九年级数学正弦与余弦

合集下载

九年级下册数学锐角三角函数 正弦、余弦

九年级下册数学锐角三角函数 正弦、余弦

200
AC 200
BC 2000.6 120.

A
B
挑战:请你求出cosA,tanA,sinC,cosC和tanC的值。
如图:在Rt△ABC中,∠C=900,AC=10, cos A 12 .
求:AB,sinB.
13
解 :cos A AC 10 12 . AB AB 13
提示:过点A作AD垂直于BC,垂足为D.
B
┌ D
C
8.在梯形ABCD中 AD//BC,AB=DC=13,AD=8,BC=18 A 求:sinB,cosB,tanB.
┌ BE
D
┌ FC
提示:梯形的高是梯形的常用辅助线,借助它可以转化为直角 三角形.
• 定义中应该注意的几个问题:
1.sinA,cosA,tanA是在直角三角形中定义的,∠A是锐 角(注意数形结合,构造直角三角形).
5.如图,分别根据图(1)和图(2)求∠A的三
个三角函数值.
B
B
3
43
4┌

A
CA
C
(1)
(2)
6பைடு நூலகம்在Rt△ABC中,∠C=90°, AC=3,AB=6, 求sinA和cosB.
提示:求锐角三角函数时,勾股定理的运用是很重要的.
7.在等腰△ABC,AB=AC=13,BC=10,
A
求sinB,cosB.
B
┌ 6D
C
2.在Rt△ABC中,∠C=90°,BC=20,sin A 4 .
求:△ABC的周长和面积.
5B

C
A
运用新知
1.如图,在Rt△ABC中,锐角A的对边和邻边同时扩

人教版初中九年级数学下册《正弦、余弦、正切函数的简单应用》教案

人教版初中九年级数学下册《正弦、余弦、正切函数的简单应用》教案
突破方法:教师可通过图示和实际操作,帮助学生理解直角三角形中的对边、邻边、斜边关系,并强调在计算函数值时要注意这些关系。
(2)实际问题中的数学建模:学生在解决实际问题时,往往不知道如何构建数学模型,将实际问题转化为数学问题。
突破方法:教师可以引导学生通过分析实际问题,找出其中的关键信息,然后运用正弦、余弦、正切函数构建数学模型。同时,通过举例讲解,让学生了解这一过程。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了正弦、余弦、正切函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
人教版初中九年级数学下册《正弦、余弦、正切函数的简单应用》教案
一、教学内容
本节课选自人教版初中九年级数学下册,章节为《正弦、余弦、正切函数的简单应用》。教学内容主要包括以下两个方面:
1.掌握正弦、余弦、正切函数的定义及其在直角三角形中的应用。
-正弦函数:在直角三角形中,正弦值等于对边与斜边的比值。
-余弦函数:在直角三角形中,余弦值等于邻边与斜边的比值。
五、教学反思
在本次教学中,我尝试了多种方法来帮助学生理解正弦、余弦、正切函数的简单应用。从导入新课到实践活动,再到小组讨论,我发现学生们在这些环节中的表现各有亮点,也有一些需要改进的地方。
首先,在导入新课环节,通过提出与日常生活密切相关的问题,成功引起了学生的兴趣。他们积极参与,提出了很多有关测量物体高度和距离的想法。这说明实际情景的引入有助于激发学生的学习热情,使他们更愿意投入到新知识的学习中。

人教版九年级下册数学:正弦、余弦、正切函数的简单应用(共24张PPT)

人教版九年级下册数学:正弦、余弦、正切函数的简单应用(共24张PPT)

本节课你有什么收获呢?
本节课你有什么收获呢?
3.正弦的定义
如图 28-1-2,在 Rt△ABC 中,∠C=90°,我们把锐角 A
的对边与斜边的比叫做∠A 的正弦,记作 sin A,

sin
A=
A的对边 斜边
a c
.
1
当∠A=30°时,有 sin A=sin 30°= 2 ;
2
当∠A=45°时,有 sin A=sin 45°= 2 .
图 28-1-8
A. 3
B. 3
C. 4 D. 4
4
5
5
3
4.如图 28-1-9,在 Rt△ABC 中,CD 是斜边 AB 上的中线,已知 CD=2,AC=3,则 sin B 的值是( C )
图 28-1-9
A. 2
B. 3
C. 3
D. 4
3
2
4
3
5.(江苏中考)如图 28-1-10 所示,△ABC 的顶点都在方格纸的格点上,
九年级(下) 人民教育 数学
意大利的伟大科学家C 伽俐 .略,曾在斜塔的顶
层做过自由落体运动的实 验.
B
“斜而未倒” AB=54.5m BC=5.2m
α
A
1.理解正弦的含义.(难点) 2.会求某个锐角的正弦值,能根据正弦概念进行计算.(重点)
一、知识回顾 1.如图 28-1-1,在 Rt△ABC 中,∠C=90°,∠A=30°,若 BC=10 m, 则 AB= 20m;若 AB=20 m,则 BC= 10 m.
3
图 28-1-5
A.3
B.4
C.5
D.6
6.如图 28-1-6,在△ABC 中,∠C=90°,BC=6 cm,sin A= 3 ,

九年级数学三角知识点归纳总结

九年级数学三角知识点归纳总结

九年级数学三角知识点归纳总结数学是一门基础性的学科,对于学生的思维能力和逻辑思维能力的培养有着重要的作用。

在九年级数学中,三角函数是一个重要的知识点。

它对于理解几何形状和解决问题具有重要的意义。

本文将对九年级数学中的三角知识点进行归纳总结,帮助同学们更好地理解和掌握这部分内容。

1. 正弦、余弦、正切正弦、余弦、正切是三角函数中最常见的三个函数。

在直角三角形中,对于一个锐角角度A,我们可以定义三角函数。

- 正弦函数:sin(A) = 对边/斜边- 余弦函数:cos(A) = 邻边/斜边- 正切函数:tan(A) = 对边/邻边这些函数可以表示角度和三角形边长之间的关系,帮助我们求解各种三角形问题。

