211ααβ+=, 322ααβ+=, 133ααβ+= 线性无关.证 设 θβββ=++332211k k k , 则有θααα=+++++332221131)()()(k k k k k k 因为321,,ααα线性无关, 所以⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k , 即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000110011101321k k k 系数行列式 02110011101≠=, 该齐次方程组只有零解.故321,,βββ线性无关.例4 判断向量组 )0,,0,0,1(1L =e , )0,,0,1,0(2L =e , … ,)1,0,,0,0(L =n e 的线性相关性.解 设 θ=+++n n e k e k e k L 2211, 则有⇒=θ),,,(21n k k k L 只有0,,0,021===n k k k L 故线性无关.n e e e ,,,21L 例5 设向量组m ααα,,,21L 两两正交且非零, 证明该向量组线性无关.证 设 θααα=+++m m k k k L 2211, 两端与i α作内积可得 ],[],[],[],[11i i m m i i i i k k k αθαααααα=++++L L 当j i ≠时, 0],[=j i αα, 于是有⇒=0],[i i i k αα只有0=i k )(θα≠i Q上式对于m i ,,2,1L =都成立, 故m ααα,,,21L 线性无关.3.判定定理定理1 向量组)2(,,,21≥m m αααL 线性相关⇔其中至少有一个向量可由其余1−m 个向量线性表示.证 必要性.已知m ααα,,,21L 线性相关, 则存在m k k k ,,,21L 不全为零, 使得 θααα=+++m m k k k L 2211.不妨 设, 则有 01≠k m m k k k k ααα)()(12121−++−=L . 充分性.不妨设m m k k ααα++=L 221, 则有θααα=+++−m m k k L 221)1(因为不全为零, 所以m k k ,,,)1(2L −m ααα,,,21L 线性相关.定理2 若向量组m ααα,,,21L 线性无关, βααα,,,,21m L 线性相关, 则β可由m ααα,,,21L 线性表示, 且表示式唯一.证 因为βαα,,,1m L 线性相关, 所以存在数组不k k k m ,,,1L 全为零, 使得 θβαα=+++k k k m m L 11.若, 则 0=k θαα=++m m k k L 11, 从而有0,,01==m k k L 矛盾! 故, 从而有 0≠k m m kk k k ααβ)()(11−++−=L .下面证明表示式唯一:若 m m k k ααβ++=L 11, m m l l ααβ++=L 11 则有 θαα=−++−m m m l k l k )()(111L因为m ααα,,,21L 线性无关, 所以0,,011=−=−m m l k l k L ⇒m m l k l k ==,,11L 即β的表示式唯一.定理3 r αα,,1L 线性相关⇒)(,,,,,11r m m r r >+ααααL L线性相关.证 因为r αα,,1L 线性相关, 所以存在数组不全为r k k ,,1L 零, 使得 θαα=++r r k k L 11, 即θαααα=++++++m r r r k k 00111L L数组不全为零, 故0,,0,,,1L L r k k m r r αααα,,,,,11L L +线性相关.推论1 含零向量的向量组线性相关.推论2 向量组线性无关⇒任意的部分组线性无关.课后作业:习题四 1, 2, 3, 4, 5定理4 设m i a a a in i i i ,,2,1,),,,(21L L ==α⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m A αααM 21⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a L M M M L L 212222111211 (1) m ααα,,,21L 线性相关m A <⇔rank ;(2) m ααα,,,21L 线性无关m A =⇔rank .证 设 θααα=+++m m k k k L 2211比较等式两端向量的对应分量可得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00021212221212111M M L M M M L L m mn n n m m k k k a a a a a a a a a 即 0T =x A .由定理3.5可得:m ααα,,,21L 线性相关0T =⇔x A 有非零解m A <⇔T rank m A <⇔rankn m 推论1 在定理4中, 当=时, 有(1) n ααα,,,21L 线性相关0det =⇔A ;(2) n ααα,,,21L 线性无关0det ≠⇔A .n m 推论2 在定理4中, 当<时, 有(1) m ααα,,,21L 线性相关A ⇔中所有的阶子式;m 0=m D (2) m ααα,,,21L 线性无关⇔A 中至少有一个阶子式m 0≠m D .推论3 在定理4中, 当时, 必有n m >m ααα,,,21L 线性相关.因为m n A <≤rank , 由定理4(1)即得.推论4 向量组:1T m i a a a ir i i i ,,2,1,),,,(21L L ==α向量组:2T m i a a a a in r i ir i i ,,2,1,),,,,,(1,1L L L ==+β若线性无关, 则线性无关.1T 2T 证 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=×m r m A αααM 21⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=r m m m r r a a a a a a a a a L M M M L L 212222111211 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=×m n m B βββM 21⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=+++n m r m r m m n r r n r r a a a a a a a a a a a a L L M M M M L L L L 1,121,222111,1111 线性无关1T m A =⇒rank是A B 的子矩阵m A B =≥⇒rank rank⇒=⇒m B rank 2T 线性无关定理5 划分, 则有[]n m n m A βββαααL M 2121=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=×(1) 中某个A ⇒≠0r D A 中“所在的”个行向量线性无关;r D r中“所在的”r 个列向量线性无关.A r D (2) 中所有中任意的r 个行向量线性相关; A A D r ⇒=0 中任意的个列向量线性相关.A r 证 只证“行的情形”:(1) 设位于的行, 作矩阵, 则有r D A r i i ,,1L ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=×r i i nr B ααM 1 r i i r B αα,,rank 1L ⇒=线性无关.