两直线的交点坐标PPT多媒体教学课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小结
类比思想 数形结合思想
平面向量
空间向量
概念 定义 表示法 相等向量
加法 减法
加法:三角形法则或 平行四边形法则
数乘 减法:三角形法则
运算 数乘:ka,k为正数,负数,零
具有大小和方向的量 数乘:ka,k为正数,负数,零
运 加法交换律 a b b a 算 加法结合律 律 (a b) c a (b c)
l1 : A1x B1y C1 0 l2 : A2x B2 y C2 0
?
A1 B1 C1 A2 B2 C2 A1 B1 C1 A2 B2 C2
A1 B1 A2 B2
l1与l2重合 l1与l2平行
l1与l2相交
5
练习
1、已知两直线 l1:x+my+6=0,l2:(m-2)x+3y+2m=0, 问当m为何值时,直线l1与l2: ① 相交,② 平行,③ 重合,④ 垂直
6
当变化时, 方程 3x 4 y 2 (2x y 2) 0
表示什么图形 ?图形有何特点?
练习:求经过原点及两条直线l1:3x+4y-2=0, l2:2x+y+2=0的交点的直线的方程.
7
3、两条直线y=kx+2k+1和x+2y-4=0,的交点 在第四象限,则k的取值范围是
8
复习回顾: 平面向量
这三个力两两之间
的夹角都为90度, 它们的合力的大小
为多少N?
F1
这需要进一步来认识空间中的向量
空间向量的有关概念: 空间向量:在空间中,具有大小和方向的量.
常用 a 、b 、c ……等小写字母来表示.
1.向量 a 的大小叫做向量的长度或模,记为 a .
2.可用一条有向线段 AB 来表示向量,向量 AB
(2) AG 1 ( AB AC) 2
D
B
M
G C
练习1 在空间四边形ABCD中,点M、G分别是BC、CD边的中点,化简
A
(1) AB 1 (BC BD) 2
(2) AG 1 ( AB AC) 2
D (1)原式=AB BM MG AG
B
M
(2)原式
G =AB BM MG 1 ( AB AC)
向量 a , b ( b 0 ),
a // b 存在 R , a b . b c
a
例1:已知平行六面体ABCD-A1B1C1D1,化简下列向量 表达式,并标出化简结果的向量。(如图)
(1) AB BC
(2) AB AD AA1
(3)
1 3
(AB
AD
AA1 )
(4) AB
AD
1 2
数乘分配律
k(a b) ka+kb
D A
b
D A
C
Ba
D1 A1
C1 B1
C
D
B
A
C B
空间向量及其加减与数乘运算
平面向量
概念 定义 表示法 相等向量
加法 加法:三角形法则或 减法 平行四边形法则 数乘 减法:三角形法则 运算 数乘:ka,k为正数,负数,零
空间向量
具有大小和方向的量
运 加法交换律 a b b a 算 加法结合律 律 (a b) c a (b c)
试用a, b, c来表示CD,AC, BD.
如图,已知空间四边形 ABCD 中,向量 AB a , AC b ,
AD c ,若 M 为 BC 的中点, G 为 △BCD 的重心,
试用 a 、b 、c 表示下列向量:
A
⑴ DM
⑵ AG
1(a b) c
D
2 1(a b c) B M
G
3
C
空间向量及其加减与数乘运算
平面向量
概念 定义 表示法 相等向量
加法 减法
加法:三角形法则或 平行四边形法则
数乘 减法:三角形法则
运算 数乘:ka,k为正数,负数,零
空间向量
具有大小和方向的量
加法:三角形法则或 平行四边形法则 减法:三角形法则
数乘:ka,k为正数,负数,零
运 加法交换律 a b b a 算 加法结合律 律 (a b) c a (b c)
数乘分配律
k(a b) ka+kb
C
a+b
B
b
O
A
OB OA AB
a CA OA OC
空间向量的加减法
k a (k>0)
空间向量的数乘
k a (k<0)
思考:空间任意两个向量是否可能异面?