在计算中,我们也经常用到它们的倒数函数:余切、余割、正割。

2. 弧度制与角度制角度可以用角度制和弧度制来表示。

在三角函数中,角度制的角度范围是0°到360°,而弧度制的角度范围是0到2π。

两者之间的换算关系是:角度 = 弧度× 180°/π。

在九年级的学习中,我们会经常遇到角度制和弧度制的转换问题。

因此,我们需要掌握这两种表示方法以及它们之间的关系。

3. 三角函数的基本性质三角函数有一些基本的性质,这些性质在解决问题中起到了重要的作用。

- 正弦函数的性质:在一个周期内,正弦函数是一个周期为360°(2π)的周期函数,其值域在[-1, 1]之间。

正弦函数的图像呈现出典型的波浪形。

- 余弦函数的性质:与正弦函数类似,余弦函数也是一个周期为360°(2π)的周期函数,其值域也在[-1, 1]之间。

余弦函数的图像也呈现出波浪形,但与正弦函数的图像相位相差90°。

- 正切函数的性质:正切函数是一个没有定义域的周期函数,在某些点上的值是无限大。

它的图像以45°(π/4)为中心,两侧呈现出分叉的形式。

正切函数的周期是180°(π)。

九年级下人教新课标28.1正弦和余弦1教学资料

九年级下人教新课标28.1正弦和余弦1教学资料

正弦和余弦【学习目标】1.了解正弦、余弦的概念的意义(用直角三角形中直角边与斜边的比表示),知道当锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.2.熟记30°、45°、60°角的正弦、余弦值,并会根据这些数值说出对应的特殊角的度数. 3.了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系. 4.会查“正弦和余弦表”,即由已知锐角求对应的正弦、余弦值,已知正弦、余弦值求对应的锐角(或运用计算器).5.会用上述知识解决一些求三角形中未知元素的简单问题. 【主体知识归纳】1.如图6—1,在Rt △ABC 中,如果∠C =90°,∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,那么∠A 的正弦sin =ca,∠A 的余弦cos =c b .2.特殊角的正弦、余弦值.3.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值.即sinA =cos (90°-A ),cosA =sin (90°-A ).4.三角函数表三角函数值的变化规律是使用三角函数表的依据.当角度在0°~90°变化时,正弦值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大).【基础知识讲解】1.正弦、余弦的概念是本章的起点,同时又是重点、关键.这是本章知识的基础.在直角三角形ABC 中,当一个锐角(∠A )取固定值时,它的直角边与斜边的比值也是一个固定值.AB BC A A =∠=斜边的对边sin ,cos =ABACA =∠斜边的邻边. 实际上它们是一个函数关系,它的自变量的取值范围是大于0°且小于90°的所有角度. 在直角三角形中,由于斜边最长,所以函数值的范围是大于0且小于1的所有实数. 2.在查“正弦和余弦表”时,需要明确以下四点:(1)这份表的作用是:求锐角的正弦、余弦值,或由锐角的正弦、余弦值,求这个锐角; (2)这份表中,角精确到1′,正弦、余弦值具有四个有效数字; (3)凡查表所得的值,在教科书中习惯用等号“=”,而不用约等号“≈”;根据查表所得的值进行近似计算,结果经四舍五入后,一般用约等号“≈”来表示;(4)通过查表要知道:sin0°=0,sin90°=1,cos0°=1,cos90°=0. 在使用余弦表中的修正值时,如果角度增加(1′~3′),相应的余弦值要减小一些;如果角度减小(1′~3′),相应的余弦值要增加.【例题精讲】例1:如图6—2,已知在△ABC 中,∠ACB =90°,CD ⊥AB ,且AC =4,CD =3,求∠B 的正弦值和余弦值.剖析:任意一个锐角的三角函数值,一般是利用一个直角三角形中相应的边的比值表示,因此要求∠B 的正弦、余弦值,首先要观察∠B 是否在一个直角三角形中,边的比值可否求出.解:∵AC ⊥BC ,C D⊥AB ,∴△ACD ∽△ABC .∴∠ACD =∠B .又∵AC =4,C D=3,由勾股定理,得AD =7. ∴sinB =sin ∠ACD =47, cosB =cos ∠ACD =43. 例2:如图6—3,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,写出等于∠A 的正弦的线段比.剖析:根据三角函数定义知,在直角三角形中,角的正弦值等于对边比斜边,余弦值等于邻边比斜边.这里的前提条件一定要注意,是在直角三角形中.错解:sin =ABBCAB CD =. 正解:sin =BCBDAB BC AC CD ==. 说明:错解之一是所答线段比ABCD,因为它们不在同一个直角三角形中,错解之二是所答线段比不全,不全的原因是在三种情况下形成的:一是∠A 是Rt △ABC 和Rt △ACD 的公共角,应有两个比,二是∠A =∠BCD ,则sin =sin ,三是∠A +∠ACD =90°,∠A +∠B =90°,cosACD =sinA =ACCD,cosB =sin ∠BCD =BCBD.只不过第三种情况的比包含在前两种情况之中了. 例3:如图6—4,在△ABC 中,AB =AC =5,BC =6,求cos ∠A .剖析:我们所求的任意一个锐角的三角函数值,都是根据三角函数定义,利用一个直角三角形中相应边的比值来表示.求锐角A 的三角函数值时,要观察∠A 是否存在于一个直角三角形中,如果题中没有给出这样的条件,我们要通过添加辅助线,构造出∠A 所在的直角三角形.解:作△ABC 的高AD 、BE .∵AB =AC =5,BC =6,∴BD =21BC =21×6=3. 在Rt △ABD 中,由勾股定理,得 AD =222235-=-BD AB =4. ∵S △ABC =21BC ·AD =21AC ·BE , ∴BC ·AD =AC ·BE ,即6×4=5×BE . ∴BE =524. 在Rt △ABE 中,由勾股定理,得 AE =57)524(52222=-=-BE AB . ∴cos =257=AB AE . 说明:任意锐角的正弦、余弦值都是存在的,因此在求某一个锐角的正弦值、余弦值时,可把该锐角放到某一直角三角形中(如本例通过添加辅助线,构造出直角三角形),也可以利用某直角三角形中的一个和它相等的角替代(如例1中,求∠B 的三角函数值可转化为求∠ACD 的三角函数值).例4:计算:cos 245°–︒+︒60sin 2360cos 3+cos 230°+sin 245°–sin 230°.剖析:本题主要考查特殊角的三角函数值及数的运算,所以做题时,一是要牢记特殊角的三角函数值,二是运算要准确.解:原式=(22)2–211+2323⨯+(23)2+(22)2–(21)2=21–2+1+43+21–41=21. 说明:牢记特殊角的三角函数值是做题的前提,运算正确是关键.例5:在△ABC 中,若|sin –22|+(23–cos)2=0,∠A 、∠B 都是锐角,则∠C 的度数是( ) A .75° B .90° C .105° D .120° 剖析:本题主要考查非负数的性质及正、余弦函数的有关知识,在△ABC 中,要求∠C 的度数,首先要确定∠B 、∠C 的度数.解:∵|sin –22|+(23–cos)2=0, ∴|sin –22|=0,(23–cos)2=0,∴sin –22=0, 23–cos =0.即sin =22,cos =23.∴∠A =45°,∠B =30°. ∵∠A +∠B +∠C =180°, ∴∠C =105°. 故应选C .例6:在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,则BBA sin cos cos •的值是( )A .ca B .acC .baD .ab 剖析一:四个选择支均为边的比值,因此想到将sinB 、cosB 、cosA 转化边的比,根据锐角三角函数的定义,cosA =c b ,sinB =c b ,cosB =c a ,化简得ca,所以选A . 剖析二:利用互余两角三角函数间的关系,得cosA =sinB ,即B sin B cos A cos ⋅=cosB =ca.因此选A .说明:(1)在解题中,常常利用锐角三角函数的定义,将锐角三角函数转化为边的比,或将边的比转化成锐角三角函数;(2)求三角函数式的值、化简三角函数式、或证明三角函数恒等式,常常利用互为余角的三角函数间的关系.将不同角的三角函数变为同角的三角函数.例7:若α是锐角,且sin α=322,求cos α的值. 解:如图6—5,设∠A =α,∠C =90°,不妨设BC =22,AB =3,∴AC =2222)22(3-=-BC AB =1. ∴cos α=31=AB AC . 说明:(1)因α是锐角,可构造一个直角三角形,使α是其中的一个锐角,从而转化为利用锐角三角函数定义来解决问题.(2)已知sin α=322,运用特例的思想,可设BC =22,AB =3,从而转化为在直角三角形内的问题.这种解法在做选择题、填空题时应用更为广泛.(3)此题还可应用同角之间的三角函数关系求解,这将在以后的学习中学到. 【知识拓展】培养学习数学好习惯学习习惯是长时期逐渐养成的、一时不容易改变的学习行为方式和行为倾向,一个人养成什么样的学习习惯,会对其学习成绩直接产生有利或有害的影响.同学们养成怎样的学习习惯才对学习有利呢? (1)独立思考的习惯 爱因斯坦说过:“学习知识要善于思考、思考、再思考,我就是靠这个学习方法成为科学家的.” 课堂上对于老师的讲解,不要只是听或认真听,而要经过思考:老师为什么要这样讲?此题为什么要这样解?辅助线为什么要这样添?还有没有其他解法?长期坚持下去,既培养了自己独立思考的习惯,又真正掌握了知识,提高了能力,只有这样才有助于学习成绩的提高.(2)善于求异和质疑的习惯具体内容是:①独立思考问题,自己从书中、演算中或从分析自己的错例中寻找问题的答案,不畏困难,积极思考.②敢于提出自己的疑问并寻根问底,敢于提出自己不同意见.③在解题、讨论或研究问题时能突破条条框框的约束,不墨守成规,能从不同角度多方面的思考问题,寻求出创造性的解题方法.纠正懒于思考,事事依赖老师、家长、同学或单纯靠记忆模仿、照搬等不良的思维习惯.养成求异和质疑的好习惯对发展创造性思维,及将来的进一步学习都有重要的作用.要养成这种好习惯,首先要认真阅读课本,对书上的结论、注解要多问几个为什么;其次在听懂老师讲解后,要独立思考,看看所讲例题有没有别的解法;再次,就是在研究一题多解的基础上,勤积累,多思考.【同步达纲练习】 1.选择题(1)下列各式中,正确的是( )A .sin60°=21B .cos (90°-30°)=sin60°C .cos60°=21 D .sin 2x =sinx 2(2) 21cos30°+22cos45°+sin60°·cos60°等于( )A . 22B .23C .221+D .231+(3)在Rt △ABC 中,∠C =90°,a :b =3:4,则cosB 等于( )A .54B .53C .43D .34(4)已知在Rt △ABC 中,∠C =90°,AC =12,AB =13,那么sinA 的值是( ) A .1312 B .1213 C .131D .135 (5)在Rt △ABC 中,∠C =90°,若c =2,sinA =41,则b 的值是( ) A .21B .1C .215D .以上都不对(6)在Rt △ABC 中,各边的长都扩大两倍,那么锐角A 的正弦值( ) A .扩大两倍 B .缩小到一半 C .没有变化 D .不能确定(7)在Rt △ABC 中,sinB =23,则cos 2B 等于( ) A .21B .23C .±23 D .以上答案都不对(8)若0°<α<45°,那么cos α–sin α的值( ) A .大于零 B .小于零 C .等于零 D .不能确定(9)α是锐角,且cos α=43,则α( ) A .0°<α<30° B .30°<α<45° C .45°<α<60° D .60°<α<90°(10)在Rt △ABC 中,∠C =90°,CD ⊥AB ,垂足为D ,AB :AC =3:2,则∠BC D的正弦值为( )A .35 B .32C .23D .53(11)在△ABC 中,∠C =90°,则下列叙述中正确的是( )A .∠A 的邻边与斜边之比是∠A 的正弦B .∠A 的对边与邻边之比是∠A 的正弦C .∠A 的对边与斜边之比是∠B 的余弦D .∠A 的邻边与斜边之比是∠B 的余弦 (12)在Rt △ABC 中,∠C =90°,∠A =30°,则sinA +cosA 等于( ) A .1B .231+ C .221+ D .41 (13)下列等式中正确的是( )A .sin20°+sin40°=sin60°B .cos20°+cos40°=cos60°C .sin (90°-40°)=cos40°D .cos (90°-30°)=sin60° (14)下列不等式中正确的是( )A .cos42°>cos40°B .cos20°<cos70°C .sin70°>sin20°D .sin42°<sin40°(15)在Rt △ABC 中,∠C =90°,下列等式一定成立的是( )A .sinA =sinB B .sinA =cosAC .sin (A +B )=cosD .sinA =cosB(16)化简22)80sin 20(sin 20sin 80sin )80cos 1(︒-︒︒-︒-︒-的结果是( )A .1–cos80°B .–cos80°C .cos80°D .cos80°–1(17)若α是锐角,sin40°=cos α,则α等于( ) A .40° B .50° C .60° D .不能确定(18)已知α、β是两个锐角,sin α=0.412,sin β=0.413,则有( )A .α>βB .α<βC .α=βD .不能确定α、β的大小(19)已知α、β是两个锐角,cos α=0.43,cos β=0.44,则有( )A .α>βB .α<βC .α=βD .不能确定α、β的大小(20)如果α是锐角,且cos α=54,则sin (90°-α)的值等于( ) A .259B .54C .53D .2516 (21)在△ABC 中,如果sinA =cosB =21,则△ABC 是( )A .直角三角形B .钝角三角形C .锐角三角形D .以上答案都不对2.填空题(1)计算:4sin60°+23cos30°-6cos 245°=__________;(2)一个直角三角形的两直角边分别为5和12,则较小锐角的正弦值是__________;(3)化简:︒+︒•︒-︒90sin 60cos 70sin 470sin 22+cos20°的结果为__________;(4)若锐角α满足2sin α-1=0,则α=__________;(5)不查表,比较大小:sin25°_____sin24°30′,cos82°25′_______cos82°26′;(6)△ABC 的面积为24cm 2,∠B =90°,一直角边AB 为6 cm ,则sinA =__________; (7)若三角形的三边长之比为1:3:2,则此三角形的最小内角的正弦值为__________; (8)在Rt △ABC 中,∠C =90°,a =8,b =15,则sinA +sinB =__________;(9)若锐角α满足等式2sin(α+15°)–1=0,则∠α=__________,cos2α=__________. (10)如果2+3是方程x 2–8xcos α+1=0的一个根,且α是锐角,则α=__________. (11)若ααααcos sin cos sin -+没有意义,则锐角α__________.3.用符号表示: (1)∠A 的正弦; (2)∠B 的余弦; (3)40°角的正弦; (4)47°5′角的余弦. 4.求下列各式的值:(1)sin30°+2cos60°;(2)sin 230°+cos 230°;(3)2sin45°·cos45°; (4)︒︒45cos sin45-1;(5)sin30°·cos45°+cos30°·sin45°.5.把下列各角的正弦(余弦)改写成它的余角的余弦(正弦):(1)sin17°; (2)cos39°; (3)sin41°12′; (4)cos62°27′.6.在△ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ;先根据下列条件求出∠A 的正弦值和余弦值,然后直接写出∠B 的正弦值和余弦值.(1)a =5,c =29;(2)b =9,c =85;(3)a =7,b =4.7.已知△ABC 为等腰直角三角形,∠ACB =90°,过BC 的中点D 作DE⊥AB ,垂足为E ,连结CE ,求cosAEC 的值.8.已知2+3是方程 x 2-5x ·sin θ+1=0的一个根,θ是锐角,试求sin θ、cos θ的值.参考答案【同步达纲练习】1.(1)C (2)D (3)B (4)D (5)C (6)C (7)B (8)A (9)B (10)A (11)C (12)A (13)C (14)C (15)D (16)B (17)B (18)B (19)A (20)B (21)A 2.(1)23 (2)135 (3)1 (4)45° (5)> > (6)54 (7)21 (8)1723 (9)15° 23(10)60° (11)=45°3.(1)sinA (2)cosB (3)sin40° (4)cos47°5′ 4.(1)23 (2)1 (3)1 (4)0 (5)4625.(1)cos73° (2)sin51° (3)cos48°48′ (4)sin27°33′6.(1)sinA =cosB =29295,cosA =sinB =29292; (2)sinA =cosB =85852,cosA =sinB =85859;(3)sinA=cosB =65657,cosA =sinB =656547.cosAEC =558.sin θ=54,cos θ=53。

