熵增

熵增
熵增

生命如何被熵增毁灭

物理化学的知识告诉我们,物质的能量活动都无一例外地服从热力学的基本规律。根据热力学第二定律:一个孤立系统中的熵一定会随时间的延长而增加,即所谓熵增原理。熵增过程是一个自发的由有序向无序发展的过程(Bortz, 1986; Roth, 1993)。

早在1947年薛定鄂就曾高瞻远瞩地指出了熵增过程也必然体现在生命体系之中(Schrodinger 1947)。人体是一个巨大的化学反应库,生命的代谢过程建立在生物化学反应的基础上。从某种角度来讲,生命的意义就在于具有抵抗自身熵增的能力,即具有熵减的能力。在人体的生命化学活动中,自发和非自发过程同时存在,相互依存,因为熵增的必然性,生命体不断地由有序走回无序,最终不可逆地走向老化死亡。几十来年,熵增衰老学说曾经多次被不同领域的科学家提起(Sacher 1967; Bortz, 1986; Roth, 1993),但由于种种原因,又被长时间地打入冷宫。

主要的问题似乎在于:熵增衰老学说往往被讥讽忽略了“熵增原理的前提条件必须是一个封闭的能量体系”。对于生活中的每一个人,其身体都是一个开放的能量体系。微观地来看,机体中的每个细胞也都是一个个开放的能量体系(Kirkwood, 1999),在正常状态都可以获得足够多的能量供应而获得熵减。

其实,熵增衰老学说苦苦思考和努力挣扎而企图解释的不是给生命体补充能量的问题,而是:生命体的哪些组织的哪些分子发生了哪些增龄性的熵增变化。

这个问题的解答长期以来一直让人望洋兴叹,直到今天才逐渐柳暗花明(Yin, 2003; Yin & Chen, 2005)。

这个问题的生化表述,已在本文前面的章节里得到了充分的讨论。就是生命活动中种种自发产生的生化副反应造成的失修性损变,主要包括自由基氧化、非酶糖基化、蛋白质交联等等。这里的失修性损变即为熵增的分子表现形式,例如蛋白质的共轭交联是放能过程而使生命体系熵增(参见图1),带有随机性质的交联产物无法被常规蛋白质酶降解而逐渐蓄积。

在自由基氧化、非酶糖基化这两大类最主要的与衰老相关的生化副反应的衬托下,羰基应激造成的积累性交联则似乎位于自发性无序化过程的核心位置。当日常生命活动的种种应激制造大量生化副反应产物时,氧化还原系统层层设防,

免疫系统排除异己、凋亡细胞被识别吞噬,溶酶体和蛋白质小体展开积极降解、遗传因子被高效的修复,甚至包括尚未查明的休息和睡眠生化过程的种种保护作用,使得这个积累降到最低限度。积累越慢,衰老越慢;连续紧张,预支健康。失修性积累(熵增交联)一旦造成稳定的蛋白质损伤交联和变构修饰,生命体再作更新代谢则难乎其难。

基本释义

熵shang

详细释义

1:物理学上指热能除以温度所得的商,标志热量转化为功的程度。

2: 科学技术上用来描述、表征体系混乱度的函数。亦被社会科学用以借喻人类社会某些状态的程度。

3:熵是生物亲序,是行为携灵现象。科学家已经发明了测量无序的量,它称作熵,熵也是混沌度,是内部无序结构的总量。

编辑本段

历史

概念提出

1850年,德国物理学家鲁道夫·克劳修斯首次提出熵的概念,用来表示任何一种能量在空间中分布的

均匀程度,能量分布得越均匀,熵就越大。一个体系的能量完全均匀分布时,这个系统的熵就达到最大值。在克劳修斯看来,在一个系统中,如果听任它自然发展,那么,能量差总是倾向于消除的。让一个热物体同一个冷物体相接触,热就会以下面所说的方式流动:热物体将冷却,冷物体将变热,直到两个物体达到相同的温度为止。克劳修斯在研究卡诺热机时,根据卡诺定理得出了对任意循环过程都都适用的一个公式:dS=(dQ/T)。

证明

对于绝热过程Q=0,故S≥0,即系统的熵在可逆绝热过程中不变,在不可逆绝热过程中单调增大。这就是熵增加原理。由于孤立系统内部的一切变化与外界无关,必然是绝热过程,所以熵增加原理也可表为:一个孤立系统的熵永远不会减少。它表明随着孤立系统由非平衡态趋于平衡态,其熵单调增大,当系统达到平衡态时,熵达到最大值。熵的变化和最大值确定了孤立系统过程进行的方向和限度,熵增加原理就是热力学第二定律。

1948年,香农在Bell System Technical Journal上发表了《通信的数学原理》(A Mathematical Theory of Communication)一文,将熵的概念引入信息论中。

编辑本段

熵函数的来历

热力学第一定律就是能量守恒与转换定律,但是它并未涉及能量转换的过程能否自发地进行以及可进行到何种程度。热力学第二定律就是判断自发过程进行的方向和限度的定律,它有不同的表述方法:

克劳修斯的描述①热量不可能自发地从低温物体传到高温物体,即热量不可能从低温物体传到高温物体而不引起其他变化;

开尔文的描述②不可能从单一热源取出热量使之全部转化为功而不发生其他影响;

因此第二类永动机是不可能造成的。热力学第二定律是人类经验的总结,它不能从其他更普遍的定律推导出来,但是迄今为止没有一个实验事实与之相违背,它是基本的自然法则之一。

由于一切热力学变化(包括相变化和化学变化)的方向和限度都可归结为热和功之间的相互转化及其转化限度的问题,那么就一定能找到一个普遍的热力学函数来判别自发过程的方向和限度。可以设想,这种函数是一种状态函数,又是一个判别性函数(有符号差异),它能定量说明自发过程的趋势大小,这种状态函数就是熵函数。

如果把任意的可逆循环分割成许多小的卡诺循环,可得出

∑(δQi/Ti)r=0 (1)

即任意的可逆循环过程的热温商之和为零。其中,δQi为任意无限小可逆循环中系统与环境的热交换量;Ti为任意无限小可逆循环中系统的温度。上式也可写成?

?∮(δQr/T)=0(2)

克劳修斯总结了这一规律,称这个状态函数为“熵”,用S来表示,即

dS=δQr/T (3)

对于不可逆过程,则可得?

dS>δQr/T (4)

或dS-δQr/T>0(5)

这就是克劳修斯不等式,表明了一个隔离系统在经历了一个微小不可逆变化后,系统的熵变大于过程中的热温商。对于任一过程(包括可逆与不可逆过程),则有?

dS-δQ/T≥0(6)

式中:不等号适用于不可逆过程,等号适用于可逆过程。由于不可逆过程是所有自发过程之共同特征,而可逆过程的每一步微小变化,都无限接近于平衡状态,因此这一平衡状态正是不可逆过程所能达到的限度。因此,上式也可作为判断这一过程自发与否的判据,称为“熵判据”。?

对于绝热过程,δQ=0,代入上式,则?

dSj≥0(7)

由此可见,在绝热过程中,系统的熵值永不减少。其中,对于可逆的绝热过程,dSj=0,即系统的熵值不变;对于不可逆的绝热过程,dSj>0,即系统的熵值增加。这就是“熵增原理”,是热力学第二定律的数学表述,即在隔离或绝热条件下,系统进行自发过程的方向总是熵值增大的方向,直到熵值达到最大值,此时系统达到平衡状态。

编辑本段

熵函数的统计学意义

玻尔兹曼在研究分子运动统计现象的基础上提出来了公式:

S=k×LnΩ (8)

其中,Ω为系统分子的状态数,k为玻尔兹曼常数。

这个公式反映了熵函数的统计学意义,它将系统的宏观物理量S与微观物理量Ω联系起来,成为联系宏观与微观的重要桥梁之一。基于上述熵与热力学几率之间的关系,可以得出结论:系统的熵值直接反映了它所处状态的均匀程度,系统的熵值越小,它所处的状态越是有序,越不均匀;系统的熵值越大,它所处的状态越是无序,越均匀。系统总是力图自发地

从熵值较小的状态向熵值较大(即从有序走向无序)的状态转变,这就是隔离系统“熵值增大原理”的微观物理意义。

编辑本段

基本特性

·熵均大于等于零,即,H_s \ge 0。

·设N是系统S内的事件总数,则熵H_s \le log_2N。当且仅当

p1=p2=...=pn时,等号成立,此时熵最大。

·联合熵:H(X,Y) \le H(X) + H(Y),当且仅当X,Y在统计学上相互独立时等号成立。

·条件熵:H(X|Y) = H(X,Y) - H(Y) \le H(X),当且仅当X,Y在统计学上相互独立时等号成立。

·社会学意义:从宏观上表示世界和社会在进化过程中的混乱程度。

按照一些后现代的西方社会学家观点,熵的概念被其移植到社会学中。表示随着人类社会随着科学技术的发展及文明程度的提高,社会“熵”——即社会生存状态及社会价值观的混乱程度将不断增加。按其学术观点,现代社会中恐怖主义肆虐,疾病疫病流行,社会革命,经济危机爆发周期缩短,人性物化都是社会“熵”增加的表征。

如今年多次获诺贝尔文学奖提名的托马斯.品钦在大学毕业之后发表在杂志上的短篇小说《熵》,即阐释了熵的社会学概念。这篇小说将热力学的第二定律运用到对人类社会的描述上,其敏感性令人大吃一惊。所谓的热力学第二定律,指的就是孤立系统熵恒定的定律。熵指的是物质系统的热力学函数,在整个宇宙当中,当一种物质转化成另外一种物质之后,不仅不可逆转物质形态,而且会有越来越多的能量变得不可利用。也就是说,大量人类制造的化工产品、能源产品一经使用,不可能再变成有利的东西,宇宙本身在物质的增殖中走向“热寂”,走向一种缓慢的熵值不断增加的死亡。眼下人类社会正是这个样子:大量的产品和能源转化成不能逆转的东西,垃圾越来越多,人类社会逐步地走向一个恶化的热寂死亡状态。托马斯.品钦后来主要的小说多次地、不断地阐释着这个熵的世界观。编辑本段