B
b
O
A
思考:它们确定的平面是否唯一?
a
结论:空间任意两个向量都是共面向量,所以它们可用 同一平面内的两条有向线段表示。 因此凡是涉及空间任意两个向量的问题,平面向量中有 关结论仍适用于它们。
与平面向量一样,实数 与空间向量 a 的乘积
a 仍然是一个向量.
⑴当 0时, a 与向量 a 的方向相同;
⑵当 0时, a 与向量 a 的方向相反;
⑶当 0 时, a 是零向量.
例如:
3a
a
3a
显然,空间向量的数乘运算满足分配律 及结合律
即:(a b) a b
( )a a a
O
O
a a
b +c
A
b
B
c
C
A
b
C
Bc
(空间向量)
推广:
(1)首尾相接的若干向量之和,等于由起始 向量的起点指向末尾向量的终点的向量; A1 A2 A2 A3 A3 A4 An1 An A1 An
(2)首尾相接的若干向量若构成一个封闭图 形,则它们的和为零向量。 A1 A2 A2 A3 A3 A4 An A1 0
2
C
=BM MG 1 ( AB AC)
2
=BM MG MB MG
练习2 在立方体AC1中,点E是面AC’ 的中心,求下列各式中的x,y.
A E
D (1)AC ' x(AB BC CC ' )
B
C
(2)AE AA ' xAB yAD
A B
D C
练习2 在立方体AC1中,点E是面AC’ 的中心,求下列各式中的x,y.
这是什么? 向量
1、定义:既有大小又有方向的量。
几何表示法:用有向线段表示
字母表示法: 用小写字母表示,或者用表示向量的 有向线段的起点和终点字母表示。 相等向量:长度相等且方向相同的向量
B
A
D
C
2、平面向量的加法、减法与数乘运算
b a
向量加法的三角形法则
b
a
向量减法的三角形法则
b a
向量加法的平行四边形法则
无解
l1, l2平行
3
例题分析
Hale Waihona Puke Baidu
例2、判定下列各对直线的位置关系,若相交, 则求交点的坐标
(1)
ll12::
x y 3x 3y
0
10
0
(2)
ll12
:3x :6x
y 2
y
4
0
0
( 3)
ll12
:3x 4y :6x 8y
5 0 10 0
4
问题2:如何根据两直线的方程系数之间的关 系来判定两直线的位置关系?
CC1
D1 A1
D A
C1 B1
C B
a
D
D1 A1
C1 B1
CD
C
A
BA
B
平行六面体:平行四边形ABCD平移向量 a
到A1B1C1D1的轨迹所形成的几何体. 记做ABCD-A1B1C1D1
例1:已知平行六面体ABCD-A1B1C1D1,化简下列向量 表达式,并标出化简结果的向量。(如图)
(1) AB BC
a
k a (k>0)
k a (k<0)
向量的数乘
3、平面向量的加法、减法与数乘运算律
加法交换律: a b b a 加法结合律: (a b) c a (b c) 数乘分配律: k(a b) ka+kb
推广:
(1)首尾相接的若干向量之和,等于由起始 向量的起点指向末尾向量的终点的向量; A1 A2 A2 A3 A3 A4 An1 An A1 An
(1) AB1 A1D1 C1C xAC
解(1) AB1 A1D1 C1C
D1
AB1 B1C1 C1C A1
C1 B1
AC x 1.
D A
(2) 2 AD1 BD1 x AC1
C B
(3) AC AB1 AD1 x AC1
例2:已知平行六面体ABCD-A1B1C1D1, 求满足下列各式的x的值。
(a) ()a 其中、是实数。
类似于平面向量,为了研究的方便起见,我们规定: 零向量、单位向量、相等向量、相反向量、平行
向量、共面向量等概念。(你认为应该怎样规定?)
