第六章小波分析方法在滤波和消噪方面的应用详解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

wthcoef
进行一维信号小波系数阈值处理。 nc = wthcoef(‘d’,c,l,n,p),返回小波分解结构nc, n为尺度向量,p是一个包含把较小系数置零的百 分比信息向量,与n同长度。 nc = wthcoef(‘d’,c,l,n)将指定尺度的高频系数全部 置零; nc = wthcoef(‘a’,c,l)将低频系数全部置零。 nc = wthcoef(‘t’,c,l,n,t,sorh)返回经阈值处理后的 分解向量。n为指定尺度向量,t为对应的阈值向 量,sorh用来指定硬或软阈值。
第六章 小波分析方法在滤 波和消噪方面的应用
6.1 小波分析在常规滤波方面的 应用
低通滤波
– 要求:要求保留原信号中特定的低频范围信号,去掉高频分 量。 – 方法:使用小波包算法,保留需要低频部分,高频部分置零。
高通滤波
– 要求:保留原信号中的高频范围信号,去掉低频分量。 – 方法:使用小波包算法,保留需要高频部分,低频部分置零。
一维小波重构函数
函数名 idwt idwtper waverec upwlev 功能 单尺度一维离散小波逆变换 单尺度一维离散小波重构(周期性) 多尺度一维小波重构 单尺度一维小波分解的重构
wrcoef upcoef
对一维小波系数进行单支重构 一维系数的直接小波重构
一维小波消噪和压缩函数
函数名
thselect wthresh wthcoef wden ddencmp
举例
y=linspace(-1,1,100); figure(1); subplot(311); plot(y) title('原始信号') grid; thr=0.4; ythard=wthresh(y,'h',thr); subplot(312); plot(ythard); title('硬阈值信号'); grid; ytsoft=wthresh(y,'s',thr); subplot(313); plot(ytsoft); title('软阈值信号'); grid;
2
白噪声的小波分析特点
1)实际工程中有用信号通常为低频信号或一些比较平稳 的信号,噪声通常为高频信号。通过小波分解,噪声 表现在高频部分,且衰减严重。各尺度上不相关;
2)消噪方法可分为强制消噪和门限消噪 强制消噪直接将小波分解的高频系数置零,然 后进行信号重构。 门限消噪根据经验和某种依据设定门限值(阈 值),对高频部分系数用门限值处理,大于门 限的保留,低于门限的置零。 门限消噪又可分为硬阈值和软阈值消噪,前者 设定固定阈值,后者根据估计计算自动获取。
TPTR选项 rigrsure sqtwolog heursure 阈值选择规则
采用史坦(stein)的无偏似然估计(Unbiased Risk Estimate)原理(SURE)进行自适应阈值选择 固定的阈值形式,等于sqrt(2*log(length(s)))
启发式阈值选择
minimaxi
用极大极小原理选择的阈值
功能Baidu Nhomakorabea
信号消噪的阈值选择 进行软阈值或硬阈值处理 一维信号的小波系数阈值处理 用小波进行一维信号的自动消噪
获取在消噪或压缩过程中的默认值阈值 (软或硬)、熵标准 wdencmp 用小波进行信号的消噪和压缩
thselect
THR = THSELECT(X,TPTR) returns threshold X-adapted value using selection rule defined by string TPTR.
带通滤波
– 要求:保留原信号中的某个特定频带,去掉其他频率成分。 – 方法:使用小波包算法,保留需要频率部分,其他的部分置 零。
6.2 小波分析在消噪方面的应用
1 白噪声的特点
– – – – 白噪声是随机性的。不同的 1 (t )和 2 (t ) 不相关。 不同时刻的采样值不相关; 零均值且能量无限; 时域表现是均匀密集的; 包含有全部频谱。
2.2163
wthresh
Y = wthresh(X,SORH,T) returns soft (if SORH = 's') or hard (if SORH = 'h') Tthresholding of the input vector or matrix X. T is the threshold value. Y = wthresh(X,‘s’,T) returns Y = SIGN(X).(|X|-T)+, 把 信号的绝对值与阈值比较,小于和等于阈值的点变为0, 大于阈值的点变为值与阈值之差。 Y = wthresh(X,'h',T) returns Y = X.1-(|X|>T), 与阈值比较,大于阈值等于原 值,小于等于阈值置零,hard thresholding is cruder.
信号模型:s(i) f (i) .e(i)
i 0,1,, n
f(i)为真实信号,e(i)为噪声。 一般的工程应用中,有用信号常为低频信号,或比较平稳的信号, 噪声常为高频。
s ca1 ca2 ca2 cd3 cd2 cd1
用于信号消噪的主要小波指令
一维小波分解函数 函数名 cwt dwt dwtper wavedec 功能 一维连续小波变换 单尺度一维离散小波变换 单尺度一维离散小波变换(周期性) 多尺度一维小波分解
一维信号的消噪步骤
一维信号的小波分解。选择一个小波并确 定一个小波分解的层次,然后对信号进行N 层小波分解; 小波分解的高频系数的阈值量化。对第一 到第N层的每一个高频系数,选择一个阈值 进行软阈值量化处理; 一维小波的重构。根据小波分解的第N层低 频系数和经过量化的各层高频系数,进行 一维信号的小波重构。
举例
init=2055415866; rand('seed',init); x=randn(1,1000); plot(x); thr1=thselect(x,'rigrsure'); thr2=thselect(x,'sqtwolog'); thr3=thselect(x,'heursure'); thr4=thselect(x,'minimaxi'); 执行程序后输出: [thr1 thr2,thr3,thr4]= 2.7316 3.7169 3.7169
相关文档
最新文档