应用

热力学

熵在热力学中是表征物质状态的参量之一,通常用符号S表示。在经典热力学中,可

用增量定义为dS=(dQ/T),式中T为物质的热力学温度;dQ为熵增过程中加入物质的热量。下标“可逆”表示加热过程所引起的变化过程是可逆的。若过程是不可逆的,则dS>(dQ/T)不可逆。从微观上说,熵是组成系统的大量微观粒子无序度的量度,系统越无序、越混乱,熵就越大。热力学过程不可逆性的微观本质和统计意义就是系统从有序趋于无序,从概率较小的状态趋于概率较大的状态。

单位质量物质的熵称为比熵,记为s。熵最初是根据热力学第二定律引出的一个反映自发过程不可逆性的物质状态参量。

热力学第二定律是根据大量观察结果总结出来的规律,有下述表述方式:

①热量总是从高温物体传到低温物体,不可能作相反的传递而不引起其他的变化;

②功可以全部转化为热,但任何热机不能全部地、连续不断地把所接受的热量转变为功,而不产生其他任何影响(即无法制造第二类永动机);

③在孤立系统中,实际发生的过程总使整个系统的熵值增大,此即熵增原理。摩擦使一部分机械能不可逆地转变为热,使熵增加。热量dQ由高温(T1)物体传至低温(T2)物体,高温物体的熵减少dS1=dQ/T1,低温物体的熵增加dS2=dQ/T2,把两个物体合起来当成一个系统来看,熵的变化是dS =dS2+dS1>0,即熵是增加的。

物理学家玻尔兹曼将熵定义为一种特殊状态的概率:原子聚集方式的数量。可精确表示为:

S=K㏑W

K是比例常数,现在称为玻尔兹曼常数。

科学哲学

科学技术上泛指某些物质系统状态的一种量(liàng)度,某些物质系统状态可能出现的程度。亦被社会科学用以借喻人类社会某些状态的程度。熵是不能再被转化做功的能量的总和的测定单位。这个名称是由德国物理学家鲁道尔夫·克劳修斯〔鲁道尔夫·克劳修斯(1822—1888)〕德国物理学家,热力学的奠基人之一。于1868年第一次造出来的。但是年轻的法国军官沙迪·迦诺〔沙迪·迦诺(1796—1832)〕一般译作“卡诺”,法国物理学

家、工程师,在研究热机效率的过程中,提出了“卡诺循环”定理。却比克劳修斯早41年发现了熵的原理。迦诺在研究蒸汽机工作原理时发现,蒸汽机之所以能做功,是因为蒸汽机系统里的一部分很冷,而另一部分却很热。换一句话说,要把能量转化为功,一个系统的不同部分之间就必须有能量集中程度的差异(即温差)。当能量从一个较高的集中程度转化到一个较低的集中程度(或由较高温度变为较低温度)时,它就做了功。更重要的是每一次能量从一个水平转化到另一个水平,都意味着下一次能再做功的能量就减少了。比如河水越过水坝流入湖泊。当河水下落时,它可被用来发电,驱动水轮,或做其他形式的功。然而水一旦落到坝底,就处于不能再做功的状态了。在水平面上没有任何势能的水是连最小的轮子也带不动的。这两种不同的能量状态分别被称为“有效的”或“自由的”能量,和“无效的”或“封闭的”能量。

熵的增加就意味着有效能量的减少。每当自然界发生任何事情,一定的能量就被转化成了不能再做功的无效能量。被转化成了无效状态的能量构成了我们所说的污染。许多人以为污染是生产的副产品,但实际上它只是世界上转化成无效能量的全部有效能量的总和。耗散了的能量就是污染。既然根据热力学第一定律,能量既不能被产生又不能被消灭,而根据热力学第二定律,能量只能沿着一个方向——即耗散的方向——转化,那么污染就是熵的同义词。它是某一系统中存在的一定单位的无效能量。

信息论

在信息论中,熵表示的是不确定性的量度。信息论的创始人香农在其著作《通信的数学理论》中提出了建立在概率统计模型上的信息度量。他把信息定义为“用来消除不确定性的东西”。

熵在信息论中的定义如下:

如果有一个系统S内存在多个事件S = {E1,...,En}, 每个事件的机率分布P = {p1, ..., pn},则每个事件本身的讯息为

Ie = ? log2pi

(对数以2为底,单位是位元(bit))

Ie = ? lnpi

(对数以e为底,单位是纳特/nats)