(2) 任取中个行, 设为行, 作矩阵,A r r i i ,,1L ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=×r i i nr B ααM 1 则有r i i r B αα,,rank 1L ⇒<线性相关.[注] 称m ααα,,,21L 为的行向量组A 称n βββ,,,21L 为的列向量组A §4.3 向量组的秩与最大无关组1.向量组的秩:设向量组为T , 若(1) 在T 中有r 个向量r ααα,,,21L 线性无关;(2) 在T 中任意个向量线性相关.1+r (如果有个向量的话)1+r 称r ααα,,,21L 为向量组T 的一个最大线性无关组,称为向量组T 的秩, 记作 秩r r T =)(.[注](1) 向量组中的向量都是零向量时, 其秩为0.(2) 秩r T =)(时, T 中任意个线性无关的向量都是T 的r 一个最大无关组.例如, , , , 的秩为2. ⎥⎦⎤⎢⎣⎡=011α⎥⎦⎤⎢⎣⎡=102α⎥⎦⎤⎢⎣⎡=113α⎥⎦⎤⎢⎣⎡=224α 21,αα线性无关21,αα⇒是一个最大无关组31,αα线性无关31,αα⇒是一个最大无关组定理6 设, 则1rank ≥=×r A n m (1) 的行向量组(列向量组)的秩为;A r (2) 中某个中所在的r 个行向量(列向量)A A D r ⇒≠0r D 是的行向量组(列向量组)的最大无关组.A 证 只证“行的情形”:A r A ⇒=rank 中某个0≠r D , 而中所有 A 01=+r D 定理5中所在的r 个行向量线性无关A ⇒r D 中任意的A 1+r 个行向量线性相关由定义:的行向量组的秩为, 且中所在的r 个行向A r A r D 是的行向量组的最大无关组.A 例6 向量组T :, , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=2011β⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0232β⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−=1123β, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=5324β求T 的一个最大无关组.解 构造矩阵[]4321ββββ=A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=510231202231 求得⇒=2rank A 秩2)(=T矩阵中位于1,2行1,2列的二阶子式A 022031≠= 故21,ββ是T 的一个最大无关组.[注] T 为行向量组时, 可以按行构造矩阵.A 定理7n m n m B A ××,(1) 若, 则“的列”线性相关(线性无关)B A 行→A k c c ,,1L 的充要条件是“B 的列”线性相关(线性无关); k c c ,,1L (2) 若, 则“的行”线性相关(线性无关)B A 列→A k r r ,,1L 的充要条件是“B 的行”线性相关(线性无关). k r r ,,1L 证 (1) 划分[]n n m A αααL 21=×, []n n m B βββL 21=× 由可得 B A 行→[][]k k c c c c ββααL L 11行→ 故方程组 []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0011M M L k c c x x k αα 与方程组 []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0011M M L k c c x x k ββ 同解.于是有 k c c αα,,1L 线性相关011=+ 存在不全为0, 使得⇔k x x ,,1L +k c k c x x αL α 存在不全为0, 使得⇔k x x ,,1L 011=++k c k c x x ββL ⇔k c c ββ,,1L 线性相关同理可证(2).[注] 通常习惯于用初等行变换将矩阵化为阶梯形矩阵A B ,当阶梯形矩阵B 的秩为时, r B 的非零行中第一个非零元素所在的个列向量是线性无关的.r 例如:求例6中向量组T 的一个最大无关组.构造矩阵[]4321ββββ=A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=510231202231⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−→936031202231行B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→000031202231行 ⇒==2rank rank B A 秩2)(=TB 的1,2列线性无关的1,2列线性无关A ⇒21,ββ⇒是T 的一个最大无关组 例7 向量组T :,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=31111α⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−=15312α,, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+−=21233c α⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−=c 10624α 求向量组T 的一个最大无关组.解 对矩阵[]4321αααα=A 进行初等行变换可得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+−−−−−=c c A 2131015162312311⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+−−−−−−−→67401246041202311c c 行 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−−−−−−→2900070041202311c c 行B c =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−−−−−→2000070041202311行 (1) :2≠c 4rank rank ==B AB 的1,2,3,4列线性无关的1,2,3,4列线性无关 A ⇒ 故4321,,,αααα是T 的一个最大无关组;(2) :2=c 3rank rank ==B AB 的1,2,3列线性无关的1,2,3列线性无关 A ⇒ 故321,,ααα是T 的一个最大无关组.[注] 当m ααα,,,21L 为行向量组时, 为列向量组. T T 2T 1,,,mαααL 若矩阵[]T T 2T 1m A αααL = 的列向量组的一个最大无关 组为, 则是行向量组T T ,,1r c c ααL r c c αα,,1L m ααα,,,21L 的 一个最大无关组.课后作业:习题四 7,8 (理解、记忆定理1~7)。

