高中物理函数法极值

合集下载

高中物理中的极值问题

高中物理中的极值问题

物理中的极值问题武穴育才高中 刘敬随着高考新课程改革的深入及素质教育的全面推广,物理极值问题成为中学物理教学的一个重要内容,作为对理解、推理及运算能力都有很高要求的物理学科,如何提高提高学生思维水平,运用数学知识解决物理问题的能力,加强各学科之间的联系,本文筛选出典型范例剖析,从中进行归纳总结。

极值问题常出现如至少、最大、最短、最长等关键词,通常涉及到数学知识有:二次函数配方法,判别式法,不等式法,三角函数法,求导法,几何作图法如点到直线的垂线距离最短,圆的知识等等。

1.配方法:a b ac a b x a c bx ax 44)2(222-++=++ 当a >0时,当2b x a =-时,y min =ab ac 442- 当a <0时当2b x a =-时,y max =ab ac 442- 2.判别式法:二次函数令0≥∆,方程有解求极值.3.利用均值不等式法:ab 2b a ≥+ a=b 时, y min =2ab4.三角函数法:θθcos sin b a y +==)sin(22θϕ++b a当090=+θϕ,22max b a y += 此时,ba arctan =θ 也可用求导法:ba b a y arctan 0sin cos ==-='θθθ,得令 5.求导法:对于数学中的连续函数,我们可以通过求导数的方式求函数的最大值或最小值.由二阶导数判断极值的方法.某点一阶导数为0,二阶导数大于0,说明一阶导数为增函数,判断为最小值;反之,某点一阶导数为0,二阶导数小于0,说明一阶导数为单调减函数,判断此点为最大值.6.用图象法求极值通过分析物理过程所遵循的物理规律,找到变量之间的函数关系,作出其图象,由图象求极值。

7.几何作图法研究复合场中的运动,可将重力和电场力合成后,建立直角坐标系,按等效重力场处理问题。

研究力和运动合成和分解中,可选择合适参考系,将速度及加速度合成,结合矢量三角形处理问题。

高考物理中数学方法

高考物理中数学方法

处理物理问题的数学方法一、极值法1、 利用二次函数求极值:y =ax 2+bx +c =a (x 2+b a x +b 24a 2)+c -b 24a =a (x +b 2a )2+4ac -b 24a(其中a 、b 、c 为实常数),当x =-b2a 时,有极值y m =4ac -b 24a (若二次项系数a >0,y 有极小值;若a <0,y 有极大值).2、 利用三角函数求极值:y =a cos θ+b sin θ=a 2+b 2(a a 2+b 2cos θ+ba 2+b 2sin θ) 令sin φ=a a 2+b 2,cos φ=ba 2+b 2则有:y =a 2+b 2(sin φcos θ+cos φsin θ)=a 2+b 2sin (φ+θ)3、 利用均值不等式求极值:对于两个大于零的变量a 、b ,若其和a +b 为一定值p ,则当a =b 时,其积ab 取得极大值 p 24例题:[2013山东理综 22(15分)]如图所示,一质量m =0.4kg 的小物块,以v 0=2m/s 的初速度,在与斜面成某的角度的拉力F 作用下,沿斜面向上做匀加速运动,经t =2s 的时间物块由A 点运动到B 点,AB 两点间的距离L =10m.已知斜面倾角30=θ,物块与斜面之间的动摩擦因数33=μ,重力加速度g 取10m/s 2. (1)求物块加速度的大小及到达B 点时速度的大小。