如英语有26个字母,假如每个字母在文章中出现次数平均的话,每个字母的讯息量为

I_e = -\log_2 {1\over 26} = 4.7

;而汉字常用的有2500个,假如每个汉字在文章中出现次数平均的话,每个汉字的信息量为

I_e = -\log_2 {1\over 2500} = 11.3

整个系统的平均消息量为

H_s = \sum_{i=1}^n p_i I_e = -\sum_{i=1}^n p_i \log_2 p_i

这个平均消息量就是消息熵。因为和热力学中描述热力学熵的玻耳兹曼公式形式一样,所以也称为“熵”。

如果两个系统具有同样大的消息量,如一篇用不同文字写的同一文章,由于是所有元素消息量的加和,那么中文文章应用的汉字就比英文文章使用的字母要少。所以汉字印刷的文章要比其他应用总体数量少的字母印刷的文章要短。即使一个汉字占用两个字母的空间,汉字印刷的文章也要比英文字母印刷的用纸少。

实际上每个字母和每个汉字在文章中出现的次数并不平均,因此实际数值并不如同上述,但上述计算是一个总体概念。使用书写单元越多的文字,每个单元所包含的讯息量越大。

I(A)度量事件A发生所提供的信息量,称之为事件A的自信息,P(A)为事件A发生的概率。如果一个随机试验有N个可能的结果或一个随机消息有N个可能值,若它们出现的概率分别为p1,p2,…,pN,则这些事件的自信息的和:[H=-SUM(pi*log(pi)),i=1,2…N]称为熵。如英语有26个字母,假如每个字母在文章中出现次数平均的话,每个字母的讯息量为I_e = -log_2 (1\26)= 4.7

而汉字常用的有2500个,假如每个汉字在文章中出现次数平均的话,每个汉字的信息量为

I_e = -log_2 (1\2500)= 11.3

整个系统的平均消息量为

H_s = sum_(i=1^n)p_i

I_e = -sum_(i=1^n)p_i * log_2 p_i

生命科学

生命体是一个开放的系统,时刻与外界进行着物质、能量、信息的交换,符合“耗散结构”,可以用熵来分析一个生命体从生长、衰老、病死的全过程,用“生命熵”来独立定义。

生命熵的内容包含生命现象的时间序、空间结构序与功能序,生命熵变就直接反应这三个序的程度变化之和。

宇宙的熵增

宇宙会消亡吗 主流猜想——宇宙”热寂” 宇宙热寂的由来 热力学第二定律:能量可以转化,但是无法100%利用。在转化过程中,总是有一部分能量会被浪费掉。 这部分浪费掉能量命名为熵。熵不断在增加。 热力学第二定律也叫熵增原理。就是孤立热力学系统的熵不减少,总是增大或者不变。用来给出一个孤立系统的演化方向。说明一个孤立系统不可能朝低熵的状态发展即不会变得有序。 考虑到宇宙的能量总和是一个常量,而每一次能量转化,必然有一部分”有效能量”变成”无效能量”(即”熵”),因此不难推论,有效能量越来越少,无效能量越来越多。直到有一天,所有的有效能量都变成无效能量,那时将不再有任何能量转化,这就叫宇宙的”热寂”。 结论宇宙就会进入一个死寂的状态。 我的观点,宇宙不会”热寂”。 宇宙是无限的,动态循环的。这个宇宙是总称,不是有人提的这里一个宇宙,那里一个,多少年前或者远处还有一个宇宙。这种分法应该叫天体,为什么还要叫宇宙呢? 宇宙存在自发的熵减的过程。 物质合久必分,分久必合。基本微观粒子质子、电子、中子、光子等聚合原子、分子等物质,这种聚合靠物质自身的引力、电磁力等自发完成。分子组成有序多样的宏观世界。这种聚合可以在某处相对孤立系统中完成,不需要外部干涉。这个过程是熵减的。 星系是宇宙的常见的单元。星系的核心是恒星,恒星的质量足够大,引力也足够大。最初恒星的物质含有的内能(主要是核能)充足,反应活跃与引力平衡,释放出光芒。当能量消耗到一定程度,内能不足以抵抗引力,不能再向外释放能

量。恒星不断收缩、坍塌,并且不断吸收外界物质,此时“恒星”只进不出,形成“黑洞”,黑洞缓慢吸收飞来的各种物质和能量,质量超大,大到吞噬星系的大部分行星和尘埃,甚至是相邻的星系的一部分。黑洞也有生命周期,这个也许比恒星的生命更长。黑洞碾碎了大部分物质(分子原子)分解成基本粒子,喷射出去。这一过程是熵增的。 粒子聚合成原子分子直至形成新的星系或者被其他星系吸收,形成循环。 宇宙各处随机重复着这一过程。每一个循环周期都是极漫长的。 物质的多样性是基本粒子聚合的随机性造成的。如同生物的多样性,生物演化出动、植物、细菌等等。 生物的生成发展也主要是熵减的过程。但是这种熵减的体量相对于星系的熵增是微不足道的。生物不改变星系毁灭的历程。 星系中存在生物也许是偶然的。智慧生命逃出一个星系的衰变毁灭,应该是概率很小的。 路过万丈红尘