线性代数总结知识点

线性代数总结知识点

线性代数总结知识点线性代数是数学的一个分支,主要研究向量、向量空间(也称为线性空间)、线性变换以及线性方程组的理论。

它是现代数学的基础工具之一,广泛应用于物理学、工程学、计算机科学、经济学和社会科学等领域。

以下是线性代数的一些核心知识点总结:1. 向量与向量运算- 向量的定义:向量可以是有序的数字列表,用于表示空间中的点或方向。

- 向量加法:两个向量对应分量相加得到新的向量。

- 标量乘法:一个向量与一个标量相乘,每个分量都乘以该标量。

- 向量的数量积(点积):两个向量的对应分量乘积之和,用于计算向量的长度或投影。

- 向量的向量积(叉积):仅适用于三维空间,结果是一个向量,表示两个向量平面的法向。

2. 矩阵- 矩阵的定义:一个由数字排列成的矩形阵列。

- 矩阵加法和减法:对应元素相加或相减。

- 矩阵乘法:第一个矩阵的列数必须等于第二个矩阵的行数,结果矩阵的每个元素是两个矩阵对应行列的乘积之和。

- 矩阵的转置:将矩阵的行变成列,列变成行。

- 单位矩阵:对角线上全是1,其余位置全是0的方阵。

- 零矩阵:所有元素都是0的矩阵。

3. 线性相关与线性无关- 线性相关:如果一组向量中的任何一个可以通过其他向量的线性组合来表示,则这组向量是线性相关的。

- 线性无关:如果只有所有向量的零组合才能表示为零向量,则这组向量是线性无关的。

4. 向量空间(线性空间)- 定义:一组向量,它们在向量加法和标量乘法下是封闭的。

- 子空间:向量空间的子集,它自身也是一个向量空间。

- 维数:向量空间的基(一组线性无关向量)的大小。

- 基和坐标:向量空间的一组基可以用来表示空间中任何向量的坐标。

5. 线性变换- 定义:保持向量加法和标量乘法的函数。

- 线性变换可以用矩阵表示,矩阵的乘法对应线性变换的复合。

6. 特征值和特征向量- 特征值:对应于线性变换的标量,使得变换后的向量与原向量成比例。

- 特征向量:与特征值对应的非零向量,变换后的向量与原向量方向相同。

向量的概念及线性运算

向量的概念及线性运算

力的合成与分解
力的合成
当有两个或多个力同时作用于一个物 体时,这些力可以合成一个合力,合 力的大小和方向可以通过向量加法得 到。
力的分解
如果已知一个力的大小和方向,那么 这个力可以分解为两个或多个分力, 分力的大小和方向可以通过向量减法 和数乘得到。
速度和加速度的计算
速度
速度是描述物体运动快慢的物理量,可以用向量表示,其大小等于位移的模与时间的比值,方向与物体运动方向 相同。
向量的概念及线性运算
目 录
• 向量的定义与表示 • 向量的线性运算 • 向量的数量积与向量积 • 向量的混合积与点积 • 向量线性运算的应用
01 向量的定义与表示
向量的定义
01
向量是一个既有大小又有方向的量,通常用有向线段表示。
02
向量的大小称为向量的模,记作|a|。
03
向量的方向由起点指向终点的箭头表示。
向量减法的定义
向量减法是指将两个向量首尾相接,以第一个向量的起点作为 结果向量的起点,以第一个向量的终点作为结果向量的终点。
向量减法的性质
向量减法满足交换律,即$vec{a} - vec{b} = vec{b} vec{a}$。
向量减法的几何意义
向量减法的几何意义是将两个向量的起点重合,然后以第一个向 量的终点为起点,第二个向量的起点为终点作一条新的量的点积定义
对于两个向量$mathbf{a}$和$mathbf{b}$,其点积定义为$mathbf{a} cdot mathbf{b} = |mathbf{a}| |mathbf{b}| cos theta$,其中 $theta$是两向量的夹角。
几何意义
点积的几何意义是向量$mathbf{a}$与向量$mathbf{b}$在方向上的投 影长度之积。

向量线性运算知识点总结

向量线性运算知识点总结

向量线性运算知识点总结一、向量的定义在数学中,向量通常用箭头符号表示,比如$\vec{a}$或者$\overrightarrow{AB}$。

向量是有方向和大小的量,通常用于表示空间中的位移、速度等。

在n维空间中,一个向量可以表示为一个具有n个有序实数的n维坐标组$(x_1, x_2, \cdots, x_n)$,而在实际应用中,可以用行向量或列向量来表示。

在数学中,向量可以用于表示空间几何中的位移、速度、力等,同时也可以用于表示抽象意义上的量,比如代数中的多项式、矩阵等。

在计算机科学中,向量也被广泛应用于向量空间的表示,比如在机器学习中的特征向量等。

二、向量的线性运算向量的线性运算包括两种基本运算:向量的加法和数乘运算。

1. 向量的加法设有两个n维向量$\vec{a}=(a_1,a_2,\cdots,a_n)$和$\vec{b}=(b_1,b_2,\cdots,b_n)$,则它们的和是一个n维向量,记作$\vec{a}+\vec{b}=(a_1+b_1,a_2+b_2,\cdots,a_n+b_n)$。

向量的加法满足以下性质:- 交换律:$\vec{a}+\vec{b}=\vec{b}+\vec{a}$- 结合律:$(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$- 零向量:对于任意向量$\vec{a}$,都有$\vec{a}+\vec{0}=\vec{a}$,其中$\vec{0}$表示零向量- 相反向量:对于任意向量$\vec{a}$,都有$\vec{a}+(-\vec{a})=\vec{0}$,其中$-\vec{a}$表示向量$\vec{a}$的相反向量2. 数乘运算设有一个n维向量$\vec{a}=(a_1,a_2,\cdots,a_n)$和一个实数$k$,则它们的数乘运算结果是一个n维向量,记作$k\vec{a}=(ka_1,ka_2,\cdots,ka_n)$。

