灰色综合评价法算例

合集下载

灰色模型算术公式

灰色模型算术公式

灰色模型算术公式灰色模型是一种用于预测和分析数据的方法,其基本思想是将数据分为两类:已知数据和未知数据。

已知数据是指已经确定并可以用来建模的数据,而未知数据则是需要预测或者分析的数据。

为了对未知数据进行预测或分析,灰色模型使用了灰色系统理论中的灰色预测方法。

灰色模型的算术公式包括:灰色微分方程、灰色模型GM(1,1)、灰色关联度等。

其中,灰色微分方程是灰色预测方法的核心公式,它的形式为:$$ frac{dx}{dt} + a x = u $$其中,$x$ 表示原始数据序列,$t$ 表示时间,$a$ 表示灰色微分方程的参数,$u$ 表示灰色微分方程的非齐次项。

通过对该方程进行求解,可以得到灰色模型的预测结果。

另外,灰色模型GM(1,1)是一种常用的灰色预测模型,它的基本形式为:$$ x(k+1) = (x(1)-frac{u}{a})e^{-ak} + frac{u}{a} $$ 其中,$x(k+1)$ 表示预测值,$x(1)$ 表示初始值,$a$ 和$u$ 分别表示灰色微分方程的参数。

通过对历史数据进行处理,可以得到灰色模型GM(1,1)的预测结果。

此外,灰色关联度是用于分析数据间关系的一种方法,在灰色系统理论中被广泛应用。

灰色关联度的计算公式为:$$ r_{ij} = frac{sum_{k=1}^nmin(x_i(k),x_j(k))}{sum_{k=1}^n x_i(k)} $$其中,$x_i(k)$ 和 $x_j(k)$ 分别表示第 $i$ 个和第 $j$ 个数据在第 $k$ 个时刻的值,$n$ 表示时刻数。

通过计算灰色关联度,可以了解数据之间的关系,从而对其进行进一步的分析和预测。

总之,灰色模型的算术公式包括灰色微分方程、灰色模型GM(1,1)、灰色关联度等,这些公式是灰色预测和分析方法的核心内容。

在实际应用中,可以根据具体情况选择合适的公式进行计算和分析。

灰色关联分析计算实例

灰色关联分析计算实例

80.52 54.22
0.361
3.7 2.0213
50.974 50.4325 40.8828
.
2.矩阵无量纲化(初值化): X=Xij´/ Xi1´(i=1,2,3,4,5,6; j=2,3,4,5)
1
0.9496 0.8005
1 (X)= 1
0.9249 0.7948 1.0113 0.1006
X0,X1,,Xnxx001 2 x0m
x11 x12
x1m
xxnn1 2
xnm
.
常用的无量纲化方法有均值化法(见(12-3)
式)、初值化法(见(12-4)式)和 x x 变
换等。
s
xi
k
xik
1 m
mk1
xi
k
xi
k
xik xi1
i 0,1,, n;k1, 2,, m.
(123) (124)
表2 灾害直接经济损失及各相关影响因素之间的关联度
影响因素 农作物成灾面积 地震灾害损失 海洋灾害损失 森林火灾损失 地质灾害损失
关联度ri
0.9875
0.9131
0.9668
0.7103
0.9786
.
由表2的结果可以看出,灾害经济损失的各相 关影响因素对灾害直接经济损失影响的关联度 大小的顺序为: 农作物成灾面积>地质灾害损失>海洋灾害损失> 地震灾害损失>森林火灾损失 可以说明对灾害直接经济损失影响最大的是 农作物成灾面积、地质灾害损失和海洋灾害损 失,其次为地震灾害损失,森林火灾损失对灾 害直接经济损失影响程度较小。
5.求最值:
nm
minmin i1 k1
x0

两因素三水平用灰色关联法

两因素三水平用灰色关联法

灰色关联分析法是一种用于比较多个因素之间关联程度的分析方法,其基本思想是通过比较各因素之间的相似程度来评估它们之间的关联程度。

在两因素三水平的情境下,可以使用灰色关联分析法来比较三个水平之间的关联程度。

具体步骤如下:1.确定参考序列和比较序列。

参考序列是用于比较的基准序列,通常选择一个固定值或者已知的最佳水平作为参考序列。

比较序列是待比较的各个因素在不同水平下的观测值序列。

2.数据预处理。

对参考序列和比较序列进行数据预处理,包括数据清洗、缺失值处理、异常值处理等。

3.计算灰色关联度。

根据灰色关联分析法的原理,计算参考序列与各个比较序列之间的灰色关联度。

灰色关联度的计算公式为:(\gamma(x_0, x_i) = \frac{\min_i |x_0(k) - x_i(k)| + \rho \max_i |x_0(k) -x_i(k)|}{|x_0(k) - x_i(k)| + \rho \max_i |x_0(k) - x_i(k)|})其中,(x_0(k))表示参考序列在时刻k的值,(x_i(k))表示第i个比较序列在时刻k 的值,(\min_i |x_0(k) - x_i(k)|)和(\max_i |x_0(k) - x_i(k)|)分别表示第k时刻所有比较序列与参考序列的差的绝对值的最小值和最大值,(\rho)是一个分辨系数,通常取0.5。