熵增原理

热力学第一定律就是能量守恒与转换定律,但是它并未涉及能量状态的过程能否自发地进行以及可进行到何种程度。热力学第二定律就是判断自发过程进行的方向和限度的定律,它有不同的表述方法: 克劳修斯的描述①热量不可能自发地从低温物体传到高温物体,即热量不可能从低温物体传到高温物体而不引起其他变化; 开尔文的描述②不可能从单一热源取出热量使之全部转化为功而不发生其他影响; 因此第二类永动机是不可能造成的。热力学第二定律是人类经验的总结,它不能从其他更普遍的定律推导出来,但是迄今为止没有一个实验事实与之相违背,它是基本的自然法则之一。 由于一切热力学变化(包括相变化和化学变化)的方向和限度都可归结为热和功之间的相互转化及其转化限度的问题,那么就一定能找到一个普遍的热力学函数来判别自发过程的方向和限度。可以设想,这种函数是一种状态函数,又是一个判别性函数(有符号差异),它能定量说明自发过程的趋势大小,这种状态函数就是熵函数。 如果把任意的可逆循环分割成许多小的卡诺循环,可得出 0i i Q r T δ=∑ (1) 即任意的可逆循环过程的热温商之和为零。其中,δQi 为任意无限小可逆循环中系统与环境的热交换量;Ti 为任意无限小可逆循环中系统的温度。上式也可写成 0Qr T δ=? (2) 克劳修斯总结了这一规律,称这个状态函数为“熵”,用S来表示,即 Qr dS T δ= (3) 对于不可逆过程,则可得 dS>δQr/T (4) 或 dS-δQr/T>0 (5) 这就是克劳修斯不等式,表明了一个隔离系统在经历了一个微小不可逆变化后,系统的熵变大于过程中的热温商。对于任一过程(包括可逆与不可逆过程),则有 dS-δQ/T≥0 (6) 式中:不等号适用于不可逆过程,等号适用于可逆过程。由于不可逆过程是所有自发过程之共同特征,而可逆过程的每一步微小变化,都无限接近于平衡状态,因此这一平衡状态正是不可逆过程所能达到的限度。因此,上式也可作为判断这一过程自发与否的判据,称为“熵判据”。 对于绝热过程,δQ=0,代入上式,则 dSj≥0 (7) 由此可见,在绝热过程中,系统的熵值永不减少。其中,对于可逆的绝热过程,dSj =0,即系统的熵值不变;对于不可逆的绝热过程,dSj >0,即系统的熵值

熵增加原理

熵增加原理 热力学第一定律是能量的定律,热力学第二定律是熵的法则.相对于“能量”,“熵”的概念比较抽象.但随着科学的发展,“熵”的意义愈来愈重要.本文从简述热力学第二定律的建立过程着手,从各个侧面讨论“熵”的物理本质、科学内涵,以加深对它的理解. “熵”是德国物理学家克劳修斯在1865年创造的一个物理学名词,其德语为entropie,简单地说,熵表示了热量与温度的比值,具有商的意义.1923年5月25日,普朗克在南京的东南大学作“热力学第二定律及熵之观念”的学术报告时,为其作现场翻译的我国著名物理学家胡刚复根据entropie的物理意义,创造了“熵”这个字,在“商”旁加火字表示这个热学量. 一、热力学第二定律 1.热力学第二定律的表述 19世纪中叶,克劳修斯(R.E.Clausius,德,1822—1888)和开尔文(KelvinLord即W.Thomson,英1824—1907)分别在证明卡诺定理时,指出还需要一个新的原理,从而发现了热力学第二定律. 克劳修斯1850年的表述为,不可能把热量从低温物体传到高温物体而不引起其他变化.1865年,克劳修斯得出了热力学第二定律的普遍形式:在孤立系统中,实际发生的过程总是使整个系统的熵值增加,所以热力学第二定律又称“熵增加原理”.其数学表示为 SB-SA= , 或 dS≥dQ/T(无穷小过程). 式中等号适用于可逆过程. 开尔文1951年的表述为,不可能从单一热源吸热使之完全变成有用的功而不引起其他变化,开氏表述也可以称为,第二类永动机是不可能造成的.所谓第二类永动机是指能从单一热源吸热,使之完全变成有用的功而不产生其他影响的机器,该机不违反热力学第一定律,它能从大气或海洋这类单一热源吸取热量而做功. 2.热力学第二定律的基本含义 热力学第二定律的克氏表述和开氏表述具有等效性,设想系统经历一个卡诺循环,可以证明,若克氏表述不成立,则开氏表述也不成立;反之,亦能设想系统完成一个逆卡诺循环,如果开氏表述不成立,则克氏表述也不成立. 克氏表述和开氏表述直接指出,第一,摩擦生热和热传导的逆过程不可能自动发生,也就是说摩擦生热和热传导过程具有方向性;第二,这两个过程一经发生,就在自然界留下它的后果,无论用怎样曲折复杂的方法,都不可能将它留下的后果完全消除,使一切恢复原状.只有无摩擦的准静态过程被认为是可逆过程.