向量及其线性运算ppt课件

向量及其线性运算ppt课件
ax
az )
ay
az
bx by bz
22
例5 求解以向量为未知元的线性方程组

5
x

3
y

a,
其中
a

(2,1,2),
3x 2 y b, b (1,1,2).
解 如同解以实数为未知元的线性方程组一样,
可解得 x 2a 3b, y 3a 5b.
向量的模 26
例 7 求证以M1(4,3,1)、 M 2 (7,1,2)、 M3 (5,2,3)
三点为顶点的三角形是一个等腰三角形.
解 M1M2 2 (7 4)2 (1 3)2 (2 1)2 14, M2M3 2 (5 7)2 (2 1)2 (3 2)2 6, M3M1 2 (4 5)2 (3 2)2 (1 3)2 6, M2M3 M3M1 , 原结论成立.
两式相减,得
(


)a

0,




a 0,
a 0, 故 0, 即 .
8
此定理是建立数轴的理论依据
数轴:点、方向、单位长度
. 1 .x
O i Px
点P 向量 OP = xi 实数 x
轴上点P的坐标为x的充分必要条件是 OP = xi . 另外 设a0表示与非零向量a 同方向的单位向量,
zR
M1
P o
d M1M2 ?
M2
Q N
在直角M1 NM 2 及 直 角 M1 PN
中,使用勾股定
y 理知
x
d 2 M1P 2 PN 2 NM 2 2 ,

线性代数-向量及其线性运算

线性代数-向量及其线性运算

0
0 0
0
30线性表示b, 21且 3为 20 : 3
1
(因为
1 0 0 2
B[A,b]1,2,3,b0 1 0 3
0 0 1 0
即 r(A)r(B).)
二、线性相关性的概念
定义3 给定向 A:量 1,2组 , ,m,如果存在
全为零 k1,k的 2, 数 ,km使
k11k22 kmm0
则称向量组A是线性相关的,否则称它线性无关.
T m
向量组 A :1 T ,2 T , ,m T 为矩阵A的行向量组.
四、线性方程组AX=b的向量表示
a11x1a12x2a1nxn b1,
a21x1a22x2a2nxn b2, am1x1am2x2amnxn bm.
xx x b
11 22
nn
方程组的解x1=c1, x2=c2,…., xn=cn,可以用n维列向量:
记作α,β,γ.
如:
a1
a
2
a
n
(Column Vector)
注意 1、行向量和列向量总被看作是两个不同的向量;
2、当没有明确说明时,都当作实的列向量.
几何上的向量可以认为是它的特殊情形,即 n = 2, 3 且 F 为实数域的情形. 在 n > 3 时,n 维向 量就没有直观的几何意义了. 我们所以仍称它为向 量,一方面固然是由于它包括通常的向量作为特殊 情形, 另一方面也由于它与通常的向量一样可以定 义运算,并且有许多运算性质是共同的,因而采取 这样一个几何的名词有好处.
进一步:P94 定理2.6
定理 向量组线性相关至少有一个向量可由其 余向量线性表示.
定理 向量组线性无关任何一个向量都不能由 其向量线性表示.

向量及其线性运算ppt课件

向量及其线性运算ppt课件
向量的共线 :因平行向量可平移到同一直线上, 故两向量平行 又称两向量共线 .
向量的共面 :若 k (≥3)个向量经平移可移到同一平面上 , 则称此 k 个向量共面 .
第一讲 向量及其线性运算
一、向量的概念 二、向量的线性运算 三、空间直角坐标系 四、向量线性运算的坐标表示式 五、向量的模、方向角和投影
a∥b
( 为唯一实数)
注 定理1是建立数轴的理论根据
点P
向量OP =xi
实数x 点P的坐标
例1 设M为 ABCD 对角线的交点,
D
C
bM 用a与b表示 MA, MB , MC , MD . A a B
第一讲 向量及其线性运算
一、向量的概念 二、向量的线性运算 三、空间直角坐标系 四、向量线性运算的坐标表示式 五、向量的模、方向角和投影
B(0, y, z)
C( x,0, z)
o
x P(x,0,0)
M y
Q(0, y,0)
A(x, y,0)
SUCCESS
THANK YOU
2019/5/6
坐标轴和坐标面的坐标 特征:
z
坐标轴 :
x轴
o
y
坐标面 :
x
向量的坐标表示
z
x,y,z轴上的单位向量
C
任意向量
向径
点M的坐标
ko i
1.向量的加法 2.向量的减法 3.向量与数的乘法
运算法则 是一个数
,