九年级三角函数公式大全

九年级三角函数公式大全

九年级三角函数公式大全1二倍角公式正弦形式:sin2α=2sinαcosα正切形式:tan2α=2tanα/(1-tan^2(α))余弦形式:cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)2、三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a=tana·tan(π/3+a)·tan(π/3-a)3、四倍角公式sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)2半角公式1、正弦sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)2、余弦cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)3、正切tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))3积化和差sina*cosb=[sin(a+b)+sin(a-b)]/2 cosa*sinb=[sin(a+b)-sin(a-b)]/2 cosa*cosb=[cos(a+b)+cos(a-b)]/2 sina*sinb=[cos(a-b)-cos(a+b)]/24和差化积sina+sinb=2sin[(a+b)/2]cos[(a-b)/2] sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]5诱导公式1、任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα2、设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα3、利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαtan(π-α)=-tanαcot(π-α)=-cotα4、设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)5、利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα6、π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα。

苏科版九年级下册数学 第7章 正弦、余弦

苏科版九年级下册数学 第7章 正弦、余弦

知2-讲
∴AD= AB2+BD2= 3k2+k2= 8k2=2 2k.

AD 2 sinB= AB =
3k2k=232,cosB=BADB=3kk=13,
AD 2 2k tanB=BD= k =2 2.
例4 [月考·银川] 比较大小:
知2-讲
(1)cos35°_>__cos45°,tan50°_<__tan60°;
知2-讲
例3 如图7.2-4,在等腰三角形ABC中,AB=AC,如果 2AB=3BC,求∠B的三个三角函数值.
解题秘方:紧扣“锐角三角函数 的定义的前提是在直 角三角形中”这一特 征,用“构造直角三 角形法”求解.
特别提醒:
知2-讲
求锐角三角函数值的方法:锐角三角函数是在直
角三角形的条件下定义的,因此当题目要求某一个
∴cos2a=1-sin2a=1-12659=114649, 又∵a 为锐角,∴ 0<cos a<1,
5

cosa
=1123,∴tana=csoinsaa=
13 5 12=12.
13
知识点 4 利用计算器计算锐角的正弦值或余弦值 知4-讲
1. 求以度为单位的锐角正弦值的一般步骤 利用计算器可求锐角的正弦值,先依次按计算器上的 键,再依次按数字键、键即可. 2. 求以度、分、秒为单位的正弦值的一般步骤求以度、分、秒
锐角的三角函数值时,先观察所要求的角是否在题
目中没有直角三角形时,就需要我们作辅助线构造
与该角有关的直角三角形.
知2-讲
解:过点A作AD⊥BC于点D,如图7.2-4, ∵AB=AC,∴BD=DC. 又∵2AB=3BC,∴.
AB 3 设AB=AC=3k(k>0),B则CB=2C.=2k. ∴BD=CD=k,

苏科版数学九年级下册7.2《正弦、余弦》(第1课时)讲说课稿

苏科版数学九年级下册7.2《正弦、余弦》(第1课时)讲说课稿

苏科版数学九年级下册7.2《正弦、余弦》(第1课时)讲说课稿一. 教材分析苏科版数学九年级下册7.2《正弦、余弦》这一课时,是在学生学习了锐角三角函数的基础上进行授课的。

本节课的主要内容是正弦和余弦的概念、性质及其应用。

通过本节课的学习,学生能够掌握正弦和余弦的定义,理解它们的性质,并能运用正弦和余弦解决一些实际问题。

教材通过丰富的例题和练习题,帮助学生巩固所学知识,提高解题能力。

二. 学情分析在进入九年级下册的学习之前,学生已经掌握了锐角三角函数的相关知识,对三角函数有一定的认识。

但是,对于正弦和余弦的概念、性质及其应用,学生可能还比较陌生。

因此,在教学过程中,我需要引导学生逐步理解正弦和余弦的定义,通过举例、讲解、练习等方式,让学生逐步掌握它们的性质和应用。

三. 说教学目标1.知识与技能目标:学生能够理解正弦和余弦的概念,掌握它们的性质,并能运用正弦和余弦解决一些实际问题。

2.过程与方法目标:通过观察、思考、讨论等方法,学生能够自主探究正弦和余弦的性质,培养学生的探究能力和合作意识。

3.情感态度与价值观目标:学生能够体验数学与实际生活的联系,增强对数学的兴趣和自信心。

四. 说教学重难点1.教学重点:正弦和余弦的概念、性质及其应用。

2.教学难点:正弦和余弦的性质的理解和运用。

五. 说教学方法与手段在本节课的教学过程中,我将采用以下教学方法与手段:1.情境教学法:通过生活实例引入正弦和余弦的概念,让学生感受数学与实际生活的联系。

2.引导发现法:在讲解正弦和余弦的性质时,引导学生观察、思考、讨论,发现其中的规律。

3.练习法:通过丰富的练习题,让学生巩固所学知识,提高解题能力。

六. 说教学过程1.导入:以生活实例引入正弦和余弦的概念,激发学生的学习兴趣。

2.新课讲解:讲解正弦和余弦的定义,通过例题和练习题,让学生掌握它们的性质。

3.课堂讨论:引导学生观察、思考、讨论正弦和余弦的性质,培养学生的探究能力和合作意识。

九年级数学下册知识点-- 直角三角形的边角关系--正弦与余弦

九年级数学下册知识点-- 直角三角形的边角关系--正弦与余弦
九年级数学下册知识点 直角三角形的边角关系
正弦与余弦
复习 1.分别求出图中∠A,∠B的正切值.
2.如图,在Rt△ABC中,∠C=90°,当锐角A确定 时,∠A的对边与邻边的比就随之确定.想一想,此 时,其他边之间的比是否也确定了呢?
斜边c
B 对边a
A
邻边b C
正弦的定义
合作探究
任意画Rt△ABC 和Rt△A'B'C',使得∠C=∠C'=90°,
13
求:AB,sinB.
B
解: cosAAC12,AC10,
AB 13