熵与熵增原理

2.2 熵的概念与熵增原理 2.2.1 循环过程的热温商 T Q 据卡诺定理知: 卡诺循环中热温商的代数和为:0=+H H L L T Q T Q 对应于无限小的循环,则有: 0=+H H L L T Q T Q δδ 对任意可逆循环过程,可用足够多且绝热线相互恰好重叠的小卡诺循环逼近.对每一个卡诺可逆循环,均有: 0,,,,=+ j H j H j L j L T Q T Q δδ 对整个过程,则有: 0)( )( ,,,,==+ ∑∑j R j j j H j H j L j L j T Q T Q T Q δδδ 由于各卡诺循环的绝热线恰好重叠,方向相反,正好抵销.在极限情况下,由足够多的小卡诺循环组成的封闭曲线可以代替任意可逆循环。故任意可逆循环过程热温商可表示为: ?=0)( R T Q δ 即在任意可逆循环过程中,工作物质在各温度所吸的热(Q )与该温度之比的总和等于零。 据积分定理可知: 若沿封闭曲线的环积分为,则被积变量具有全微分的性质,是状态函数。 2.2.2 熵的定义——可逆过程中的热温商 在可逆循环过程,在该过程曲线中任取两点A 和B,则可逆曲线被分为两条,每条曲线所代表的过程均为可逆过程.对这两个过程,有: 0)()(=+??B A A B R R b a T Q T Q δδ 整理得: ??=B A B A R R b a T Q T Q )( )( δδ 这表明,从状态A 到状态B,经由不同的可逆过程,它们各自的热温商的总和相等.由于所选的可逆循环及曲线上的点A 和B 均是任意的,故上列结论也适合于其它任意可逆循环过程. 可逆过程中,由于?B A R T Q )( δ的值与状态点A 、B 之间的可逆途径无关,仅由始末态决定, 具有状态函数的性质。同时,已证明,任意可逆循环过程中r T Q ??? ??δ 沿封闭路径积分一周为 p V p

熵最大原理

一、熵 物理学概念 宏观上:热力学定律——体系的熵变等于可逆过程吸收或耗散的热量除以它的绝对温度(克劳修斯,1865) 微观上:熵是大量微观粒子的位置和速度的分布概率的函数,是描述系统中大量微观粒子的无序性的宏观参数(波尔兹曼,1872) 结论:熵是描述事物无序性的参数,熵越大则无序。 二、熵在自然界的变化规律——熵增原理 一个孤立系统的熵,自发性地趋于极大,随着熵的增加,有序状态逐步变为混沌状态,不可能自发地产生新的有序结构。 当熵处于最小值, 即能量集中程度最高、有效能量处于最大值时, 那么整个系统也处于最有序的状态,相反为最无序状态。 熵增原理预示着自然界越变越无序 三、信息熵 (1)和熵的联系——熵是描述客观事物无序性的参数。香农认为信息是人们对事物了解的不确定性的消除或减少,他把不确定的程度称为信息熵(香农,1948 )。 随机事件的信息熵:设随机变量ξ,它有A1,A2,A3,A4,……,An共n种可能的结局,每个结局出现的概率分别为p1,p2,p3,p4,……,pn,则其不确定程度,即信息熵为 (2)信息熵是数学方法和语言文字学的结合。一个系统的熵就是它的无组织程度的度量。熵越大,事件越不确定。熵等于0,事件是确定的。 举例:抛硬币, p(head)=0.5,p(tail)=0.5 H(p)=-0.5log2(0.5)+(-0.5l og2(0.5))=1 说明:熵值最大,正反面的概率相等,事件最不确定。 四、最大熵理论 在无外力作用下,事物总是朝着最混乱的方向发展。事物是约束和自由的统一体。事物总是在约束下争取最大的自由权,这其实也是自然界的根本原则。在已知条件下,熵最大的事物,最可能接近它的真实状态。

