【最新】青岛版九年级数学下册第七章《7.1几种常见的几何体》优质课件.ppt
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
。2020年12月17日星期四2020/12/172020/12/172020/12/17
• 15、会当凌绝顶,一览众山小。2020年12月2020/12/172020/12/172020/12/1712/17/2020
• 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2020/12/172020/12/17December 17, 2020
• 10、人的志向通常和他们的能力成正比例。2020/12/172020/12/172020/12/1712/17/2020 8:10:43 AM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2020/12/172020/12/172020/12/17Dec-2017-Dec-20 • 12、越是无能的人,越喜欢挑剔别人的错儿。2020/12/172020/12/172020/12/17Thursday, December 17, 2020 • 13、志不立,天下无可成之事。2020/12/172020/12/172020/12/172020/12/1712/17/2020
第7章:空间图形的初步认识 §7.1 几种常见的几何体
学习目标:
1.会将常见的几何体(棱柱、棱锥)进行 分类.
2.知道多面体的概念. 3.了解多面体的棱、顶点和面数之间的关系.
(1)
(2)
(3)
(4)
思考1:这些几何体可以分成几类?
(8)
(7)
(6)
(5)
第一类:
(1)
(2)
第二类:
(3)
(5)
我们周围的几何体
三棱镜
魔方
螺杆的头部
埃及卡夫拉王金字塔
墨西哥太阳金字塔
还有一类几何体也是我们常见的,我们
把这类几何体称为棱台
棱柱
(1)
(2)
(4)
(7)
思考2:这些几何体各有多少个面?每 个面都是什么图形?
棱锥
(3)
(5)
(6)
(8)
棱柱、棱锥、棱台都是由一些平面多边形围成的几何体.
由若干个平面多边形围成的几何体叫做多面体.
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
Fra Baidu bibliotek
1. 2. 3.
4.
课本P93习题7.1A组3、4题 B组1、2题
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2020/12/172020/12/17Thursday, December 17, 2020
10
12
棱数b
9
12
15
18
面数c
5
6
7
8
观思察上考表:中如的果结将果上,面你的能“发棱现柱a”、换b、为c“之棱间锥有”什,么结关论系是吗否?
请写出关系还式成.立呢a?+c-b=2
思考3:你学习过哪些几何体的表面积公式 和体积公式?你能用字母表示他们吗?
四种常见几何体表面积与体积公式 1.长方体 表面积=2(ab+bc+ca) 体积=abc(a、b、c分别长、宽、高) 2.正方体
棱柱
(4)
(7)
棱锥
(6)
(8)
棱柱的分类
根据棱柱底面多边形的边数, 棱柱的底面可以是三角形、四边形、五边形、…… 把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱、……
三棱柱
四棱柱
五棱柱
棱柱还可分为:直棱柱和斜棱柱
棱锥的分类
思考:仿照棱柱,说出棱锥的分类 棱锥的分类:
按底面多边形的边数,可以分为三棱锥、 四棱锥、五棱锥、……
面
棱
顶点
食盐晶体
明矾晶体
石膏晶体
围成多面体的各个多边形叫做多面体的面.
相邻两个面的公共边叫做多面体的棱. 棱与棱的公共点叫做多面体的顶点.
顶点 侧面 侧棱
底面
顶点
底面
侧棱 侧面
思考3:下面这些几何体是多面体吗?他们有 什么共同的特点?
观察探究
名称 三棱柱 四棱柱 五棱柱
六棱柱
图形
顶点数a 6
8
表面积=6 体积= (这里a为正方体的棱长)
3.圆柱体
侧面积=2πRh 全面积=2πRh+2πR2=2πR(h+R) 体积=πR2h (这里R表示圆柱体底面圆的半径,h表示圆柱的高)
4.圆锥体 侧面积=πRl 全面积=πRl+πR2
体积= πR2h(这里R、l、h表示圆锥体底面圆的 半径、母线长和高)
•
THE END 17、一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。2020/12/172020/12/172020/12/172020/12/17
谢谢观看