定义:表示空间向量的有向线段所在直线互相平行或 重合,则称这些向量叫共线向量.(或平行向量)
思考⑴:对空间任意两个向量 a 与 b ,如果 a b ,那 么 a 与 b 有什么关系?反过来呢? 类似于平面,对于空间任意两个
(2)首尾相接的若干向量若构成一个封闭图 形,则它们的和为零向量。 A1 A2 A2 A3 A3 A4 An A1 0
问题 1: C
向上
B
正北
O 正东 A
如图:已知 OA=6 米, AB=6 米,BC=3 米,
? 那么 OC=
问题 2:
F2 F3
已知F1=10N, F2=15N,F3=15N
数乘分配律
k(a b) ka+kb
加法交换律 a b b a 加法结合律
(a b) c a (b c) 数乘分配律 k(a b) ka+kb
我们知道平面向量还有数乘运算. 类似地,同样可以定义空间向量的数乘运算, 其运算律是否也与平面向量完全相同呢?
定义: 数乘空间向量的运算法则
A E
D (1)AC ' x(AB BC CC ' )
B
C
(2)AE AA ' xAB yAD
A B
D C
练习2 在立方体AC1中,点E是面AC’ 的中心,求下列各式中的x,y.
A E
D (2)AE AA ' xAB yAD
B
C
A B
D C
作业
空间四边形ABCD中,AB a ,BC=b,AD c,
(3) AC AB1 AD1 xAC1
(3) AC AB1 AD1
(AD AB) (AA1 AB) (AA1 AD)
D1
2(AD AB AA1)
A1
2AC1
x 2. D
C1 B1
C
A
B
练习1 在空间四边形ABCD中,点M、G分别是BC、CD边的中点,化简
A
(1) AB 1 (BC BD) 2
(2) 2AD1 BD1 xAC1 (3) AC AB1 AD1 xAC1
(2) 2AD1 BD1 AD1 AD1 BD1 AD1 (BC1 BD1) AD1 D1C1 AC1
x 1.
D1 A1
D
C1 B1
C
A
B
例2:已知平行六面体ABCD-A1B1C1D1, 求满足下列各式的x的值。
的模又记为 AB 就是线段 AB 的长度.
c
B 终点
a
起点 A
b
空间向量及其加减与数乘运算
平面向量
概念 定义 表示法 相等向量
空间向量
具有大小和方向的量
加法 加法:三角形法则或 减法 平行四边形法则 数乘 减法:三角形法则
运算 数乘:ka,k为正数,负数,零
运 加法交换律 a b b a 算 加法结合律 律 (a b) c a (b c)
数乘分配律
k(a b) ka+kb
加法交换律 a b b a
成立吗? 加法结合律
数乘分配律 k(a b) ka+kb
向量加法结合律在空间中仍成立吗?
( a + b )+ c = a +( b + c )
O
O
a
a
b +c
A
CA
C
bBc
b Bc
(平面向量)
空间中
向量加法结合律:
( a + b )+ c = a +( b + c )
D1
C1
(2) AB AD AA1
(3)
1 3
(AB
AD
AA1 )
(4) AB
AD
1 2
CC1
解:(1)AB BC=AC;
A1 G
D A
B1 M
C B
(2)AB AD AA1 AC AA1 AC CC1 AC1
始点相同的三个不共面向量之和,等于以这三个向量 为棱的平行六面体的以公共始点为始点的对角线所示向量
两直线的交点坐标
1
已知两条直线 l1 : A1x B1 y C1 0 l2 : A2 x B2 y C2 0
相交, 如何求这两条直线交点的坐标?
2
问题1:方程组解的情况与方程组所表示的两条 直线的位置关系有何对应关系?
直线l1,
唯一解 l2解方程组无穷多解
ll11
, ,
l2相交 l2重合
F2
F3 F1
F1=10N F2=15N F3=15N
例2:已知平行六面体ABCD-A1B1C1D1, 求满足下列各式的x的值。
(1) AB1 A1D1 C1C xAC
D1
A1
(2) 2 AD1 BD1 x AC1
(3) AC AB1 AD1 x AC1
D
C1 B1
C
A
B
例2:已知平行六面体ABCD-A1B1C1D1, 求满足下列各式的x的值。
相关文档
最新文档