4. 判断关联程度。

根据计算出的灰色关联度,判断各个比较序列与参考序列的关联程度。

灰色关联度越接近于1,表示关联程度越高。

通过以上步骤,可以得出各个水平之间的关联程度,从而为决策提供依据。

需要注意的是,灰色关联分析法只是一种定性的分析方法,其结果具有一定的主观性,因此在具体应用时需要根据实际情况进行合理的解释和判断。

综合评价方法灰色评价法案例讲解

综合评价方法灰色评价法案例讲解

5
灰色关联法
1989年度西山矿务局五个生产矿井技术经济指标如表 6-3
By 杜小二
指标
白家庄矿 杜儿坪矿 西铭矿 官地矿 西曲矿
原煤成本
99.89 103.69 97.42 101.11 97.21
企业利润
96.91 124.78 66.44 143.96 88.36
原煤产量
102.63 101.85 104.39 100.94 100.64
1
灰色关联法
By 杜小二
1、煤矿企业经济效益的灰色关联分析法 (1)应用灰色关联分析法评价煤矿企业效益,首先要构成各个系 统的技术经济指标数据列: {X1}={X1(1),X1(2)……X1(n) } {X2}={X2(1),X2(2)……X2(n) }
∶ ∶ {Xm}={Xm(1),Xm(2)……Xm(n) }
第二步,确定个指标的重要性系数,如表6-4所示。
表6-4 各指标的重要性—权重
指标
权重
原煤成 企业利 产量 销售量 灰分 全员 周转 回收 百万吨


效率 天数 率 死亡
0.111 0.143 0.098 0.112 0.108 0.096 0.068 0.072 0.192
8
灰色关联法
By 杜小二
第三步,计算各矿井中指标数据列对于最优参考数据列的关联度。个矿井 指标数据列为:
{X1}= { 99.89,96.91,102.63,98.47,87.51,108.35,71.67,103.25,171.20} {X2}= {103.69,124.78, 101.85,103.16,90.27,106.39,137.16,100.00,51.35} {X3}= { 97.42,66.44,104.39,109.17,93.77,142.35,97.65,100.00,15.90 } {X4}= {101.11,143.96,100.94,104.39,94.33,121.91,171.31,99.13,53.72} {X5}= {97.21,88.36,100.64,91.90,85.21,158.61,204.52,100.22,20.78}

灰度评价法

灰度评价法

本文研究的城市广场旅游功能的评价系统即属于一个灰色系统。

首先,由于关于广场旅游功能的影响要素、层级分类及指标选定均具有“信息不完全性”;其次,所选取的评价指标数据,有些是已知的,即可以从现有的统计资料中获得,而另一些数据却是未知的,无法从统计资料中获得;再则,本文建立的评价指标中既有定性(灰色)指标,也有定量(白化)指标,各因素指标之间本质上是一种灰色关系。

因此,该系统具有信息不完全的“灰色”特征。

鉴于该系统的灰色特征,本文拟采用灰色模型对城市广场旅游功能进行综合评价。

灰色综合评价方法的原理为:首先将各评价指标分为不同的灰类型,然后建立隶属于各灰类的权函数,以定量地描述某一评价对象隶属于某个灰类的程度。

对具有多层次评价指标的体系,在子系统评价的基础上再对上一层次加权综合,以反映系统的整体状况。

运用这种方法进行综合评价的课题有物流中心选址、风险企业投资价值综合评价、商业银行竞争力综合评价、科研项目综合评价等,该方法取得了比较好的评价效果。

具体计算步骤如下:1(l)确定评价指标集根据设计的指标体系,有两层指标集,U=(U1,U2,U3,U4,U5,U6),其中U1=(U11,U12,U13),U2=(U21,U22,U23,U24,U25,U26),U3=(U31,U32,U33,U34,U35,U36),U4=(U41,U42,U43,U44,U45),U5=(U51,U52),U6=(U61,U62,U63)(2)确定指标评分等级在本文中,所有指标分为很好(大)、较好(大)、一般、较差(小)四个等级,分别为4、3、2、1分,指标等级介于两相邻等级之间,相关评分为3.5、2.5、1.5分,具体等级标准由专家根据经验确定。