C
10
A
10 12 . AB 13
AB 1013 65 . 12 6
sin
B
AC AB
10 65
12 . 13
6
思考:我们再次发现sinA=cosB,其中的内在联系你可否
掌握?
要点归纳
如图:在Rt △ABC中,∠C=90°,
C.tanA=tanB
D.sinA=cosB
2.在Rt△ABC中,∠C=90°,sinA=
12
5 13
,则tanB的
值为____5_____.
1.如图,在Rt△ABC中,锐角A的对边和邻边同时扩大100
倍,sinA的值( C )
B
A.扩大100倍 B.缩小100倍
C.不变
D.不能确定

2.已知∠A,∠B为锐角
AB A' B'
着分析一下吗?
B' B
A
C
A'
C'
在图中,由于∠C=∠C'=90°,∠A=∠A'=α,

中考数学考点解析正弦定理与余弦定理的运用

中考数学考点解析正弦定理与余弦定理的运用

中考数学考点解析正弦定理与余弦定理的运用中考数学考点解析:正弦定理与余弦定理的运用正弦定理和余弦定理是中学数学中重要的几何定理,广泛应用于解决与三角形相关的各类问题。

本文将针对中考数学中关于正弦定理和余弦定理的考点进行解析,并讨论其运用方法。

一、正弦定理的概念与应用正弦定理是指在任意三角形ABC中,设a、b、c分别为三边AB、BC、AC的边长,A、B、C分别为对应的内角,则有下述关系式成立:sinA/a = sinB/b = sinC/c正弦定理常用于解决三角形边长或角度未知的问题。

根据正弦定理,我们可以通过已知角度和边长的比例关系,求解未知边长或角度的值。

例如,已知在三角形ABC中,角A的度数为30°,边AC的长度为10cm,边BC的长度为8cm,求边AB的长度。

解析:根据正弦定理,我们有sin30°/10 = sinB/8,通过计算可以得到sinB的值为1/2。

根据反三角函数的定义,我们可以求得角B的度数为30°。

然后再利用三角函数的性质,我们可以得到sinC的值为sqrt(3)/2,进而求解出边AB的长度为12cm。

二、余弦定理的概念与应用余弦定理是指在任意三角形ABC中,设a、b、c分别为三边AB、BC、AC的边长,A、B、C分别为对应的内角,则有下述关系式成立:c^2 = a^2 + b^2 - 2ab * cosC余弦定理常用于解决三角形边长或角度未知的问题。

相比正弦定理,余弦定理在求解角度时更为常用,尤其适用于已知三边长度求解对应角度的情况。

例如,已知三角形ABC,边AB的长度为5cm,边AC的长度为8cm,角A的度数为45°,求对边BC的长度。

解析:根据余弦定理,我们有BC^2 = 5^2 + 8^2 - 2 * 5 * 8 * cos45°。

通过计算可以得到BC^2的值为25,再开方可以得到BC的长度为5cm。

三、正弦定理与余弦定理的综合应用正弦定理和余弦定理在解决实际问题中常常需要综合运用。

九年级数学正弦和余弦

九年级数学正弦和余弦

正弦和余弦【基础知识精讲】1.基本概念Rt △ABC ,∠C 为直角,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA.把∠A 的邻边和斜边的比叫做∠A 的余弦,记作cosA,即,sinA=斜边的对边A ∠,cosA=斜边的邻边A ∠. 如图1,sinA=c a ,cosA=cb .注意:正弦、余弦是一种比值,当∠A 确定时,这个比值是不变的.2.取值范围由于直角三角形中斜边大于直角边,从而有:0<c a <1,0<cb <1,所以当∠A 为锐角时,0<sinA <1,0<cosA <1.3.特殊角的正、余弦的数值由直角三角形的有关性质及正、余弦定义,可以推出:sin30°=21,sin45°=22,sin60°=23;cos30°=23,cos45°=22,cos60°=21. 4.互余角的正、余弦函数之间的关系由图6-1知,sinA=c a ,cosB=ca ,从而可得:sinA=cosB.同理可证:cosA=sinB ,又A+B=90°,∴sinA=cos(90°-A),cosA=sin(90°-A)(A 为锐角).5.在0°—90°之间正、余弦值的变化情况从正、余弦表中可以看出:当角度在0°—90°是变化时,正弦值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的减小(或增大)而增大(或减小).【重点难点解析】本节的重点是理解正弦函数和余弦函数的概念,熟记特殊三角函数值.难点在于搞清sinA 、ocsA 的意义,它提示了直角三角形边角之间内在联系,是后面解直角三角的基础.例1 如图2,在Rt △ABC 中,∠C=90°,AC=8,BC=4.(1)求sinA 、cosA 的值;(2)sin 2A+cos 2A 的值;(3)比较sinA 与cosB 的大小.解:(1)∵∠C=90°,AC=8,BC=4,∴AB=22BC AC +=2248+=45.∴sinA=551=AB BC ,cosA=552=AB AC . (2)sin 2A+cos 2A=cos2A=(551)2+(552)2=1. (3)∵cosB=551=AB BC ,sinA=551, ∴sinA=cosB(或由公式得出).点拨:熟练地依据正弦函数、余弦函数的概念求直角形中各锐角的正、余弦值是本节的基本技能;此题为求正、余弦值,必先求出斜边的长,再由定义得出,在问题(3)中我们以具体实例验证了公式sinA=cos(90°-A).例2 求下列各式的值(1)sin30°·sin45°+cos30°·cos45°. (2)2sin45°+sin30°·cos60°.解:(1)sin30°·sin45°+cos30°·cos45°=22232221⨯⨯⨯=641241+. (2)2sin45°+sin30°·cos60°=2×22+21×21=45. 点拨:熟记特殊角的正、余弦值有利于快速、准确的计算.例 3 已知sin35°=0.5736,sin67°18′=0.9225,求cos60°cos55°-2cos22°42′的值.解:∵cos55°=cos(90°-35°)=sin35°=0.5736,cos22°42′=sin67°18′=0.9225,∴cos60°cos55°-2cos22°42′ =21×0.5736-2×0.9225 =-1.5582.简析:运用公式sinA=cos(90°-A)解题,明确互余角之间三角函数关系. 例4 不查表,比较sin46°与cos46°的大小.解:∵46>45 ∴sin46°>sin45°,cos46°<cos45°,又sin45°=22=cos45°,∴sin46°>cos46°. 点拨:45°的正、余弦值相等以及0°—90°之间正、余弦值变化情况是解决本题的关键.例5 已知Rt △ABC 中∠C=90°,∠B=60°,a+b=6,求a 、b 、c.解:∵sinB=sin60°=23,∴b=23c.① ∵cosB=cos60°=21,∴a=21c.② 又知a+b=6,③由①②③知:a=33-3,b=9-33,c=63-6.点拨:此题由角B 的正、余弦的定义得出等式①②,再由已知③解方程解决问题.【课本难题解答】1.证明:sin 2A+cos 2A=1(A 为锐角).证明:在Rt △ABC 中(∠C=90°),sinA=c a ,cosA=cb , sin 2A+cos 2A=22222c c c b a =+=1. 点拨:用定义及勾股定理直接解题.2.已知sinA=54,求cosA 的值.(∠A 为锐角). 解:∵∠A 为锐角,∴cosA >0.又sin 2A+cos 2A=1,∴cosA=A sin 12-=53. 点拨:本题有两点值得注意,一是sinA 与cosA 之间的关系(即其平方和为1),二是由等式sin 2A+cos 2A=1得出的是cosA=±A sin 12-,再由A 是锐角,cosA 大于0,得出正确结论.【典型热点考题】例1 计算:(2+1)0-|sin60°-1|-(213+)-1+(-1)3. 解:(2+1)0-|sin60°-1|-(213+)-1+(-1)3 =1-(1-23)-(3-1)+(-1) =-321. 点拨:简单运用sin60°的值进行计算.例 2 在斜边为10的Rt △ABC 中,∠C=90°,两直角边a 、b 是方程x 2-mx+3m+6=0的两个根.(1)求m 的值;(2)求两个锐角的正弦值.解:依题意:a+b=m,ab=3m+6,∵a 2+b 2=102 ,∴m 2-2(3m+6)=102 .解这个方程得:m 1=-8,m 2=14.∵a+b >0,∴m=14.原方程为:x 2-14x+48=0.解之得:x 1=8,x 2=6.∴当a=6,b=8,c=10,sinA=53,sinB=54. 当a=8,b=6,c=10时,sinA=54,sinB=53. 点拨:(1)是用方程的有关知识解题,问题(2)是用定义解题,关键注意题中没有明确a 、b 的大小,从而需加以讨论说明.例 3 已知△ABC 的边AC=2,∠A=45°,cosA 、cosB 是方程4x 2-2(1+2)x+m=0的两根,求∠B 的度数.解:∵∠A=45°,∴sinA=22. 由根与系数的关系:cosA+cosB=21(1+2), ∴cosB=21,∠B=60°. 点拨:此题将一元二次方程和三角函数结合在一起,要求我们具有综合运用知识的能力.【同步达纲练习】(时间:45分钟,满分:100分)一、填空(6分×5=30分)(1)若sinB=21,则∠B= 度;sinA=23,则∠A=_____度. (2)当α为锐角时,2)1(sin -α= . (3)2)145(sin -︒+|1-cos60°|= .(4)已知2sin α-3=0,则α= .(5)在Rt △ABC 中,∠C=90°,AC=3,BC=2,则sinA= ,sinB= ,cosA= .二、选择题(6分×5=30分)(1)已知α为锐角,且sin α=m,则m 的取值范围是( )A.一切实数B.m >0C.0<m <1D.m >1(2)已知cosA(A 为锐角)是方程3x 2-43x+3=0的实根,则cosA 等于( ) A.3 B.33 C. 3或33 D.m >1 (3)已知锐角∠AOB ,P 是OB 边上任一点,过P 作PQ ⊥OA 于Q ,设OQ=x ,QP=y,OP=r ,则比值yx x y r x r y ,,,的大小与点P 及∠AOB 的关系是( ) A.由P 点的位置决定,与∠AOB 的大小无关B.由∠AOB 的大小决定,与点P 位置无关C.由∠AOB 的大小和点P 位置决定D.与∠AOB 的大小和点P 位置无关(4)中△ABC 中,∠C=90°,sinA=53,则cosB=( ) A. 53 B.54 C.2516 D.259 (5)已知Q 为锐角,则下列等式中,可能成立的是( )①sinQ=3 ②sinQ+cosQ=0③cosQ=a11(a >0) ④sinQ-cosQ=0 A.①② B.②③ C.③④ D.①④三、解答题(8分×5=40分)(1)已知三角形三边长分别是5,12,13.①判断此三角形的形状;②求最小角的正弦和余弦值.(2)在Rt △ABC 中,∠C=90°,a:b=4:5,求sinA 、cosA 的值.(3)计算2)170(cos +︒-22)60sin 60(cos ︒+︒+|sin20°-1|.(4)计算sin45°·cos45°-cos 245°+sin 230°.(5)已知sin75°=426+,求︒︒+︒30sin 15cos 75sin 的值.【素质优化训练】1.设cosQ+sin 2Q=1,Q 为锐角,下而的结论正确的是( )A.sinQ+sin 2Q >1B.sinQ+sin 2Q=1C.sinQ+sin 2Q <1D.sinQ+sin 2Q 与1的大小关系不能确定2.已知在Rt △ABC 中,∠C=90°,且sinA 和cosB 是方程4x 2+px+1=0的两根,(1)求证:p+4=0;(2)求∠A 和∠B 的度数.3.已知17cosA+13cosB=17,17sinA=13sinB,且A 、B 都是锐角,求2A +B 的值.【生活实际运用】一般向正东方向航行,上午十时在灯塔的西南方58.4海里处,到上午十二时船到达灯塔的正南方,求船航行的速度.参考答案【同步达纲练习】一、(1)30°、60°(2)1-sin α (3)2-2122- (4)60°(5)515,515,510 二、C B B A C三、(1)Rt △,sinA=135,cosA=1312 (2)设a=4k ,则b=5k,∴c=41k,∴sinA=41414.cosA=41415. (3)1-3 (4)41(5)∵sin75°=cos15°,∴原式=26+.【素质优化训练】1.D2.∵A+B=90°,∴sinA=cosB,∴方程4x 2+px+1=0有两个实根,∴△=p 2-16=0,p=±4当p=4时,x=-21,此时sinA <0,舍去,当p=-4时,x=21,即sinA=cosB=21.∴∠A=30°∠B=60°,p+4=0.3.作△ABC 中,使AB=AC=13,过点C 作CD ⊥AB 于点D.在△ABC 中,CD=17,sinA=13cosB,AD=17cosA,BD=13cosB,且17cosA+13cosB=AB=17,则在△ABC 中,∠A 、∠B 符合题目条件,又∠A+2∠B=180°,∴2A +B=90°. 【生活实际运用】AC=AB ·cos45°=58.4×22=29.22,∴速度V=2AC =14.62海里/时.。