(2)拉力F 与斜面夹角多大时,拉力F 最小?拉力F 的最小值是多少? 答:(1)物块加速度的大小为3m/s 2,到达B 点的速度为8m/s ; (2)拉力F 与斜面的夹角30°时,拉力F 最小,最小值是N 53 13=F min解析:(1)物体做匀加速直线运动,根据运动学公式,有:221at L =①, v=at ②联立解得; a=3m/s 2,v=8m/s (2)对物体受力分析 根据牛顿第二定律,有:水平方向:Fcosα-mgsinα-F f =ma 竖直方向:Fsinα+F N -mgcosα=0 其中:F f =μF N 联立解得:α)+sin(60 3 32ma +μcosα)+mg(sin α= sin cos ma +μcosα)+mg(sin α=F ︒+αμα故当α=30°时,拉力F 有最小值,为N 53 13=F min ; 二、几何法利用几何方法求解物理问题时,常用到的有“对称点的性质”、“两点间直线距离最短”、“直角三角形中斜边大于直角边”以及“全等、相似三角形的特性”等相关知识,如:带电粒子在有界磁场中的运动类问题,物体的变力分析时经常要用到相似三角形法、作图法等.与圆有关的几何知识在力学部分和电学部分的解题中均有应用,尤其在带电粒子在匀强磁场中做圆周运动类问题中应用最多,此类问题的难点往往在圆心与半径的确定上常见的几何关系:1.依切线的性质确定.从已给的圆弧上找两条不平行的切线和对应的切点,过切点作切线的垂线,两条垂线的交点为圆心,圆心与切点的连线为半径.2.依垂径定理(垂直于弦的直径平分该弦,且平分弦所对的弧)和相交弦定理(如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项)确定.如图1所示.图1由勾股定理得:R 2=(R -CE )2+EB 2解得:R =EB 22CE +CE2.例题:[2014山东理综 24(20分)]如图-2甲所示,间距为、垂直于纸面的两平行板间存在匀强磁场。

专题极值法-高中物理八大解题方法含解析

专题极值法-高中物理八大解题方法含解析

高中物理解题方法之极值法高中物理中的极值问题,是物理教学研究中的活跃话题。

本文通过例题归纳综合出极值问题的四种主要解法。

一、 二次函数求极值二次函数a ac b a b x a c bx ax y 44)2(222--+=++=,当ab x 2-=时,y 有极值ab ac y m 442-=,若a>0,为极小值,若a<0,为极大值。

例1试证明在非弹性碰撞中,完全非弹性碰撞(碰撞后两物体粘合在一起)动能损失最大。

设第一个物体的质量为1m ,速度为1V 。

第二个物体的质量为2m ,速度为2V 。

碰撞以后的速度分别为'1V 和'2V 。

假使这四个速度都在一条直线上。

根据动量守恒定律有:'+'=+22112211V m V m V m V m (1)如果是完全非弹性碰撞,两物体粘合在一起,(1)则变为V m m V m V m '+=+)(212211,即212211m m V m V m V ++=' (2)现在就是要证明,在满足(1)式的碰撞中,动能损失最大的情况是(2)式。

碰撞中动能损失为ΔE k =()22()22222211222211'+'-+vm v m v m v m (3) 转变为数学问题:ΔE k 为v 的二次函数:由(1)得:v 2ˊ=2112211)(m v m v m v m '-+ (4)将(4)代入(3)得:k =++++-'12221112'1211)(2)(v m v m v m m v m m m m [2222112222112)(22m v m v m v m v m +-+] 二次函数求极值,当v 1ˊ=)()(212211m m v m v m ++ (5) 时∆E k 有极大值。

回到物理问题,将(5)代入(4)得v 2ˊ=)()(212211m m v m v m ++此两式表明,m 1和m 2碰后速度相等,即粘合在一起,此时动能损失(ΔE k )最大。

高中物理最值问题的求法-最新年精选文档

高中物理最值问题的求法-最新年精选文档

高中物理最值问题的求法中学物理中经常涉及到一些求最值的问题,使有的同学感到十分棘手。

其原因是,此类问题的综合性较强、灵活性大。

本文对求解最值问题的方法归纳如下,供参考。

一、运用二次函数的极值求解此方法主要根据二次函数y=ax2+bx+c(a≠0),当x=-■时,有极值ym=■,其中当a0时,ym为最小值。

例1.平直公路上一汽车A以20m/s的速度行驶,现发现前方200m处有一货车B以6m/s的速度同向匀速行驶,A车司机立即以最大加速度0.5m/s2刹车,求A、B车间的最小距离。

解析:数学方法,写出经过时间t,A、B两车距离的表达式d=sB+200-sA=6t+200-(20t-0.25t2)=200-14t+0.25t2 讨论其最值即可,即:d=4+0.25(t-28)2≥4所以当t=28s时,A、B间的最小距离为4m。