(3)层次分析法确定各评价指标的权重常见的确定权重的方法有,德尔菲法、层次分析法、熵值法、模糊聚类分析法等。

本文采用层次分析法确定权重,本文在运用层次分析法时做了两点优化:①采用9/9-9/1标度法。

第三节灰色综合评价法

第三节灰色综合评价法
劣进行分析比较 (二)基于灰色关联度分析的灰色综合评价法的步骤
二、灰色综合评价法的模型和步骤
对事物的综合评价,多数情况是研究多对象的排序问题,即在各个评价对象之间排出优选 顺序
灰色综合评判主要是依据以下模型:R=E×W
式中:R=[r,r2,…,rm]'为m个被评对 象的综合评判结果向量;W=[w,W2,…, Wm]为n个评价指标的权重分配向量,其中 ∑w=1;E为各指标的评判矩阵 (k)为第i种方案的第k个指标与第k个最优指 标的关联系数 根据R的数值,进行排序
三、灰色综合评价法的实例分析
若k为指标或观测对象序号, 而且X也为单项,对于X项目的 运动员来说,应以X为最重要
的辅助训练项目
而对于学生来说,在X项目成 绩比较好的情况下,为提高其 身体素质的全面发展,应抓住 弱势,积极进行X和X项目的锻

灰色关联分析主要着重研究" 外延明确、内涵不明确"的对 象,解决"小样本、贫信息、 不确定"问题,是一种解决不
三、灰色综合评价法的实例分析
某个体或某群体的行为数据如下(表12-5) (二)计算步骤 第
一步:求初值像(或均值像) 第二步:求差序列 第三步:求两极差 第四步:求关联系数(表12-6) 第五步:计算关联度(表12-7) (三)结果与分析 若k为时间序号,X与X(总分)的关联度最 大,为0.717,它们关联度程度的大小顺 序依次为X>X>X,这说明三个项目成绩的 好差排序也应如此,体育工作者在教学 或运动训练中,应根据具体情况进行针 对性教学或训练
第三节灰色综合 评价法
第三节灰色综合评价法
目录
二、灰色综合评价法的模型和步骤 三、灰色综合评价法的实例分析

模糊评价--灰色评价

模糊评价--灰色评价

模糊评价一、模型的建立设系统有n 个待优选的对象组成备择对象集,有m 个评价因素组成系统的评价指标集。

每个评价指标对每一备择对象的评判用指标特征量表示,则系统有n m ⨯阶指标特征量矩阵:n m ij mn m m n n mxn x x x x x x x x x x X ⨯=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=)(212222111211,;,,2,1m i =)2(3,,2,1 n j = 式中ij x 为第j 个备择对象的第i 个评价因素的指标特征量,一般情况下,它具有两种类型:(1)“越大越优”型,其隶属度计算式为:)3(3maxx x r ij ij =式中max x 为n j m i x ij ,,1;,,1, ==中的最大值。

(2)“越小越优”型,其隶属度计算式为:)4(3min ijij x x r =式中min x 为n j m i x ij ,,1;,,1, ==中的最小值。

优化的任务在于根据指标特征量矩阵选择出最优对象或对象的最优排序。

事实上,优与次(或劣)这一对立的概念之间不存在绝对分明的界限,这是优化的模糊性。

另一方面,优化是依据指标特征量在备择对象集中进行,优或次是相对于备择对象集中的元素间比较而言,这是优化的相对性。

通过3(3)、3(4)式,可将指标特征量矩阵3(2)转变为指标隶属度矩阵3(5)(例如可用适当的计算隶属度公式等):),(212222111211ij mn m m n n mxnr r r r r r r r r r R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= ;,,2,1m i =)5(3,,2,1 n j = 根据优化的模糊性与相对性概念,可以给出下面定义: 定义1 设系统有指标隶属度矩阵3(5)若)6(3),,,(),,,(21222211121121Tmn m m n n Tm r r r r r r r r r g g g G ∨∨∨∨∨∨∨∨∨==称为系统的优向量。

《灰色关联分析法》课件

《灰色关联分析法》课件
3
计算关联度
4
确定各个因素对评估对象的贡献程度。
5
确定因素集合和影响因素
精确定义评估的因素及其关联程度。
计算关联系数
衡量因素之间的关联程度。
排序、评价和综合比较
综合评价并排序所得的关联度。
灰色关联分析法 实例分析
案例1 :消费者购买行为分析
研究消费者购买决策中的因素关联性,指导 市场策略制定。
案例2 :市场竞争态势分析
灰色关联分析法 PPT课件
灰色关联分析法是一种综合多因素、多层次、多角度的综合评判方法,用于 处理数据量小、不完备、不确定的问题。
灰色关联分析法 简介
1 灰色关联分析法
2 基本原理
综合评判方法,处理不完备、不确定的问题。
灰色系统理论,关联度的测度。
灰色关联分析法 步骤
1
数据标准化处理
2
使不同类型的数据具备可比性。
分析市场上不同竞争因素之间的关联程度。
灰色关联分析法 应用领域
经济管理
用于分析经济发展中的关联因素。
生态环境
评估环境因素对生态系统的和优化。
市场分析
研究市场竞争态势和市场需求。
灰色关联分析法 优缺点
优点
• 有效分析多层次、多因素的问题 • 适用于小样本、不完备数据的分析
缺点
• 无法对因果关系进行分析 • 灰色关联度的确定较为主观
灰色关联分析法 总结
灰色关联分析法是一种有效的综合评判方法,应用广泛,但也存在一些局限性。在具体应用中需要根据 问题特点和数据情况进行调整和优化。