初中数学九年级下册苏科版7.2正弦、余弦优秀教学案例

初中数学九年级下册苏科版7.2正弦、余弦优秀教学案例
(四)反思与评价
1.教师引导学生对所学知识进行反思,总结正弦、余弦函数的性质及应用。
2.学生进行自我评价,发现自身不足,明确后续学习目标。
3.教师对学生的学习过程和成果进行评价,关注学生的成长和发展,给予鼓励和指导。
本节课的教学策略旨在充分发挥学生的主体作用,引导学生主动探究、合作学习,提高学生的数学素养。通过情景创设、问题导向、小组合作、反思与评价等教学手段,激发学生的学习兴趣,培养学生的数学思维能力,促进学生的全面发展。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示生活中常见的周期性现象,如钟表走动、海浪起伏等,引导学生关注数学与现实生活的联系。
2.提出引导性问题:“这些周期性现象背后是否存在共同的数学规律?”激发学生思考和探究欲望。
3.回顾已学过的锐角三角函数知识,为学生学习正弦、余弦函数奠定基础。
(二)讲授新知
(一)情景创设
1.利用多媒体展示生活中常见的周期性现象,如钟表走动、海浪起伏等,让学生感受数学与现实生活的紧密联系。
2.设计具有挑战性的数学问题,激发学生探究欲望,引导学生主动参与到学习过程中。
3.创设轻松、愉快的学习氛围,鼓励学生大胆提问、发表见解,增强学生的自信心。
(二)问题导向
1.教师提出引导性问题,引导学生思考正弦、余弦函数的定义及性质。
3.小组合作与实践操作:在学生小组讨论环节,教师组织学生进行小组合作,分享学习心得,培养学生合作学习的习惯。同时,教师还引导学生进行实践性任务,如制作正弦、余弦函数的演示道具,增强学生的动手能力,使学生在实践中巩固所学知识。
4.反思与评价:在总结归纳环节,教师引导学生对所学知识进行反思,总结正弦、余弦函数的性质及应用。同时,学生进行自我评价,发现自身不足,明确后续学习目标。教师对学生的学习过程和成果进行评价,关注学生的成长和发展,给予鼓励和指导,使得学生在评价中不断进步。

数学人教版九年级下册正弦、余弦、正切函数的简单计算.1.2余弦定理课件新人教版必修5

数学人教版九年级下册正弦、余弦、正切函数的简单计算.1.2余弦定理课件新人教版必修5

定 理 证 明
定 理 应 用
三角形中的边角关系
a2 b2 c2 2bc cos A b a c 2ac cos B
2 2 2
余弦定理
(1)已知三边,求三个角
c2 a2 b2 2ab cos C
(3)判断三角形形状
(2)已知 两边和 它们的 夹角, 求第 三边和 其它两 个角。
定 理 内 容
2 2 2
c a b 2 ab cos C
2 2 2
回顾正弦定理的证明你还有没有其它的证明 余弦定理的方法? (1)坐标法
证 明 方 法
(2)直角三角形的边角关系
(3)正弦定理(三角变换)
坐标法证明余弦定理
教材中用向量法给出余弦定理的证明,下面我们给出 坐标法证明.
证明:如图所示,以△ABC的顶点A为原点 ,射线AC为x轴的正半轴,建立直角坐标系 ,这时顶点B可作角A终边上的一个点,它到 原点的距离r=c,设点B的坐标为(x,y),由 三角函数的定义可得:x=ccos A,y=csin A ,即点B为(ccos A,csin A),又点C的坐标是
A 56 2 0 2 2 2 2 2 2 a c b 134 . 6 161 . 7 87 . 8 cos B 0.8398 , 2 ac 2 134 . 6 161 . 7
B 32 5 3
C 180 A B 180 56 2 0 32 5 3 90 4 7
1.1 正弦定理和余弦定理
1.1.2 余弦定理
本节课主要学习余弦定理及推导过程、用余弦定理解三角形、判断 三角形形状。以苏格拉底几何原本由来的故事和高铁隧道招标的事例 作为本节的开始引入新课。本节教学以学生探究为主,利用向量法证 明余弦定理定理,引导学生探究坐标法、直角三角形边角关系法、正 弦定理法等多种方法证明余弦定理,使学生能够灵活应用所学知识, 加深对定理的理解。针对定理所解决的三类问题给出3个例题和变式, 通过解决问题引出三角形的解的不同情况,强调正确应用定理的重要 性。 教学过程中通过例1巩固掌握已知两边及其夹角解三角形的问题,通 过例2 巩固掌握已知三边解三角形的问题,通过例3巩固掌握判断三角 形形状的问题,每种类型都有变式进行巩固。用直角三角形的边角关 系证明余弦定理导,既节省时间又能吸引学生注意力。通过余弦定理 的推导和用余弦定理解决问题两个探究指明本节课的方向。由探究二 余弦定理可以解决的问题引出余弦定理的变形及用余弦定理判断三角 形的形状等知识。