社会的进步与熵增原理

社会的进步与熵增原理 作者:时东陆 文章来源:世纪中国 如果我们能看到橡皮筋的分子结构,我们会发现它的结构在拉紧和放松的状态时是不一样的。放松的时候它的分子结构像一团乱麻交织在一起。而在把橡皮筋拉长的时候,那些如同链状的分子就会沿着拉伸的方向比较整齐地排列起来。于是我们可以看到两种状态:一种是自然,或者自发的状态。在这种状态下结构呈“混乱”或“无序”状。而另一种是在外界的拉力下规则地排列起来的状态。这种“无序” 的状态还可以从分子的扩散中观察到。用一个密封的箱子,中间放一个隔板。在隔板的左边空间注入烟。我们把隔板去掉,左边的烟就会自然(自发)地向右边扩散,最后均匀地占满整个箱体。这种状态称为“无序”。 在物理学里我们可以用“熵”的概念来描述某一种状态自发变化的方向[熊吟涛,1964;Cengetl & Boles,2002]。比如把有规则排列的状态称为“低熵”而混乱的状态对应于“高熵”。而熵则是无序性的定量量度。热力学第二定律的结论是:“一个孤立系统的熵永不减少。”换句话说,物质世界的状态总是自发地转变成无序;“从低熵”变到“高熵”。比如,当外力去除之后,整齐排列的分子就会自然地向紊乱的状态转变;而箱子左边的烟一定会自发地向右边扩散。这就是著名的“熵增定律”。然而第二热力学定律仅仅是在科学上应用于物质世界。那么它是否可以用来解释人类社会的发展?如果要回答这个问题,我们首先必须定义人类社会状态的“无序”程度,然后寻找它在历史进程中的自然走向。 但是如何来定义社会状态的“无序”程度呢? 这也许是问题的关键。因为我们必须首先定义什么是相对更加“紊乱”的状态。让我们再来看一个极为简单的例子。就用大家熟悉的围棋。如果我们先把白子在棋盘的一边摆成一排,然后紧接第一排再用黑子与其平行也摆成一排。我们按照这种规则继续排下去,就可以得到黑白相间的平行排列。我们也可以每两排,或三排黑白子相间地排列下去。或者在棋盘上画出大小不同的区域。在每个区域中放入完全白色或黑色的棋子。以上这些排列都可以定义为“有规则的”状态。而这种状态对应于“低熵”。如果我们把这种排列完全打乱,比如把黑子和白子混乱地排放在一起,那么这是一种相对“紊乱” 的“高熵”状态。而混乱的极端是黑白子完全“均匀地”混合在一起。如果我们可以在人类社会中找出和棋子对应的状态来,那么就有可能定义社会的熵并进一步分析熵增现象。 对于人类,我们可以从文化的、政治的、社会的、道德的、还有商业的等几个方面去分析和观察。我们首先来讨论文化的状态。从围棋的例子中可以看出,有规则排列的棋子有一个特点,那就是在黑白棋子之间我们可以定义非常清楚的边界。对于混乱排列的情况,边界的定义就发生一定的困难。对于完全均匀混合的黑白棋子,我们无法定义任何边界。我们可以认为文化也是有边界的。一般来说,文化的边界在某种意义上可以与国家的边界吻合。比如,我们比较容易定义法国文化和日本文化的区别。当然世界上还可以找到许多文化的边界,如非洲文化和中国文化等等。这种情况类似于围棋的一种有规则的排列。或者可以说,如果世界的文化是相对有序的,那么它处于一种相对低熵的状态。我们现在来分析文化随时间的变化。 我们仅仅就近代而言,比如20世纪初到二战之后的时期,世界有清楚的文化边界。在

熵增

生命如何被熵增毁灭 物理化学的知识告诉我们,物质的能量活动都无一例外地服从热力学的基本规律。根据热力学第二定律:一个孤立系统中的熵一定会随时间的延长而增加,即所谓熵增原理。熵增过程是一个自发的由有序向无序发展的过程(Bortz, 1986; Roth, 1993)。 早在1947年薛定鄂就曾高瞻远瞩地指出了熵增过程也必然体现在生命体系之中(Schrodinger 1947)。人体是一个巨大的化学反应库,生命的代谢过程建立在生物化学反应的基础上。从某种角度来讲,生命的意义就在于具有抵抗自身熵增的能力,即具有熵减的能力。在人体的生命化学活动中,自发和非自发过程同时存在,相互依存,因为熵增的必然性,生命体不断地由有序走回无序,最终不可逆地走向老化死亡。几十来年,熵增衰老学说曾经多次被不同领域的科学家提起(Sacher 1967; Bortz, 1986; Roth, 1993),但由于种种原因,又被长时间地打入冷宫。 主要的问题似乎在于:熵增衰老学说往往被讥讽忽略了“熵增原理的前提条件必须是一个封闭的能量体系”。对于生活中的每一个人,其身体都是一个开放的能量体系。微观地来看,机体中的每个细胞也都是一个个开放的能量体系(Kirkwood, 1999),在正常状态都可以获得足够多的能量供应而获得熵减。 其实,熵增衰老学说苦苦思考和努力挣扎而企图解释的不是给生命体补充能量的问题,而是:生命体的哪些组织的哪些分子发生了哪些增龄性的熵增变化。 这个问题的解答长期以来一直让人望洋兴叹,直到今天才逐渐柳暗花明(Yin, 2003; Yin & Chen, 2005)。 这个问题的生化表述,已在本文前面的章节里得到了充分的讨论。就是生命活动中种种自发产生的生化副反应造成的失修性损变,主要包括自由基氧化、非酶糖基化、蛋白质交联等等。这里的失修性损变即为熵增的分子表现形式,例如蛋白质的共轭交联是放能过程而使生命体系熵增(参见图1),带有随机性质的交联产物无法被常规蛋白质酶降解而逐渐蓄积。 在自由基氧化、非酶糖基化这两大类最主要的与衰老相关的生化副反应的衬托下,羰基应激造成的积累性交联则似乎位于自发性无序化过程的核心位置。当日常生命活动的种种应激制造大量生化副反应产物时,氧化还原系统层层设防,