a
的乘积是一个向量,
记作
a
.
规定
a a


1 a
a为单位向量,记作 ea
运算律
结合律 分配律

《向量及其线性运算》课件

《向量及其线性运算》课件

详细描述
向量的模是衡量向量大小的量,用符号“| |”表示。向量的模可以通过勾股定理或向量 的点积等公式计算得出。向量的模具有一些基本性质,如非负性、传递性、三角不等式 等。了解向量的模对于解决实际问题非常重要,如物理中的力、速度和加速度等都可以
用向量表示,而向量的模则可以用来衡量这些量的大小。
02
CATALOGUE
向量的线性运算
向量的加法
总结词
向量加法的定义与性质
详细描述
向量加法是向量空间的基本运算之一,其定义基于平行四边形法则。向量加法 满足交换律和结合律,即向量加法不依赖于其运算的顺序。
向量的数乘
总结词
数乘的定义与性质
详细描述
数乘是标量与向量的乘法运算,其结果仍为向量。数乘满足结合律和分配律,即 对于任意实数$k$和向量$vec{a}$,有$k(mvec{a}) = (km)vec{a}$。
总结词
向量积表示一个向量在另一个向 量上的投影面积。
详细描述
向量积的大小等于一个向量在另 一个向量上的投影面积,方向与 两向量的正交角有关,遵循右手 定则。
向量积的运算性质
要点一
总结词
向量积满足交换律和结合律,但不满足数乘分配律。
要点二
详细描述
根据向量的运算性质,我们有$mathbf{A} times mathbf{B} = -mathbf{B} times mathbf{A}$,并且 $(mathbf{A} + mathbf{B}) times mathbf{C} = mathbf{A} times mathbf{C} + mathbf{B} times mathbf{C}$。但是,$lambda(mathbf{A} times mathbf{B}) neq mathbf{A} times lambdamathbf{B}$, 其中$lambda$是标量。