人教版九年级下册数学:正弦、余弦、正切函数的简单应用(共32张PPT)

人教版九年级下册数学:正弦、余弦、正切函数的简单应用(共32张PPT)
A
C 30°
1.5
D
10
B
例 操场有一旗杆,老师让小明去测量旗杆高度.小明站在 离旗杆底部10米的位置,目测旗杆的顶部,视线与水平线的 夹角为30度,并已知目高为1.5米.然后他很快就算出旗杆 的高度了.你知道小明怎样算出的吗?
A
C 30°
1.5
D
10

H
B
C 30°
1.5
D
10
A
解:由题意可知:DB=10,
你知道小明怎样算出的吗? ∵CD⊥DB,AB⊥DB
三角形
5米.然后他很快就算出旗杆的高度了.
初三的学习既是机遇也是挑战,只有团结一致,相互帮助,互相追赶,才能到达理想的彼岸。
过点C作CH⊥AB于点H
解:由题意可知:DB=10,∠ACH=30°,CD=1.
锐角三 ∴CH=DB=10,HB=CD=1.
解:由题意可知:DB=10,∠ACH=30°,CD=1.
作业布置:课本78页 7、8、9
谢谢聆听!
∠ACH=30°,CD=1.5

H
B
C 30°
1.5
D
10
A
解:由题意可知:DB=10,
∠ACH=30°,CD=1.5
过点C作CH⊥AB于点H

H
B
A
解:由题意可知:DB=10,
解:由题意可知:DB=10,∠ACH=30°,CD=1.
∠ACH=30°,CD=1.5
5米.然后他很快就算出旗杆的高度了.Leabharlann C1.53300°°
D
10
A

H B
解:由题意可知:DB=10, ∠ACH=30°,CD=1.5

湘教版九年级数学 4.1 正弦和余弦(学习、上课课件)

湘教版九年级数学  4.1 正弦和余弦(学习、上课课件)

知1-练
sin 67°38′24′′; 解:sin 67°38′24′′≈ 0.924 8.
(2)用计算器求锐角α 的度数(精确到0.1 °):
sinα=0.516 8. α ≈ 31.1°.
解题秘方:紧扣使用计算器的操作步骤,正确 按键得出结果.
感悟新知
知1-练
3-1. [ 期末·莱阳 ] 若用我们数学课本上采用的科学计 算器计算 sin42 ° 16′,按键顺序正确的是 ( C )
解:原式=12+
2 2
2-13×
3 2
2=12+ 12-13×32-1. [ 期末·石家庄裕华区 ] 已知 α 为锐角,且sin(α-
10 ° ) =
3 2
,则
α
等于(
A
)
A. 70° B. 60°
C. 40° D. 30°
感悟新知
例3 (1)用计算器求正弦值(精确到0.000 1):
1. sin α是完整的数学符号,是一个整体,不能理解成
sin·α . 2. 正弦符号后面可以跟单个小写希腊字母或单个大写英文
字母或三个大写英文字母或数字表示的角,也可以跟度 数,如sin α,sin A,sin ∠ABC,sin ∠2,sin 70° .
感悟新知
知1-练
例1 在 Rt △ ABC 中,∠ C=90 °,如果AB=2, BC=1, 3
感悟新知
知2-练
例4 [母题 教材 P115 练习 T1 ]在Rt△ABC中,∠C=90°,
∠A,∠B,∠C的对边分别为a,b,c,请根据下列 条件分别求出∠A的正弦、余弦值: (1)a=6,b=8;(2)b=2,c= 10.
感悟新知
知2-练
解题秘方:紧扣正弦、余弦揭示了直角三角形的边 角之间的数量关系,先利用勾股定理求 出未知边的长度,然后根据定义求∠ A的 正弦、余弦值.

九年级数学下册《正弦与余弦》教案、教学设计

九年级数学下册《正弦与余弦》教案、教学设计
三、教学重难点和教学设想
(一)教学重难点
1.正弦与余弦的定义及其应用是本章节的重点,要求学生能够准确理解并运用。
2.正弦、余弦在不同象限的符号变化是教学的难点,需要学生通过实际操作和思考来掌握。
3.将正弦与余弦的概念应用于解决实际问题时,如何选择合适的方法和策略,是学生需要突破的难点。
(二)教学设想
-设计一道实际问题,运用正弦和余弦的知识解决问题,并简述解题思路。
-总结正弦、余弦在不同象限的符号规律,用自己的语言进行描述。
2.选做题:
-利用计算器或三角函数表,探究正弦和余弦值在0°到360°范围内的变化规律。
-结合其他学科知识,探讨正弦和余弦在其他领域中的应用,如物理中的振动、地理中的经纬度等。
在教学过程中,关注学生的个体差异,对学习困难的学生给予个别辅导,对优秀生进行拔高训练,使每位学生都能在原有基础上得到提高。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示实际情境:在校园里,我们常常看到升旗仪式。请问同学们,如何测量旗杆的高度呢?通过这个问题,引出直角三角形在生活中的应用。
2.引导学生回顾已学的三角形知识,特别是直角三角形的性质和勾股定理。
二、学情分析
九年级的学生已经具备了一定的数学基础,掌握了基本的几何知识和三角形的性质。在此基础上,学习正弦与余弦的概念和运用,学生需要将已知的几何知识与新的三角函数知识相结合,解决实际问题。然而,学生对锐角三角函数的理解和运用尚处于起步阶段,可能存在以下问题:
1.对正弦、余弦的定义理解不透彻,容易混淆两者关系。
5.作业提交时间:
-必做题需在下一节课前提交。
-选做题和探究性学习成果可以适当延长提交时间,但最迟不超过本周五。
-使用计算器或三角函数表,学会求已知角度的正弦和余弦值。

九年级数学三角函数定义及三角函数公式大全

九年级数学三角函数定义及三角函数公式大全

一、三角函数的定义:在平面直角坐标系中,以坐标轴正方向为单位长,在单位圆上取点P(x,y),点P与x轴之间的夹角为θ。

根据点P在单位圆上的位置,定义以下三个比率:1. 正弦函数(sine):sinθ = y2. 余弦函数(cosine):cosθ = x3. 正切函数(tangent):tanθ = y/x二、常用的三角函数公式:1.正弦函数的基本性质:(1)sin(-θ) = -sinθ(2)sin(π/2 - θ) = cosθ(3)sin(π - θ) = sinθ(4)sin(2π - θ) = -sinθ(5)sin(θ + 2kπ) = sinθ(k为整数)(6)sin2θ = 2sinθcosθ2.余弦函数的基本性质:(1)cos(-θ) = cosθ(2)cos(π/2 - θ) = sinθ(3)cos(π - θ) = -cosθ(4)cos(2π - θ) = cosθ(5)cos(θ + 2kπ) = cosθ(k为整数)(6)cos2θ = cos²θ - sin²θ3.正切函数的基本性质:(1)tan(-θ) = -tanθ(2)tan(π/2 - θ) = 1/tanθ(3)tan(θ + π) = tanθ(4)tan(θ + πk) = tanθ(k为整数)(5)tan2θ = 2tanθ/(1-tan²θ)4.三角函数间的关系:(1)tanθ = sinθ/cosθ(2)sin²θ + cos²θ = 1(3)1 + tan²θ = sec²θ(4)1 + cot²θ = csc²θ(5)cos(2θ) = cos²θ - sin²θ = 2cos²θ - 1 = 1 - 2sin²θ5.三角函数的诱导公式:sin(x+y) = sinx*cosy + cosx*sinycos(x+y) = cosx*cosy - sinx*sinytan(x+y) = (tanx + tany)/(1 - tanxtany)sin(x-y) = sinx*cosy - cosx*sinycos(x-y) = cosx*cosy + sinx*sinytan(x-y) = (tanx - tany)/(1 + tanxtany)其中,x和y表示任意实数。

九年级数学下册《正弦余弦》教案、教学设计

九年级数学下册《正弦余弦》教案、教学设计
b.利用多媒体工具,如动态几何软件,直观演示正弦余弦值的计算过程,帮助学生形象记忆。
c.通过分组讨论和互助学习,让学生在实践中共同探索和总结正弦余弦的性质和应用。
d.设计梯度性练习题,从基础计算到综合应用,逐步提升学生的解题能力。
2.针对教学难点,设想以下突破策略:
a.结合实际案例,引导学生发现直角三角形的隐藏条件,培养他们抽象思维和模型构建能力。
三、教学重难点和教学设想
(一)教学重难点
1.重点:正弦和余弦的定义及其应用,特殊角度的正弦和余弦值的记忆,以及在实际问题中的运用。
2.难点:将实际问题抽象为直角三角形模型,运用正弦余弦定理进行求解;理解并掌握正弦余弦函数随角度变化的规律。
(二)教学设想
1.对于教学重点的把握,设想以下教学策略:
a.采用生动的情境引入,如通过设计一个测量建筑物高度的实践活动,激发学生对正弦余弦的兴趣。
二、学情分析
九年级的学生已经具备了一定的数学基础和逻辑思维能力,掌握了基本的几何知识和代数运算。在此基础上,他们对锐角三角函数的概念已有初步了解,但正弦和余弦的深入学习可能仍感陌生。学生在之前的学习中,对直角三角形、相似三角形等知识有较好的掌握,这为学习正弦余弦奠定了基础。然而,在具体应用方面,学生可能缺乏将实际问题转化为数学模型的能力。因此,在教学过程中,应注重激发学生的兴趣,引导他们运用已有知识探索新知,帮助他们建立数学模型,培养解决实际问题的能力。此外,针对不同学生的学习特点,应采取差异化教学策略,关注每个学生的成长,提升他们的自信心和自主学习能力。
3.设计合作学习活动,让学生在小组讨论和交流中,提高问题解决能力和团队协作能力。
4.运用变化的认识。
5.通过课后练习和拓展任务,巩固所学知识,提高学生的独立思考和创新能力。