熵增原理

熵的热力学定义 熵作为状态参量最早由克劳修斯于1854年首次引入,1865年他把这一状态参量命名为Entropie(德语)(来源于希腊语τρoπ?, umkehren,转变)。 其引入过程如下: 考察可逆循环过程中的克劳修斯不等式,可以得到循环中某一过程L(始、末状态分别为a、b)中,只与a,b有关,而与具体路径无关。 则必然存在一态函数:其微分量为,定义这个函数为熵()。 则对于可逆过程L, ,而不可逆过程的熵变可以通过相应的可逆过程求得。熵增加原理 考察一系列不可逆过程中熵的变化(如在绝热环境中理想气体的真空自由膨胀,在绝热环境中两物体间热传递等等)经过计算,可以得到,这些过程中系统的熵。 而现在已有大量的实验证明: 热力学系统从一个平衡态到另一平衡态的过程中,其熵永不减少:若过程可逆,则熵不变;若不可逆,则熵增加。 此即熵增加原理。 通过熵增加原理,可以得到对于一个孤立系统,其内部自发进行的与热相关的过程必然向熵增的方向进行。而孤立系统不受外界任何影响,且系统最终处于平衡态,则在平衡态时,系统的熵取最大值。由此,熵增加原理则可作为不可逆过程判据。可以证明熵增加原理与克劳修斯表述及开尔文表述等价。 熵增加原理 考察一系列不可逆过程中熵的变化(如在绝热环境中理想气体的真空自由膨胀,在绝热环境中两物体间热传递等等)经过计算,可以得到,这些过程中系统的熵。 而现在已有大量的实验证明:

“热力学系统从一个平衡态到另一平衡态的过程中,其熵永不减少:若过程可逆,则熵不变;若不可逆,则熵增加。” 即熵增加原理。 通过熵增加原理,可以得到对于一个孤立系统,其内部自发进行的与热相关的过程必然向熵增的方向进行。而孤立系统不受外界任何影响,且系统最终处于平衡态,则在平衡态时,系统的熵取最大值。由此,熵增加原理则可作为不可逆过程判据。可以证明熵增加原理与克劳修斯表述及开尔文表述等价。 玻尔兹曼关系 玻尔兹曼关系是对熵的微观(统计意义的)解释,表述为:系统的熵与其微观状态数存在函数关系,其中为玻尔兹曼常数。其可通过热力学第一定律,熵的热力学定义,及麦克斯韦-玻尔兹曼统计推出。值得注意的是这一关系在玻尔兹曼生前并未具体给出,仅在1872年时说明与有正比关系。这一公式首次具体给出是在马克斯·普朗克的《热辐射》讲义中。[2]:p.286 玻尔兹曼关系给出了熵的微观解释——系统微观粒子的无序程度的度量,并对熵这一概念引入信息论、生态学等其他领域具有深远意义。

生活中的熵增加原理

生活中的熵增加原理 1153814 夏涵宇 熵增加原理是热力学中极其重要的定理之一。它具体表述为“在孤立系统中,一切不可逆过程必然朝着熵的不断增加的方向进行”。然而随着科技的发展和社会的进步,人们对熵的认识已经远远超出了分子运动领域,被广泛用于任何做无序运动的粒子系统,也用于研究大量出现的无序事件。我们生活中许多不起眼的小事其实都蕴含着这样的原理。 比如说如今已经的到广泛运用的洗衣机。人们为了使生活更加便利快捷而发明了这一工具,从表面上看来,它提高了我们洗衣服的效率,使我们的生活更加有序。然而我们往往都忽略掉了,在洗衣机的使用过程中,消耗的电能是不可再生的,为了生产这些电能已经对环境造成了一定的破坏。此外还有在生产、运输洗衣机的过程中,所产生的垃圾、废气等都排放向了环境,并造成了不可逆的破坏,造成了实际上的环境的无序。 也就是说,在以洗衣机为代表的人类为了方便生活而发明的机器的使用过程,都体现着熵增加的原理。我们以为将眼前所能见到的地方打理的光鲜有序便是好的,然而终究没能跳出自然规律的运行法则,我们的环境其实一直在向着无序的方向发展。 与此相同的实例还在我们生活中的其他各个方面体现着。 一、 在现代化的大城市中,人们享受高科技带来的成果:四季如春的空调,便利的地铁汽车、手机、电脑,等等。实际上,它们在带来方便的同时,也给周围环境带来更多的废气、噪声、电磁波等污染。根据熵增加原理,每当消耗一定有效的能量、使城市更有序运转的同时,周围环境的熵就会增加。少数人享受的便利和舒适,往往是在牺牲多数人利益的前提下获得的。 从熵增加原理出发,社会需要发展,必须从外界获得能量来维持其耗散结构,必然会有能量的散发造环境的熵增加,而熵增加对于地球是一个不可逆的过程。环境的熵增加意味着自然灾害和人类生存环境的恶化、水旱灾害的增加、土壤的沙化、疾病的增加,等等。因此,在追求美好生活、寻求经济发展的同

相关主题
相关文档
最新文档