灰色关联分析法与TOPSIS评价法

灰色关联分析法与TOPSIS评价法
i 1 ,2 , 3 ; t 2 0 0 0 ,,2 0 0 5
0 i ( t ) 称为序列xi和序列x0在第t期的灰色关联系 数(或简称为关联系数).
由(6.1)式可以看出, 取 值的大小可以控制 (max)
对数据转化的影响, 取较小的值,可以提高关联系
数间差异的显著性,因而 称为 分辨系数.
利用(6.1)对表6-3中绝对差值 进0 i行( t规) 范化,取
结0.果4,见表6-4,以
计0算1(2为00例0):
( m i n ) 0 .0 0 0 6 , ( m a x ) 0 .1 8 5 7
0 1 (2 0 0 0 ) 0 0 ..0 1 0 0 0 4 6 4 0 0 ..4 4 0 0 ..1 1 8 8 5 5 7 7 0 .4 1 9 1
18987529
27875738
39796647
46888436
58669838
68957648
3.确定参考数据列:
{ x 0 } { 9 , 9 , 9 , 9 , 8 , 9 , 9 }
4.计算 x0(k)xi(k) , 见下表
编号 专业 外语 教学 科研 论文 著作 出勤 量
1
1
0
1
2
参考数据列应该是一个理想的比较标准, 可以以各指标的最优值 (或最劣值)构 成参考数据列,也可根据评价目的选择 其它参照值.记作
X 0 x 0 ( 1 ) , x 0 2 , , x 0 m
3.对指标数据进行无量纲化 无量纲化后的数据序列形成如下矩阵:
X0,X1, ,Xnxx001 2 x0m
年份t GDP x0(t) 一产业 x1(t) 二产业 x2(t) 三产业 x3(t)

灰色关联分析法(灰色综合评价法)

灰色关联分析法(灰色综合评价法)

灰色关联分析法对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。

在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。

因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。

应用于综合评价(灰色综合评价)步骤:(1) 确定比较对象(评价对象)和参考数列(评价标准)。

设评价对象有m 个,评价指标有n 个,参考数列为{}00()|1,2,,x x k k n ==⋅⋅⋅,比较数列为{}()|1,2,,,1,2,,i i x x k k n i m ==⋅⋅⋅=⋅⋅⋅。

(2) 对参考数列和比较数列进行无量纲化处理由于系统中各因素的物理意义不同,导致数据的量纲也不一定相同,不便于比较,或在比较时难以得到正确的结论。

因此在进行灰色关联度分析时,一般都要进行无量纲化的数据处理。

设无量纲化后参考数列为{}00()|1,2,,x x k k n ''==⋅⋅⋅,无量纲化后比较数列为{}()|1,2,,,i i x x k k n ''==⋅⋅⋅1,2,,i m =⋅⋅⋅。

(3) 确定各指标值对应的权重。

可用层次分析法等确定各指标对应的权重[]12,,,n w w w w =⋅⋅⋅,其中(1,2,,)k w k n =⋅⋅⋅为第k 个评价指标对应的权重。

(4) 计算灰色关联系数:0000min min ()()max max ()()()()()max max ()()s s s t s t i i s s tx t x t x t x t k x k x k x t x t ρξρ''''-+-=''''-+- 为比较数列i x 对参考数列0x 在第k 个指标上的关联系数,其中[]0,1ρ∈为分辨系数,称0min min ()()s s t x t x t ''-、0max max ()()s s tx t x t ''-分别为两级最小差及两级最大差。

灰色模型算术公式

灰色模型算术公式

灰色模型算术公式灰色模型是一种将小样本数据转化为可用于预测和决策的模型。

其主要应用于经济、金融、环境和社会等领域,特别适用于预测和分析中的小样本问题。

灰色模型基于灰色系统理论,其主要思想是将系统分为主体和背景,并在此基础上建立相应的数学模型。

在灰色模型中,主体是指一个系统或事物的主要部分,即需要预测或分析的对象;背景是指主体之外的一些与主体相关的因素,即影响主体发展的其他因素。

在灰色模型中,常用的算术公式有GM(1,1)模型、GM(0,n)模型和GM(p,n)模型等。

1.GM(1,1)模型GM(1,1)模型是灰色模型中最简单、最常用的模型,它假设主体的发展规律可以用一阶微分方程来描述。

公式如下:x(k) + ax^(1)(k) = b其中,x(k)表示第k个时间点上主体的发展状态,a和b为待定参数,x^(1)(k)表示一阶累加生成序列,可通过一次累加得到:x^(1)(k)=∑x(i),i=1,2,…k通过对这个累加生成序列进行紧缩和比例化处理,可以得到控制变量序列:Z^(1)(k)=∑Z(i),i=1,2,…k然后,求得Z^(1)(k)的特征值λ,即级比,再根据级比确定参数a 和b的值。

