无穷级数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无穷级数
用解析的形式来逼近函数,一般就是利用比较简单的函数形式,逼近比较复杂的函数,最为简单的逼近途径就是通过加法,即通过加法运算来决定逼近的程度,或者说控制逼近的过程,这就是无穷级数的思想出发点。
目录
概述
历史
判断
数项级数的性质
幂级数
泰勒展开式
Fourier级数
收敛与发散性质
概述
历史
判断
数项级数的性质
幂级数
泰勒展开式
Fourier级数
收敛与发散性质
判别法
展开
无穷级数是研究有次序的可数或者无穷个数函数的和的收敛性及和的数值的方法,理论以数项级数为基础,数项级数有发散性和收敛性的区别。只有无穷级数收敛时有一个和;发散的无穷级数没有和。算术的加法可以对有限个数求和,但无法对无限个数求和,有些数列可以用无穷级数方法求和。包括数项级数、函数项级数(又包括幂级数、Fourier级数;复变函数中的泰勒级数、Laurent(洛朗)级数)。
英国曼彻斯特大学和埃克塞特大学的研究小组指出,喀拉拉学校也曾发现可用于计算圆周率的无穷级数,并利用它将圆周率的值精确到小数点后第9位和第10位,后来又精确到第17位。研究人员说,一个极有说服
力的间接证据是,15世纪,印度人曾经将他们的发现告知造访印度的精通数学的耶稣会传教士。‚无穷级数‛可能最终摆到了牛顿本人的书桌上。
约瑟夫是在通读字迹模糊的印度文字材料时得出这些发现的,他的畅销著作《孔雀之冠:非欧洲的数学之根》(The Crest of the Peacock: the Non-European Roots of Mathematics)的第3版将刊登此次发现,该书由普林斯顿大学出版社负责出版。他说:‚现代数学的起源通常被视为欧洲人取得的一项成就,但中世纪(14至16世纪)印度的这些发现却被人们忽视或者遗忘了。17世纪末期,牛顿的工作取得了辉煌的成就。他所做的贡献是不容人们抹杀的,尤其在提到微积分的运算法则时更是如此。但喀拉拉学校的学者——特别是马德哈瓦(Madhava)和尼拉坎特哈(Nilakantha)的
名字也同样不能忘记,他们取得的成就足以和牛顿平起平坐,因为正是他们发现了微积分的另一个重要组成部分——无穷级数。‛
约瑟夫表示:‚喀拉拉学校所做的贡献未能获得世人的承认有很多原因,其中一个最重要的原因便是对非欧洲世界的科学发现漠然视之的态度,这种做法无疑是对欧洲殖民主义在科学领域的一种延续。此外,对于中世纪的喀拉拉语、马拉雅拉姆语等印度当地语言的形态,外人可以说是知之甚少,而诸如《Yuktibhasa》等一些最具有开创性的著作却又偏偏使用了这些语言。《Yuktibhasa》的大部分篇幅都用来阐述产生重要影响的无穷级数。‛他指出:‚我们真的无法想象,西方社会能够抛弃奉行了500年之久的传统,从印度和伊斯兰世界‘进口’学识和著作。但我们还是发现了强有力的证据,例如,由于当时的欧洲耶稣会士曾造访这一地区,所以他们有很多收集相关信息的机会。更为重要的是,这些耶稣会士不但精通数学,同时也精通当地的语言。
约瑟夫说:‚他们之所以这么做实际上有很大的动机:教皇格雷戈里八世组建了一个委员会,专门负责为罗马的儒略历实现现代化。这个委员会的成员包括德国耶稣会士、天文学家兼数学家克拉维乌斯,他曾多次要求获得世界其它地区的人如何打造历法的信息,而喀拉拉学校无疑在这一领域扮演着领导者的角色。‛他表示:‚类似地,人们对更有效的导航方式的需求也变得越发强烈,包括在探险之旅中如何保持时间的准确性。此外,致力于天文学研究的数学家也可凭借自己的努力获得大奖。因此,欧洲重要的耶稣会研究人员的足迹便开始遍布全世界,以获得相关的知识和信息,而喀拉拉学校的数学家无疑是这一领域的大师。‛
如假定有一个无穷数列:
u1,u2,u3,...un,...
其前n项的和为:
sn = u1 + u2 + u3 + ... + un
由此得出另一个无穷数列:
s1,s2,s3,...sn,...
它是由上一个无穷数列持续相加造成的。
例如,如果u是任意的:
u1=1,u2=3,u3=5,...un ...
但s不会是任意的,它是和任意数列有逐级加和关系的:
s1=1,s2=4,s3=9,...sn,...
当n无限增加时,sn趋向一个极限
如果极限存在,这个无穷数列就叫做是收敛的无穷级数,如果极限不
存在,这个数列就是发散的。只有收敛的无穷级数存在一个和s。
s = u1 + u2 + u3 + ... + un + ...
I. 若有一个无穷级数: u1 + u2 + u3 + ... + un + ... 如果每一
项乘以一个常数a,则和等于as。 as = au1 + au2 + au3 + ... + aun + ...
II. 收敛级数可以逐项相加或相减,如有两个无穷级数:
s = u1 + u2 + u3 + ... + un + ...和 t = v1 + v2 + v3 + ... + vn + ...则s+t=(u1+v1)+(u2+v2)+
无穷级数
(u3+v3)+...+(un+vn)+...
III. 级数前面加上有限项或减去有限项不影响其收敛性,如: s = u1 + u2 + u3 + ... + u9和
无穷级数
s = u15 + u16 + u17 + ... + u50 这两个级数的收敛性是一样的。
一个任意项级数,如果由它的各项的绝对值所得到的级数收敛,则原
来的级数也收敛,如果发散,则原来的级数不一定也发散,如果反而是收敛,则称这种级数为条件收敛的。实际上,条件收敛的级数,可以通过变
换级数各项的顺序而使得这个级数收敛于任意实数,包括无穷大。
幂级数。以及幂级数的收敛半径和收敛区间。
级数的每一项也可以是函数,这种级数称为函数项级数。
这里我们讨论一种特定的函数项级数,即由如下形式的幂函数组成的
级数,称为幂级数。
也可以直接写成。幂级数的敛散性具有很好的特征,即所谓阿贝尔定理:如果幂级数在点x=k 处收敛,那么它在区间内的每一点处都绝对收敛;反之,如果幂级数在点x=k 处发散,那么对于不属于的所有x都发散。上
面的定理使得幂函数的收敛域只能是一个开区间,称为幂级数的收敛区间。收敛区间的长度的一半称为收敛半径。应用对于正项级数的比值判别法和
根值判别法的极限形式,可以求出幂级数的收敛半径。