物理方法,通过定性分析可得:共速前A快,距离减小;共速后B快,距离增大,所以共速时距离最小。

sA=■=■=364m,sB=6×■=168mdmin=sB+200-sA=4m二、运用均值不等式求解此方法主要根据均值不等式a+b≥2■,a>0,b>0;当a=b时取等号,对不等式的左边有最小值,对右边有最大值。

例2. 如图1所示,为一稳压电路,电源电动势为E,内阻为r,负载电阻为R,求当R取何值时电源的输出功率为最大值,并求出最大值。

解析:设电源的输出功率为P,则有P=(■)2R=■因为(r2/R)?R=r2(定值),故当时(r2/R)=R,即R=r时,(r2/R)+R有最小值2r,这时P为最大值Pmax,即Pmax=■三、运用三角公式asinθ+bcosθ=■sin(θ+Φ)求解此方法主要根据三角函数sin(θ+Φ)=±1时,asinθ+bcosθ有最值,且tgΦ=b/a。

例3. 如图2所示,用力F拉一物体在水平地面上匀速前进,物体的质量为m,物体与地面间的动摩擦因数为μ,欲使F为最小,则F应与竖直方向成多大的夹角?最小的力为多大?解析:设F与竖直方向的夹角为θ,物体匀速前进则有Fsinθ=μ(mg-Fcosθ)即F=■=■其中tgΦ=μ,当θ=90°-Φ=90°-arctgμ时,F有最小值FminFmin=■四、运用判别式法求解此方法主要根据一元二次方程ax2+bx+c=0的判别式△=b2-4ac来确定各物理量之间的相互关系进行求解。

高考复习专题四—求极值的六种方法(解析版)

高考复习专题四—求极值的六种方法(解析版)