2.GM(0,n)模型GM(0,n)模型是对GM(1,1)模型的改进,它不再假设发展规律为一阶微分方程,而是直接建立差分方程。

公式如下:x(k) + ∑(i=1 to n) a(i)x(k-i) = b其中,x(k)表示第k个时间点上主体的发展状态,a(i)和b为待定参数,n为总窗口长度。

通过求解此差分方程,可以得到相应的参数值。

3.GM(p,n)模型GM(p,n)模型是一种高阶灰色模型,适用于样本数据波动和变化较大的情况。

公式如下:x(k) + ∑(i=1 to n) a(i)x(k-i) = b其中,x(k)表示第k个时间点上主体的发展状态,a(i)和b为待定参数,n为总窗口长度。

通过求解此差分方程,可以得到相应的参数值。

灰色关联度分析方法模型

灰色关联度分析方法模型

灰色关联度分析方法模型灰色综合评价主要是依据以下模型:R=Y×W式中,R 为M 个被评价对象的综合评价结果向量;W 为N 个评价指标的权重向量;E 为各指标的评判矩阵,(矩阵略))(k i ξ为第i 个被评价对象的第K 个指标与第K 个最优指标的关联系数。

根据R 的数值,进行排序。

(1)确定最优指标集设],,[**2*1n j j j F =,式中*k j 为第k 个指标的最优值。

此最优序列的每个指标值可以是诸评价对象的最优值,也可以是评估者公认的最优值。

选定最优指标集后,可构造矩阵D (矩阵略)式中i k j 为第i 个期货公司第k 个指标的原始数值。

(2)指标的规范化处理由于评判指标间通常是有不同的量纲和数量级,故不能直接进行比较,为了保证结果的可靠性,因此需要对原始指标进行规范处理。

设第k 个指标的变化区间为],[21k k j j ,1k j 为第k 个指标在所有被评价对象中的最小值,2k j 为第k 个指标在所有被评价对象中的最大值,则可以用下式将上式中的原始数值变成无量纲值)1,0(∈i k C 。

i k k k i k i kj j j j C --=21,m i ,2,1=,n k ,,2,1 =(矩阵略) (3)计算综合评判结果根据灰色系统理论,将],,,[}{**2*1*n C C C C =作为参考数列,将],,,[}{21i n i i C C C C =作为被比较数列,则用关联分析法分别求得第i 个被评价对象的第k 个指标与第k 个指标最优指标的关联系数,即i k k k i i k k i k k k i i k k k iC C C C C C C C k -+--+-=****i max max max max min min )ρρξ(式中)1,0(∈ρ,一般取5.0=ρ。

这样综合评价结果为:R=ExW若关联度i r 最大,说明}{C 与最优指标}{*C 最接近,即第i 个被评价对象优于其他被评价对象,据此可以排出各被评价对象的优劣次序。

第三讲 灰色预测

第三讲 灰色预测
T
(B B)
T
(1 )
1
B YN
T
其中
X X
(1 )
(1 )
(1 ) X (2) X
(2) (3)

(1 )
(1 )
X
( n 1) X
(1 )
(n)
1 1 1
YN X

(0)
( 2 ), X
(0)
( 3 ), , X
14 1 1
14 2 0.634
14 3 0.4963 14 4 0.352
回总目录 回本章目录
第五步:求关联度
12
1 4
k 0.551
12 k 1
4
13
1 4
k 0.717
13 k 1
4
因素间 相互关系 的评价
生成列为:
X
1
X

1
1, X 1 2, X 1 3,... X 1 n
上标1表示一次累加,同理,可作m次累加:
X
m
k X m1 i , m 1,......,
i 1
k
数据预处理
对非负数据,累加次数越多则随机性弱化越多,累加 次数足够大后,可认为时间序列已由随机序列变为非 随机序列。
ˆ X k 1 X
ˆ X k 1 X
0
u u 1 u 1 a1 k m 1 a k 1 q m e e 1 a a a1


(k m )
0
14
X2
1
k 0.621 4

灰色关联度评价法例子

灰色关联度评价法例子

灰色关联度评价法例子灰色关联度评价法例子什么是灰色关联度评价法灰色关联度评价法是一种评价指标的方法,用于分析不同因素之间的关联程度。

它可以帮助我们量化分析和比较各种因素的重要性和关系,从而为决策提供依据。

例子1:学生综合素质评价•因素1:学生学习成绩•因素2:体育锻炼时间•因素3:课外活动参与度•因素4:社会实践经历通过灰色关联度评价法,可以将以上四个因素与一个评价指标(例如综合素质评价得分)进行比较,评估每个因素对于综合素质的贡献程度。