初中数学 九年级 第4章 锐角三角函数 知识点清单 最新最全

初中数学 九年级 第4章 锐角三角函数 知识点清单 最新最全

第4章锐角三角函数4.1 正弦和余弦知识点1 正弦1.正弦的定义2.特殊角的正弦值3.利用计算器求锐角的正弦值或由正弦值求锐角。

特别提醒1. sinα是完整的数学符号,是一个整体,不能理解成sin·a2.正弦符号后面可以跟单个小写希腊字母或单个英文字母或三个大写英文字母或数字表示的角,也可以跟度数,如sinα,sin A, sin∠ ABC,sin∠2, sin 70°.知识点2 余弦1.余弦的定义2.特殊角的余弦值3.利用计算器求锐角的余弦值或由余弦值求锐角。

知识点3 互余两角正弦值和余弦值的关系1.同一锐角的正弦值和余弦值之间的关系:sin²A+cos²A=1(平方关系)2.互余两角的正弦值和余弦值之间的关系:3.sin A=cos(90°-∠A) cos A=sin(90°-∠A)锐角三角函数之间的关系都可用定义推理得出.4.2 正切知识点1 正切1.正切的定义2.特殊角的正切值3.利用计算器求锐角的正切值或由正切值求锐角。

4.拓展:(1)互余两角的正切值之间的关系:tan α·tan(90°-α)=1.(2)锐角α的正弦值、余弦值、正切值之间的商数关系:tan α= sinαcosα特别提醒:1.tan a是完整的数学符号,是一个整体,不能理解成tan・α.2.tan α中的α角的符号"∠"习惯上省略不写,但对于用三个大写英文字母或数字表示的角,角的符号不能省略。

3. tanα的值只与角α的大小有关,与所在直角三角形的边的长短无关.4.正切符号后面可以跟单个小写希腊字母或单个大写英文字母或三个大写英文字母或数字表示的角,也可以跟度数.知识点2 锐角三角函数1.定义:从正弦、余弦、正切的定义看到,任意给定一个锐角a都有唯一确定的比值sin α(或cos α,tan α)与它对应.当角α变化时,它的比值sin α(或cos α,tan α)也随之变化.因此我们把锐角α的正弦、余弦和正切统称为角α的锐角三角函数2.特殊角的三角函数值:特别提醒并非只有在直角三角形中才有三角函数值,而是只要有角就有三角函数值.锐角三角函数的定义说明了直角三角形中的边角之间的关系,它是一个比值,无单位,这些比值只与锐角的大小有关.在锐角三角函数中,自变量是角a.4.3 解直角三角形知识点1 解直角三角形的定义一般地,在直角三角形中,除直角外,共有五个元素,即三条边和两个锐角,在直角三角形中利用已知元素求其余未知元素的过程叫作解直角三角形.(1)在直角三角形中、除直角外的五个元素中,已知其中的两个元素(至少有一个是边),可求出其余的三个未知元素(知二求三)(2)一个直角三角形可解,则其面积可求.但在一个解直角形的题中,如无特别说明,则不包括求面积.知识点2 直角三角形中的边角关系1.直角三角形中的边角关系:在直角三角形ABC中,∠C为直角,∠A,∠B,∠C所对的边分别为a,b,c,那么除∠C外的5个元素之间有如下关系:1)三边之间的关系:a²+b²=c²(勾股定理)(2)两锐角之间的关系:∠A+∠B=90(3)边角之间的关系:sinA=∠A的对边斜边= ac,sinB=∠B的对边斜边= bc,cosA =∠A的邻边斜边= bc, cosB =∠B的邻边斜边= ac,tanA=∠A的对边∠A的邻边= ac, tanB =∠B的对边∠B的邻边= ac,3.运用关系式解直角三角形时,常常要用到以下变形:(1)锐角之间的关系:∠A=90°-∠B,∠B=90°-∠A;(2)三边之间的关系:a=√c2−b2, b=√c2−a2,c=√a2+b2;(3)边角之间的关系:a=c·sinA ,a=c·cosB ,a=b·tanA ,b=c·sinB ,b=c·cosA ,b=a·tanB,4.4 解直角三角形的应用知识点1 解直角三角形在实际中的应用1.利用解直角三角形解决实际问题的一般步骤:(1)画出平面图形,将实际问题抽象为数学问题,转化为解直角三角形的问题;(2)根据已知条件的特点,灵活选用锐角三角函数等知识解直角三角形;(3)得到数学问题的答案;(4)得到实际问题的答案.2.解决实际问题时,常见的基本图形及相应的关系式如下表所示.特别提醒1.当实际问题中涉及的图形可以直接转化为直角三角形时,可利用解直角三角形的知识直接求解.2.在解直角三角形时,若相关的角不是直角三角形的内角,应利用平行线的性质或互余互补的角的性质将其转化为直角三角形的内角,再利用解直角三角形的知识求解.3.问题中有两个或两个以上的直角三角形,当其中一个直角三角形不能求解时,可考虑分别由两个直角三角形找出含有相同未知元素的关系式,运用方程求解。

九年级数学上册《正弦和余弦》教案、教学设计

九年级数学上册《正弦和余弦》教案、教学设计
-设计意图:培养学生从具体实例中抽象出数学概念的能力。
3.计算方法:
-结合计算器,让学生动手计算具体角度的正弦和余弦值,总结数值变化规律,并引导学生运用这些规律解决实际问题。
-设计意图:提高学生的实际操作能力,培养学生的计算技巧。
4.图像教学:
-引导学生绘制正弦和余弦的图像,观察图像特点,发现图像与数值之间的联系。
3.提出问题:教师提出与正弦和余弦相关的问题,如:“正弦和余弦的定义是什么?”“它们在直角三角形中如何应用?”激发学生的求知欲通过直观演示和实际例子,引导学生理解正弦和余弦的定义,并强调其本质含义。
2.正弦和余弦的计算方法:教师结合计算器,讲解如何计算具体角度的正弦和余弦值,以及数值变化规律。
-设计意图:帮助学生梳理知识结构,提高学生的概括能力。
7.课后作业:
-设计不同难度的练习题,让学生巩固所学知识,同时注重培养学生的拓展思维。
-设计意图:巩固课堂所学,提高学生的自主学习能力。
8.教学评价:
-采用课堂提问、课后作业和阶段测试等多种方式,全面评价学生的学习情况,关注学生的个体差异,给予针对性的指导。
(四)课堂练习
1.教师设计具有针对性的练习题,让学生独立完成,巩固所学知识。
2.练习题包括:
-计算具体角度的正弦和余弦值;
-利用正弦和余弦解决实际问题;
-分析正弦和余弦图像的特点。
3.教师对学生的练习情况进行反馈,及时解答学生的疑问。
(五)总结归纳
1.教师引导学生总结本节课所学的正弦和余弦的定义、计算方法、数值变化规律、图像特点及其应用。
1.概念理解:对于正弦和余弦的定义,部分学生可能难以理解其本质含义,需要通过具体实例和直观演示来帮助学生加深理解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

驶向胜利 的彼岸
C
┌ F
D
老师提示: 作梯形的高是梯形的常用辅助,借助它可以转 化为直角三角形.
小结

拓展
回味无穷
定义中应该注意的几个问题:
驶向胜利 的彼岸
1.sinA,cosA,tanA, 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形). 2.sinA,cosA,tanA, 是一个完整的符号,表示∠A的 正切,习惯省去“∠”号; 3.sinA,cosA,tanA,是一个比值.注意比的顺序,且 sinA,cosA,tanA,均﹥0,无单位. 4.sinA,cosA,tanA, 的大小只与∠A的大小有关,而 与直角三角形的边长无关. 5.角相等,则其三角函数值相等;两锐角的三角函 数值相等,则这两个锐角相等.
A的对边 A的邻边
斜边
∠A的对边 ┌ ∠A的邻边 C
A
想一想P1 2
本领大不大 悟心来当家
如图,当Rt△ABC中的一个锐角A确定时,它的对边与邻 边的比便随之确定.此时,其它边之间的比值也确定吗? 结论: 在Rt△ABC中,如果锐角A确定 时,那么∠ A的对边与斜边的比, 邻边与斜边的比也随之确定.
A
B
斜边
∠A的对边 ┌ ∠A的邻边 C
想一想P2 3
正弦与余弦
驶向胜利 的彼岸
在Rt△ABC中,锐角A的对边与斜边的比叫做∠A的正弦, 记作sinA,即 sinA= A的对边
A的斜边
在Rt△ABC中,锐角A的邻边与斜边的比叫做∠A的余弦, B 记作cosA,即 A的邻边 cosA=
A的斜边
┌ B
请你求出cosA,tanA,sinC,cosC和tanC 的值.你敢应战吗?
做一做P8 6
知识的内在联系
如图:在Rt△ABC中,∠C=900,AC=10, cos 求:AB,sinB. 怎样 思考?
12 A . 13
驶向胜利 的彼岸
AC 10 12 B 解: cos A . AB AB 13 10 13 65 ┐ 10 AB . C 12 6 AC 10 12 sin B . AB 65 13 老师期望: 6
小结