线性代数向量的定义及运算

线性代数向量的定义及运算
-α. 因而可以定义向量的减法运算:
.
第8页,共17页。
向量的加法以及数与向量的数乘统称为向量的线性 运算,这些运算可归结为数(分量)的加法与乘法. 显 然,向量的线性运算是矩阵的线性运算的特殊情形.
对任意的n维向量α,β,γ及任意的数k,l,向量的线性 运算满足下面八条基本的运算规律:
线性代数向量的定义及运算
第1页,共17页。
§4.1 向量的定义及运算
平面上的向量的全体: R2 x, y | x, y R .
任意 x1, y1 R2 , x2 , y2 R2, k R,
规定加法和数乘为:
x1, y1 x2 , y2 x1 x2 , y1 y2 R2, k k x1, y1 kx1, ky1 R2.
第10页,共17页。
例4.1.1 设 1 1, 1, 2, 2 1, 2, 0, 3 1, 0, 3,
求 1 22 123.
解: 1, 1, 2 21, 2,0 121,0, 3
1 2 12, 1 4 0, 2 0 36 11, 5, 34.
第11页,共17页。
定义4.1.4 给定 Rn中的向量 1,2,..., p , 实数
span 1,2, , p k11 k2 kp p | k1, k2,..., kp R .
从几何上看,若 是非零向量,则 span表 示由
向量 确 定的直线.
若 和 是非零向量,且不共线,则 span, 表 示
由向量 和 确 定的平面.
第17页,共17页。
当 Rn是行向量空间时,上式两端转置,得
x11T
x2
T 2
xn
T n
T
其增广矩阵为
1T
,
T 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
称为 n维单位坐标 ,讨向 论量 其组 线性 . 相
解 n维单位坐标向量组 的构 矩成 阵 I (e1,e2,,en)
是n阶单位矩. 阵由I10, 及定理2的推论知 n维单位坐标向量组线 无性 关。
自己练习:
1、设向量组 1k 3 0T, 21 k 2T, 30 2 1Τ线性相关,则kk3.or.k1 .
矩阵与向量的关系中 注意什么是向量的个 数、什么是向量的维 数,二者必须分清.
三、向量组、矩阵、线性方程组
若干个同维数的列向量(或同维数的行向量)所 组成的集合叫做向量组.
记作: A :1 ,2 , ,s .or. i
例如 对于一个 m矩n阵有n个m维列向量.
1 2
j
n
a11
A
a21
a12
注意: 1若 . 1,2, ,n线性,无 则关 只有 1n0时 ,才有
1122 nn0成立 .
相关结论P92例3-4
向量 1, 组 2, , m 到底线性相 ,关
也即齐次线性方程组
x1
Ax
[
1
,
2
,
,
m
]
x2
x
m
x 1 1 x 2 2 x m m 0
有 无 非 零 解 的 问 题 ,
0
0 0
0
30线性表示b, 21且 3为 20 : 3
1
(因为
1 0 0 2
B[A,b]1,2,3,b0 1 0 3
0 0 1 0
即 r(A)r(B).)
二、线性相关性的概念
定义3 给定向 A:量 1,2组 , ,m,如果存在
全为零 k1,k的 2, 数 ,km使
k11k22 kmm0
则称向量组A是线性相关的,否则称它线性无关.
即线性方程组
x11x22 xmmb
有.解 也就是方 Ax程 b有 组解,
其 A 中 1 ,2 , n .,
定理1 向量 b能由向量 A线组性表示的充分
条件是矩 A阵 (1,2, ,m)的秩等于矩阵
B(1,2, ,m,b)的秩 .
2
1 0
例: 向b 量 3即可由 1 向 0, 量 21 组 ,