评价结果可以帮助学校制定更为客观和科学的学生综合素质评价指标。

例子2:产品质量评价•因素1:产品外观•因素2:产品功能•因素3:产品耐用性•因素4:产品售后服务通过灰色关联度评价法,可以将以上四个因素与产品质量进行关联度分析,评估每个因素对于产品质量的影响程度。

评价结果可以帮助企业了解产品质量存在的问题,以及针对不同因素采取相应的改进措施。

例子3:城市交通拥堵评价•因素1:道路容量•因素2:车辆密度•因素3:交通信号灯设置•因素4:城市公共交通系统通过灰色关联度评价法,可以将以上四个因素与城市交通拥堵进行关联度分析,评估每个因素对于交通拥堵的影响程度。

评价结果可以帮助政府和交通管理部门有针对性地解决交通拥堵问题,提高城市的交通效率。

结论灰色关联度评价法提供了一种有效的工具,可以帮助我们理清因素之间的关联程度,从而更好地进行评价和决策。

通过以上例子,我们可以看到该方法在不同领域都有广泛的应用价值,为各种评估和分析工作提供帮助。

例子4:金融风险评估•因素1:利率变动•因素2:股市波动•因素3:政策影响•因素4:经济景气度通过灰色关联度评价法,可以将以上四个因素与金融风险进行关联度分析,评估每个因素对于金融风险的影响程度。

评价结果可以帮助机构和投资者识别风险因素并制定相应的风险管理策略。

例子5:客户满意度评价•因素1:产品质量•因素2:服务态度•因素3:交付时效•因素4:价格合理性通过灰色关联度评价法,可以将以上四个因素与客户满意度进行关联度分析,评估每个因素对于客户满意度的贡献程度。

熵权灰色综合评价法

熵权灰色综合评价法

熵权灰色综合评价法
熵权灰色综合评价法是一种基于熵权法和灰色关联度分析的综合评价方法。

该方法综合考虑了数据的信息熵和灰色关联度,用于对多个指标进行综合评价。

具体步骤如下:
1. 确定评价指标:选择适当的评价指标,用于评估被评价对象的各个方面。

2. 数据标准化:将原始数据进行标准化处理,使得数据具有可比性。

3. 计算信息熵:对每个指标计算信息熵,用于衡量指标的信息量和差异性。

4. 计算权重:根据信息熵计算各个指标的权重,权重越大表示该指标对评价结果的影响越大。

5. 灰色关联度分析:利用灰色关联度分析方法,计算各个指标之间的关联度,用于衡量指标之间的关联程度。

6. 计算评价结果:根据指标的权重和关联度,计算出最终的评价结果。

熵权灰色综合评价法在实际应用中具有较高的灵活性和适用性,能够考虑到多个指标之间的相互关系,提高评价结果的准确性和可靠
性。

第四章 灰色聚类评估模型

第四章 灰色聚类评估模型
第四章 灰色聚类评估模型
南京航空航天大学灰色系统研究所
问题
什么是灰色聚类? 为什么要提出灰色聚类评估模型? 灰色聚类评估模型的主要研究内容有哪些? 灰色聚类评估模型有哪些最新进展? 与其他聚类评估模型相比有何不同?
2
第四章 灰色聚类评估
引言
灰色聚类是根据灰色关联矩阵或白化权函数将一 些观测指标或观测对象划分成若干个可定义类别 的方法。 ➢灰色关联聚类主要用于同类因素的归并,以使复 杂系统简化。 ➢基于白化权函数的灰色聚类主要用于检查观测对 象是否属于事先设定的不同类别,以便区别对待。
80303080303070407040101040107030101030301090303090303027第四章灰色聚类评估9050905020205020904020204040201004040100404090509050303050309028第四章灰色聚类评估503030505030于是80于是8029第四章灰色聚类评估270802709027010015040150501506060106020603027080270901001000666727030第四章灰色聚类评估同理得31第四章灰色聚类评估第二经济区收入第一经济区和第三经济区收入00593037780666704667040166735第四章灰色聚类评估43灰色定权聚类灰色等权聚类是灰色定南京航空航天大学灰色系统研究所69第四章灰色聚类评估此课件下载可自行编辑修改供参考
3
第四章 灰色聚类评估
4.1 灰色关联聚类
灰色关联聚类
设有 个观测对象,每个对象观测 个特征数据,得到序列
如:
X1 x1(1) , x1(2),L , x1(n)
对所有的 ,得上三角矩阵
计算出 与 的灰色绝对关联度

模糊综合评判和灰色评价法的应用实例分析

模糊综合评判和灰色评价法的应用实例分析

模糊综合评判和灰⾊评价法的应⽤实例分析模糊综合评判和灰⾊评价法的应⽤实例分析⼀、在物流中⼼选址中的应⽤物流中⼼作为商品周转、分拣、保管、在库管理和流通加⼯的据点,其促进商品能够按照顾客的要求完成附加价值,克服在其运动过程中所发⽣的时间和空间障碍。

