《概率与数理统计》练习册及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 概率论的基本概念
一、选择题
1.将一枚硬币连抛两次,则此随机试验的样本空间为( )
A .{(正,正),(反,反),(一正一反)}
B.{(反,正),(正,反),(正,正),(反,反)}
C .{一次正面,两次正面,没有正面}
D.{先得正面,先得反面}
2.设A ,B 为任意两个事件,则事件(AUB)(Ω-AB)表示( )
A .必然事件
B .A 与B 恰有一个发生
C .不可能事件
D .A 与B 不同时发生
3.设A ,B 为随机事件,则下列各式中正确的是( ).
A.P(AB)=P(A)P(B)
B.P(A-B)=P(A)-P(B)
C.)()(B A P B A P -=
D.P(A+B)=P(A)+P(B)
4.设A,B 为随机事件,则下列各式中不能恒成立的是( ).
A.P(A -B)=P(A)-P(AB)
B.P(AB)=P(B)P(A|B),其中P(B)>0
C.P(A+B)=P(A)+P(B)
D.P(A)+P(A )=1
5.若φ≠AB ,则下列各式中错误的是( ).
A .0)(≥A
B P B.1)(≤AB P C.P(A+B)=P(A)+P(B) D.P(A-B)≤P(A)
6.若φ≠AB ,则( ).
A. A,B 为对立事件
B.B A =
C.φ=B A
D.P(A-B)≤P(A)
7.若,B A ⊂则下面答案错误的是( ).
A. ()B P A P ≤)(
B. ()0A -B P ≥
C.B 未发生A 可能发生
D.B 发生A 可能不发生
8.下列关于概率的不等式,不正确的是( ).
A. )}(),(min{)(B P A P AB P ≤
B..1)(,<Ω≠A P A 则若
C.1212(){}n n P A A A P A A A ≤+++
D.∑==≤n
i i n i i A P A P 1
1)(}{
9.(1,2,,)i A i n =为一列随机事件,且12
()0n P A A A >,则下列叙述中错误的是( ).
A.若诸i A 两两互斥,则∑∑===n i i n i i A P A P 11
)()(
B.若诸i A 相互独立,则1
1()1(1())n n i i i i P A P A ===--∑∏
C.若诸i A 相互独立,则11(
)()n
n i i i i P A P A ===∏ D.)|()|()|()()(1231211
-=Λ=n n n i i A A P A A P A A P A P A P
10.袋中有a 个白球,b 个黑球,从中任取一个,则取得白球的概率是
( ). A.21
B. b a +1
C. b a a +
D. b
a b + 11.今有十张电影票,其中只有两张座号在第一排,现采取抽签方式发放给10名同学,则( )
A.先抽者有更大可能抽到第一排座票
B.后抽者更可能获得第一排座票
C.各人抽签结果与抽签顺序无关
D.抽签结果受以抽签顺序的严重制约
12.将n 个小球随机放到)(N n N ≤个盒子中去,不限定盒子的容量,则每个盒子中至多有1个球的概率是( ). A.!!N n B. n N n ! C. n n N N n C !⋅ D. N
n 13.设有r 个人,365≤r ,并设每个人的生日在一年365天中的每一天的可能性为均等的,则此r 个人中至少有某两个人生日相同的概率为
( ). A.r r P 3651365- B. r r r C 365!365⋅ C. 365!1r - D. r
r 365!1- 14.设100件产品中有5件是不合格品,今从中随机抽取2件,设 =1A {第一次抽的是不合格品},=2A {第二次抽的是不合格品},则下列叙
述
中错误的是( ).
A.05.0)(1=A P
B.)(2A P 的值不依赖于抽取方式(有放回及不放回)
C.)()(21A P A P =
D.)(21A A P 不依赖于抽取方式
15.设A,B,C 是三个相互独立的事件,且,1)(0< 16.10张奖券中含有3张中奖的奖券,现有三人每人购买1张,则恰有一个中奖的概率为( ). A.4021 B. 407 C. 3.0 D. 3.07.02310 ⋅⋅C 17.当事件A 与B 同时发生时,事件C 也随之发生,则( ). A.1)()()(-+≤B P A P C P B.1)()()(-+≥B P A P C P C.P(C)=P(AB) D.()()P C P A B = 18.设,1)()|(,1)(0,1)(0=+<<< A. A 与B 不相容 B. A 与B 相容 C. A 与B 不独立 D. A 与B 独立 19.设事件A,B 是互不相容的,且()0,()0P A P B >>,则下列结论正确的 是( ). A.P(A|B)=0 B.(|)()P A B P A = C.()()()P AB P A P B = D.P(B|A)>0 20.已知P(A)=P,P(B)=q 且φ=AB ,则A 与B 恰有一个发生的概率为 ( ). A.q p + B. q p +-1 C. q p -+1 D. pq q p 2-+ 21.设在一次试验中事件A 发生的概率为P,现重复进行n 次独立试验 则事件A 至多发生一次的概率为( ). A.n p -1 B.n p C. n p )1(1-- D. 1(1)(1)n n p np p --+- 22.一袋中有两个黑球和若干个白球,现有放回地摸球4次,若至少摸 到一个白球的概率为 8180,则袋中白球数是( ). A.2 B.4 C.6 D.8 23.同时掷3枚均匀硬币,则恰有2枚正面朝上的概率为( ). A.0.5 B.0.25 C.0.125 D.0.375 24.四人独立地破译一份密码,已知各人能译出的概率分别为61 , 31,41,51则密码最终能被译出的概率为( ). A.1 B. 21 C. 52 D. 3 2