拓展
回味无穷
B 斜边
回顾,反思,深化
A的对边 A的邻边
驶向胜利 的彼岸
1.锐角三角函数定义:
tanA=
sinA= 斜边
A的对边
∠A的对边
A ┌ ∠A的邻边 C
cosA= 斜边
A的邻边
请思考:在Rt△ABC中, sinA和cosB有什么关系?
独立 作业
知识的升华
P9 习题1.2 1,2,3,4题;
八仙过海,尽显才能
7.如图,分别根据图(1) 和图(2)求∠A的三个三 角函数值.
8.在Rt△ABC中,∠C=90°, (1)AC=3,AB=6,求sinA和cosB 5 (2)BC=3,sinA= 13 ,求AC和AB.
B
3
驶向胜利 的彼岸
B
4 3
A
4 ┌ ┌ C A C (1) (2)
老师提示: 求锐角三角函数时,勾股定理的运用是很重要的.
A
注意到这里cosA=sinB,其中有没有什么 内有的关系?
随堂练习P97
真知在实践中诞生
1.如图:在等腰△ABC中,AB=AC=5,BC=6. 求: sinB,cosB,tanB.
老师提示:过点A作AD垂直于BC于D.
B 5
驶向胜利 的彼岸
A
5
咋办
?
sin 2.在Rt△ABC中,∠C=900,BC=20,
驶向胜利 的彼岸
36 5
下课了!
结束寄语


数学中的某些定理具有这样的特性: 它们极易从事实中归纳出来,但证明却 隐藏极深. ——高斯
石器时代定义:使用磨制石器为主的时代叫做新石器时代 [1] ,属于石器时代的后期,年代大约从1.8万年前开始,结束时间从距今 5000多年至2000多年不等。在新石器时代的人类已经会使用陷阱捕捉猎物。 这个时期,人类开始从事农业和畜牧,将植物的果实加以播种,并把野生动物驯服以供食用。人类不再只依赖大自然提供食物,因此食 物的来源变得稳定。同时农业与畜牧的经营也使人类由逐水草而居变为定居下来,节省下更多的时间和精力。在这样的基础上,人类生 活得到了更进一步的改善,开始关注文化事业的发展,使人类开始出现文明。
A
┌ C
sinB; ∠B.
随堂练习P6 9
八仙过海,尽显才能
5.如图, ∠C=90°CD⊥AB.
sin B
( )
驶向胜利 的彼岸
C
(
)

(
)
(
)

(
(
.
) A
)
┌ D
B
6.在上图中,若BD=6,CD=12.求cosA的值. 老师提示: 模型“双垂直三角形”的有关性质你可曾记得 .
随堂练习P6 18
斜边
∠A的对边 ┌ ∠A的邻边 C
锐角A的正弦,余弦,正切和都 是做∠A的三角函数.
A
想一想P7 4
生活问题数学化
结论:梯子的倾斜程度与sinA和cosA有关: sinA越大,梯子越陡;cosA越小,梯子越陡.
如图,梯子的倾斜 程度与sinA和cosA 有关吗?
驶向胜利 的彼岸
例题欣赏P85
随堂练习P6 17
相信自己
12. 在Rt△ABC中,∠C=90°. (1)AC=25.AB=27.求sinA,cosA,tanA, 和 sinB,cosB,tanB,. A (2)BC=3,sinA=0.6,求AC 和AB. (3)AC=4,cosA=0.8,求BC. 13.在梯形ABCD中 ┌ ,AD//BC,AB=DC=13,AD=8,BC=18. B E 求:sinB,cosB,tanB.
九年级数学(下)第一章 直角三角形的边角关系
1.从梯子的倾斜程度谈起(2)锐角 三角函数 正弦与余弦
有的放矢 1
正切与余切
驶向胜利 的彼岸
直角三角形中边与角的关系:锐角的三角函数--正切函数 在直角三角形中,若一个锐角的对边与邻边的比值是一个 定值,那么这个角的值也随之确定. 在Rt△ABC中,锐角A的对边与邻边的比 叫做∠A的正切,记作tanA,即 B tanA=
行家看“门道”
驶向胜利 的彼岸
例2 如图:在Rt△ABC中,∠B=900,AC=200,sinA=0.6. C 求:BC的长. 解:在Rt△ABC中,
BC BC sin A 0.6, AC 200 怎样 BC 200 0.6 120 .
解答
200
?
老师期望:
A
祝你成功!
驶向胜利 的彼岸
P9习题1.2 1,2,3,4题
独立 作业α 9源自1. 如图,分别求∠α,∠β的正弦,余弦,和正切.
2.在△ABC中,AB=5,BC=13,AD是BC边上的高,AD=4. ┐ β x 求:CD,sinC. 3.在Rt△ABC中,∠BCA=90°,CD是中线,BC=8,CD=5. 求sin∠ACD,cos∠ACD和tan∠ACD. 4.在Rt△ABC中,∠C=90°,sinA和cosB 有什么关系?
石器时代2.5 / 石器时代2.5
在中国,这个时代出现了龙虬文化、仰韶文化、河姆渡文化和细石器文化等文明。在新石器时代,人类已经能够制作陶器、纺织,发明 了农业和畜牧业,开始了定居生活。在新石器时代完结后,人类开始进入铜器时代。
样的诸人?不过就是壹个乳臭未干的黄毛丫头,居然敢对他这个堂堂的王爷如此这般无礼!这是他从来没有遇到过的挑战,而且是不战 而败。恼羞成怒的他禁不住加大了手上的力道,将她的下巴捏得生疼,她死死地咬住了嘴唇,生怕吭出来壹声。他看到了她的隐忍,她 的倔强,她的高傲,怎么这年家的人全都是这副死硬死臭的脾气!年羮尧那个奴才就是壹个桀骜不驯、难以驾驭的奇才,要不是还有可 利用价值,爷怎么可能对那个奴才忍气吞声?现在,爷可真是见识了,他这个妹妹居然也是同出壹辙,简直就是要将爷活生生气死!难 怪啊!这壹母同胞的兄妹,死硬死硬的脾气都是壹模壹样!而玉盈,年家的养女,却是那么的温柔、娇美,与他们年家的人真的是不壹 样。第壹卷 第六十章 乞求壹想到玉盈,他那心中的怨怒即刻如火山壹般地爆发出来,啪地壹声,他将喜帕用力地往地上壹掷,捏着 冰凝下巴的那只手也随之松开。她猝不及防,即使是端坐在床边,也差点儿倒了下去。满屋子的嬷嬷、宫女、丫环哪里想得到会是这个 局面,吓得忽拉拉地立即跪倒在地,不住地磕头:“请爷息怒,请爷息怒!”“你们都给爷滚出去!”“爷,这合衾酒还没有喝,这子 孙饽饽还没有吃,这结发还没有„„”“你们都给爷滚出去!”壹众仆从被这突出其来的变故吓得体如筛糠,除了磕头,也不知道该干 什么了。他壹见这帮奴才居然敢违逆他,气得冲他们吼道:“还不出去?是不是等着爷赏板子?”这宫里来的喜嬷嬷哪里见识过这样的 洞房花烛夜!合衾酒不喝、子孙饽饽不吃、发也不结,这叫什么大婚?这些程序不进行完,她这个喜嬷嬷完全就是失职行为!因此,她 赶快紧爬了两步,开口道:“王爷息怒,王爷息怒,只是,这大喜的日子,合衾酒„„”她半句话还没有说完,王爷壹把抓住她的衣领: “你这是不想让爷赏板子,直接想让爷赏你巴掌吗?”喜嬷嬷被他吓得立即噤声,浑身体如筛糠。众人壹见这阵势,赶快从地上爬起来, 争先恐后地冲向房门。屋子里只剩下了吟雪和月影两个陪嫁丫环。他哪里知道这两个丫环是他这个侧福晋的陪嫁丫环,还以为是他府里 的什么奴婢呢,因此壹见到还有两个没有走,简直就是怒上心头,怎么,这两个不知死活的奴才想要干什么?冰凝壹见吟雪和月影还没 有走,再壹见到王爷那面含怒气的样子,知道大事不好,顾不得壹身凤冠霞帔,也顾不得什么规矩礼仪,立即从床边起身,扑通壹下子 跪倒在地,挡住了王爷冲向她们俩个人的道路:“请爷恕罪,这两个婢女是妾身的陪嫁丫环,初来乍道,不懂王府的规矩,今日冒犯了 爷,恳请爷宽恕她们的不知之罪。如若下次再犯,妾身壹定交与府里严惩,决不姑息迁就。”他没有想到,这两个不知死活的奴才
相关文档
最新文档