在物流系统中,物流中⼼的选址是物流系统优化中⼀个具有战略意义的问题,⾮常重要。

基于物流中⼼位置的重要作⽤,⽬前已建⽴了⼀系列选址模型与算法。

这些模型及算法相当复杂。

其主要困难在于:(1)即使简单的问题也需要⼤量的约束条件和变量。

(2)约束条件和变量多使问题的难度呈指数增长。

模糊综合评价⽅法是⼀种适合于物流中⼼选址的建模⽅法。

它是⼀种定性与定量相结合的⽅法,有良好的理论基础。

特别是多层次模糊综合评判⽅法,其通过研究各因素之间的关系,可以得到合理的物流中⼼位置。

1.模型⑴单级评判模型①将因素集U 按属性的类型划分为k 个⼦集,或者说影响U 的k 个指标,记为12(,,,)k U U U U =且应满⾜:1, ki ij i U U U U φ===②权重A 的确定⽅法很多,在实际运⽤中常⽤的⽅法有:Delphi 法、专家调查法和层次分析法。

③通过专家打分或实测数据,对数据进⾏适当的处理,求得归⼀化指标关于等级的⾪属度,从⽽得到单因素评判矩阵。

④单级综合评判B A R =⑵多层次综合评判模型⼀般来说,在考虑的因素较多时会带来两个问题:⼀⽅⾯,权重分配很难确定;另⼀⽅⾯,即使确定了权重分配,由于要满⾜归⼀性,每⼀因素分得的权重必然很⼩。

⽆论采⽤哪种算⼦,经过模糊运算后都会“淹没”许多信息,有时甚⾄得不出任何结果。

所以,需采⽤分层的办法来解决问题。

2.应⽤运⽤现代物流学原理,在物流规划过程中,物流中⼼选址要考虑许多因素。

根据因素特点划分层次模块,各因素⼜可由下⼀级因素构成,因素集分为三级,三级模糊评判的数学模型见表3-7.表3-7 物流中⼼选址的三级模型因素集U 分为三层:第⼀层为 {}12345,,,,U u u u u u =第⼆层为 {}{}{}111121314441424344551525354,,,;,,,;,,,u u u u u u u u u u u u u u u === 第三层为 {}{}5151151251352521522,,;,u u u u u u u ==假设某区域有8个候选地址,决断集{},,,,,,,V A B C D E F G H =代表8个不同的候选地址,数据进⾏处理后得到诸因素的模糊综合评判如表3-8所⽰。

熵权灰色综合评价法

熵权灰色综合评价法

熵权灰色综合评价法熵权灰色综合评价法是一种基于信息熵和灰色关联度的多指标综合评价方法,它能够对多个指标进行综合评价,并通过分析各个指标之间的关联程度,得出最终的评价结果。