下 4面) 用负向3 维量向 量 来 验 证 向 量 加 法 的 交 换 律 合 律 . 定义 向量 ( - a1 , - a2 , … , - an )T 称为向量
=用(a1几, a何2, …的, 方an)法的求负两向个量向,记量为-,. 的 和 向 量
+ 的步骤是:把 的起点移到 的终点,然
记作α,β,γ.
如:
a1
a
2
a
n
(Column Vector)
注意 1、行向量和列向量当作实的列向量.
几何上的向量可以认为是它的特殊情形,即 n = 2, 3 且 F 为实数域的情形. 在 n > 3 时,n 维向 量就没有直观的几何意义了. 我们所以仍称它为向 量,一方面固然是由于它包括通常的向量作为特殊 情形, 另一方面也由于它与通常的向量一样可以定 义运算,并且有许多运算性质是共同的,因而采取 这样一个几何的名词有好处.
T m
向量组 A :1 T ,2 T , ,m T 为矩阵A的行向量组.
四、线性方程组AX=b的向量表示
a11x1a12x2a1nxn b1,
a21x1a22x2a2nxn b2, am1x1am2x2amnxn bm.
xx x b
11 22
nn
方程组的解x1=c1, x2=c2,…., xn=cn,可以用n维列向量:
2. 向量的加法
1) 定义 定义 2 . 4 向量
= ( a1 + b1 , a2 + b2 , … , an + bn )T
称为向量
= ( a1 , a2 , … , an)T, = (b1 , b2 , … , bn )T
的和,记为
=+.
2) 运算规律
交换律 + = + .
结合律 + ( + ) = ( + ) + . 3) 运 算 规 律 的 几 何 验 证
2、定义 n个数 a1,a2, ,an组成的有序数组
a 1a 2 a n
称为一个n维向量,其中 a i 称为第 i 个分量. n维向量写成一行,称为行矩阵,也就是行向量,
记作 T,T,T.
(Row Vector)
如: T a 1a 2 a n
n维向量写成一列,称为列矩阵,也就是列向量,
∵A线性无关,而向量组B线性相关,
∴k≠0,(否则与A线性无关矛盾)
即有 k 1 1 k 2 2 k rr k
k k 1 1 k k 2 2 k k r r ∴α可由A线性表示.
下证唯一性:
设 1 1 2 2 rr ; 1 1 2 2 rr
两式相减有 1 1 1 2 2 2 r r r 0 ∵A线性无关, 1 1 0 , 2 2 0 ,r r 0
k0.
3、向量与矩阵的关系
a11 a12
A
a21
a22
am
1
am1
a1n
a2n
amn
按行分块
A
T 1
T 2
T m
m个n维行向量.
按列分块
A 1 2 n
n个m维列向量.
a1j
其第j个列向量记作
j
a2j
a m j
其第i个行向量记作
i T a i 1a i2 a i n
n 00 1 ,
的一个线性组合.事实上,有 a 1 1 a 2 2 a n n .
b 1 1 2 2 m m
令x1,x2,…xn分别为λ1, λ2,…., λn,则以上线性组 合可以表示为:
x1 1 x 2 2 x m m b
• b能够为α1,α2,…αn线性表示:
1 1 ,2 2 , r r即表达式唯一.
P95 例7
性质 设向量组 A : 1 ,2 , ,r B :1 ,2,r ,r 1
若A线性相关,则向量组B也线性相关;反之,若 向量组B线性无关,则向量组A也线性无关.
此时A称为B的一个部分组。
说明: 性质1可推广:为 一个向量组若有线 相关的部分组,量 则组 该线 向性相 . 特 关别地, 含有零向量的向线 量性 组相 必.关反之,若一 向量组线性无关的 ,任 则何 它部分组都关 线. 性
坐标表示式