这种方法在许多领域中得到了广泛的应用,包括经济、环境、社会等领域。

在使用熵权灰色综合评价法时,首先需要确定评价对象和评价指标。

评价对象可以是一个系统、一个项目、一个产品等,评价指标可以是系统的各个方面性能指标、项目的成本、进度、质量等指标,或者产品的品质、性能等指标。

然后,根据实际情况,确定各个指标的权重,即各指标对于评价对象的重要程度。

接下来,通过对各个指标的数据进行归一化处理,将它们转化为无量纲的相对指标。

然后,利用信息熵的概念,计算各个指标的权重,即熵权。

熵权的计算公式为:熵权 = 1 - (信息熵 / 最大信息熵)其中,信息熵是指标数据的离散程度,最大信息熵是指标数据的理论最大离散程度。

通过计算得到的熵权可以反映各个指标的重要程度,进而确定各个指标的权重。

在确定了各个指标的权重后,就可以进行灰色关联度的计算。

灰色关联度是指标之间的关联程度,可以用来衡量各个指标对评价对象的影响程度。

灰色关联度的计算公式为:灰色关联度= (Σ(权重 * 灰色关联值)) / Σ权重其中,权重是各个指标的权重,灰色关联值是指标数据之间的关联值。

通过计算得到的灰色关联度可以反映各个指标之间的关联程度。

根据各个指标的权重和灰色关联度,可以得出最终的评价结果。

根据评价结果,可以对评价对象进行排序、分类或者判断。

熵权灰色综合评价法是一种全面、客观、科学的评价方法,可以对多个指标进行综合评价。

通过使用这种方法,可以从多个角度对评价对象进行评估,为决策提供科学的依据。

在实际应用中,需要根据具体情况灵活运用,以达到最好的评价效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指标 产量 掘进 工效 质量 成本 安全
一矿 1 1 1 1 1 1
二矿 0.910714286 1.265486726 0.939446367 0.847761194 1.088528678 1.065268065
三矿 0.748376623 1.007743363 0.78200692 1.00199005 1.441396509 1.102564103
min
0
max
0.746883
关联系数
指标 产量 掘进 工效 质量 成本 安全 关联度
一矿 二矿 三矿 四矿 五矿
1 0.807045 0.597444 0.905527 0.563078
0.52865 0.846961 0.534509
1 0.490976
0.984044 0.848633 0.625017
0.42758
机动车数 量
1
0 0.116633 0.175612 0.758713 2.107336 煤炭用量
1
0 0.417486 0.431148 0.71694 0.756557 沙尘天数
1
min
0
max
4.437658
0.2
0.2
0.2
0.2
0.970806 0.903712 0.944481 0.88972
一矿 123.2 90.4 115.6 100.5 80.2 0.858
二矿 112.2 114.4 108.6 85.2 87.3 0.914
三矿 92.2 91.1 90.4 100.7 115.6 0.946
四矿 118.4 120.5 116.3 85.7 80.5 0.606
五矿 87.5 85.5 96.8 120.5 140.1 0.806
一矿 123.2 90.4 115.6
100.5
80.2
0.858
理想对象 123.2 120.5 116.3
85.2
80.2
0.606
2002 48 40 18
2003 60 50 20
1-总收入 2-招商引资 3-加大农业
标准化
理想对象 123.2 120.5 116.3 85.2 80.2 0.606
理想对象 1
1.332964602 1.006055363 0.847761194
1 0.706293706
求极差
指标 产量 掘进 工效 质量 成本 安全
一矿 二矿 三矿
0 0.089286 0.251623
0.332965 0.067478 0.325221
0.006055 0.066609 0.224048
1 0.999147 1.044465 1.575652
1
1.3
1.3
0.1
权重 四矿 五矿 0.038961 0.289773 0.2
0 0.387168 0.2 0 0.168685 0.1 0.004975 0.351244 0.15 0.003741 0.746883 0.15 0 0.2331 0.2
SO2 0.048
工业总产 值
183.25
基建投资 24.03
机动车数 量
85508
煤炭用量 175.87
沙尘天数 10
0.034 207.28 44.98 74313 175.72 13
0.03 240.98 62.79 85966 183.69 13
五矿 0.710227273 0.94579646 0.837370242 1.199004975 1.746882793 0.939393939
项目 总收入 招商引资 加大农业
1997 18 10 3
1998 20 15 2
1999 22 16 12
2000 40 24 10
2001 44 38 22
70
60
50
40
1
30
2
3
20
10
0 1997 1998 1999 2000 2001 2002 2003
指标 产量 掘进 工效 质量 成本 安全
0.1
SO 0 0.17418 0.243852 0.19194 0.210724
2
1
0
0.248619
0.446182
0.769963
1.162542
工业总产 值
1
0 0.989313 1.744131 2.655386 4.437658 基建投资
1
0 0.013437 0.136504
0.35902
1 0.688845
0.710397
1 0.707717 0.986853 083 0.333333
0.559758 0.509876 0.48517
1 0.61569
0.772645 0.788895 0.560829 0.977646 0.530131
3
2
4
1
5
0.856557 1.131579 0.240631
关联系数
大气污染 值
0.2
0 0.066724 0.236411 0.130429 0.275022 NO
1
0 0.007033 0.014777 0.006289 0.615926 TSP
1
SO2
0.645833 2.0191
5.294216 1.284137 2.963894
0.99684 0.993384 0.997174 0.782723
关联度
0.941744
2
0.954024
1
0.927213 0.900981 0.920382 0.913266 0.899241 0.832578 0.742383 0.656192 0.691624 0.559892 0.455218 0.333333 0.993981 0.942045 0.860729 0.83843
0.95006 0.926658 0.745188 0.512886 0.84164 0.837301 0.755791 0.745728
0.932368 0.826079 0.608013 0.927037 0.826958 0.836092
3 4 5 1 3 2
0.152239
0 0.154229
0 0.088529 0.441397
0.293706 0.358974 0.39627
2002
0.598 0.036 0.411
2003
0.627 0.043 0.122
标准化
1 0.882514 0.868852 0.81694 1 0.815789 1.105263 0.947368 1 0.889546 0.883629 0.810651
0.03 290.8 83.44 100554 277.11 1
0.031 370 127.22 109804 521.26 1
1 0.708333 0.625 0.625
1 1.131132 1.315034 1.586903
1 1.871827 2.612984 3.472326
1 0.869077 1.005356 1.17596
四矿 0.961038961 1.332964602 1.006055363 0.852736318 1.003740648 0.706293706
因素 1999
大气污染 值
0.732
NO 0.038
TSP 0.507
SO2
2000
0.646 0.031 0.451
2001
0.636 0.042 0.448
相关文档
最新文档