a T a 1a 2 a n
解析几何
空间
(n3)
线性代数
点空间:点的集合
几 何 形 象: 空间直线、曲线、 空间平面或曲面

向量空间:向量的集合

代 数 形 象:

向量空间中的平面
( x ,y ,z ) a b x c y d z r ( x ,y , z ) T a b x c y d z
P(x,y,z) 一 一 对 应
rx y zT
2.3 向量间的线性关系
回忆:向量线性运算
数乘 a 1a 2 a n ,k R
规定 k k k a 1k a 2 k a n
称为数k与向量α的数量积.
设β=kα,那么两个向量之间是什么样的关系? 引申到多个向量,关系又如何?
一定义 给定 A : 向 1,2, 量 ,m 和 组 b 向 ,如量 果 一 组 1 , 2 , 数 ,m ,使
a22
a1j a2j
a1n a2n
am1 am2 amj amn
向量组
A :1 , 2 ,
,
称为矩阵A的列向量组.
n
类似的,矩阵有m个n维行向量.
a 11 a 21
a 12 a 22
a 1 n a2n
T 1
T 2
A a i1
ai2
a in
T i
a m 1 a m 2 a mn
亦 ( x 1 x 3 ) 1 ( x 即 1 x 2 ) 2 ( x 2 x 3 ) 3 0 ,
因 1, 2, 3线性无关, 全故 为系 零数 ,
x1 x3 0, x1 x2 0,
x 2 x 3 0.
由于此方程组的系数 列行 式
1 01 1 1 0 20 011 故方程组 x1x只 2x3有 0 , 零 所 向 解 以 量 b1,b2,b3线性 . 无关
例 5 已知向量 1, 组 2, 3线性相关 2, , 3, 4 线性无关,1) 问 1可 :否 (由 2,3线性表示 为什么2? )( 4是否可 1, 由 2, 3线性表示?
b 1 1 2 2 m m
则向b是 量向量 A的 组线性组合, 向量这 b能时称 由向量组 A线性表示.
① 若α=kβ,则称向量α与β成比例.
② 零向量O是任一向量组的线性组合.
③ 向量组中每一向量都可由该向量组线性表示.
④ 任一n维向量 a 1a 2 a n 都是基本向量组
1 10 0 , 2 01 0 , ,
向量的加法和数乘运算统称为向量的线性运 算. 显然,数域 F 上的向量经过线性运算后,仍
为数域 F 上的向量.
2) 运算规律
k ( + ) =k + k , (k + l ) = k + l , k ( l ) = ( kl ) , 1 = , 0 = 0 , (-1) = - , k 0 = 0 . 如果 k 0, 0, 那么
x=(c1,c2,…., cn)T
来表示。此时称为方程组的一个解向量。(P78)
五、向量空间
1、定义 设V为n维非空向量组,且满足
①对加法封闭 i f V , V V ;
②对数乘封闭 i f V , R V .
相关文档
最新文档