微讲座(四)——求极值的六种方法从近几年高考物理试题来看,考查极值问题的频率越来越高,由于这类试题既能考查考生对知识的理解能力、推理能力,又能考查应用数学知识解决问题的能力,因此必将受到高考命题者的青睐.下面介绍极值问题的六种求解方法.一、临界条件法对物理情景和物理过程进行分析,利用临界条件和关系建立方程组求解,这是高中物理中最常用的方法.某高速公路同一直线车道上有同向匀速行驶的轿车和货车,其速度大小分别为v 1=30 m/s ,v 2=10 m/s ,轿车在与货车距离x 0=25 m 时才发现前方有货车,此时轿车只是立即刹车,两车可视为质点.试通过计算分析回答下列问题:(1)若轿车刹车时货车以v 2匀速行驶,要使两车不相撞,轿车刹车的加速度大小至少为多少?(2)若该轿车刹车的最大加速度为a 1=6 m/s 2,轿车在刹车的同时给货车发信号,货车司机经t 0=2 s 收到信号并立即以加速度大小a 2=2 m/s 2加速前进,两车会不会相撞?[解析] (1)两车恰好不相撞的条件是轿车追上货车时两车速度相等,即 v 1-at 1=v 2①v 1t 1-12at 21=v 2t 1+x 0②联立①②代入数据解得:a =8 m/s 2. (2)假设经过时间t 后,两车的速度相等 即v 1-a 1t =v 2+a 2(t -t 0)此时轿车前进的距离x 1=v 1t -12a 1t 2货车前进的距离x 2=v 2t 0+v 2(t -t 0)+12a 2(t -t 0)2代入数据解得:x 1=63 m ,x 2=31 m 因为:x 1-x 2=32 m>x 0,两车会相撞. [答案] (1)8 m/s 2 (2)会相撞 二、二次函数极值法 对于二次函数y =ax 2+bx +c ,当a >0时,y 有最小值y min =4ac -b 24a,当a <0时,y 有最大值y max =4ac -b 24a.也可以采取配方法求解.一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以a =3 m/s 2的加速度开始行驶,恰在这一时刻一辆自行车以v 自=6 m/s 的速度匀速驶来,从旁边超过汽车.试求:汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?[解析] 设汽车在追上自行车之前经过时间t 两车相距最远,则 自行车的位移:x 自=v 自t汽车的位移:x 汽=12at 2则t 时刻两车的距离Δx =v 自t -12at 2代入数据得:Δx =-32t 2+6t当t =-62×⎝⎛⎭⎫-32 s =2 s 时,Δx 有最大值Δx max =0-624×⎝⎛⎭⎫-32 m =6 m对Δx =-32t 2+6t 也可以用配方法求解:Δx =6-32(t -2)2显然,当t =2 s 时,Δx 最大为6 m. (说明:此题也可用临界法求解) [答案] 见解析 三、三角函数法某些物理量之间存在着三角函数关系,可根据三角函数知识求解极值.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2.(1)求物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面的夹角多大时,拉力F 最小?拉力F 的最小值是多少?[解析] (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得:L =v 0t +12at 2①v =v 0+at ②联立①②式,代入数据解得:a =3 m/s 2,v =8 m/s.(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面之间的夹角为α,受力分析如图所示,由牛顿第二定律得:F cos α-mg sin θ-F f =ma ③F sin α+F N -mg cos θ=0④ 又F f =μF N ⑤联立③④⑤解得:F =mg (sin θ+μcos θ)+macos α+μsin α⑥由数学知识得:cos α+33sin α=233sin(60°+α)⑦ 由⑥⑦式可知对应的F 最小值与斜面的夹角α=30°⑧ 联立⑥⑧式,代入数据得F 的最小值为:F min =1335N. [答案] (1)3 m/s 2 8 m/s(2)夹角为30°时,拉力最小,为1335N四、图解法此种方法一般适用于求矢量极值问题,如动态平衡问题,运动的合成问题,都是应用点到直线的距离最短求最小值.质量为m 的物体与水平地面间的动摩擦因数为μ,用图解法求维持物体做匀速运动的最小拉力.[解析] 由F fF N =μ知,不论F f 、F N 为何值,其比值恒定由图知F fF N=μ=tan α,即F ′的方向是确定的.由平衡条件推论可知:mg 、F ′、F 构成闭合三角形.显然,当F ⊥F ′时,F 最小.F min =mg sin α=mg tan α1+tan 2 α=μmg1+μ2.(说明:此题也可用三角函数法求解.) 物体受力分析如图. 由平衡条件得:F ·cos θ=F f ①F ·sin θ+F N =mg ② 又F f =μF N ③联立①②③得:F =μmgcos θ+μsin θ令sin α=11+μ2,cos α=μ1+μ2 则F =μmg1+μ2 sin (α+θ)当sin(α+θ)=1时,F min =μmg1+μ2.[答案] μmg1+μ2五、均值不等式法任意两个正整数a 、b ,若a +b =恒量,当a =b 时,其乘积a ·b 最大;若a ·b =恒量,当a =b 时,其和a +b 最小.在一次国际城市运动会中,要求运动员从高为H 的平台上A 点由静止出发,沿着动摩擦因数为μ的滑道向下运动到B 点后水平滑出,最后落在水池中.设滑道的水平距离为L ,B 点的高度h 可由运动员自由调节(取g =10 m/s 2).(1)求运动员到达B 点的速度与高度h 的关系.(2)运动员要达到最大水平运动距离,B 点的高度h 应调为多大?对应的最大水平距离x max 为多少?(3)若图中H =4 m ,L =5 m ,动摩擦因数μ=0.2,则水平运动距离要达到7 m ,h 值应为多少?[解析] (1)设斜面长度为L 1,斜面倾角为α,根据动能定理得mg (H -h )-μmgL 1cos α=12m v 20①即mg (H -h )=μmgL +12m v 20②v 0=2g (H -h -μL ).③ (2)根据平抛运动公式 x =v 0t ④ h =12gt 2⑤ 由③④⑤式得x =2(H -μL -h )h ⑥由⑥式可得,当h =12(H -μL )时水平距离最大x max =L +H -μL .(3)在⑥式中令x =2 m ,H =4 m ,L =5 m ,μ=0.2 则可得到-h 2+3 h -1=0 求得h 1=3+52m =2.62 m ;h 2=3-52m =0.38 m.[答案] 见解析 六、判别式法一元二次方程的判别式Δ=b 2-4ac ≥0时有实数根,取等号时为极值,在列出的方程数少于未知量个数时,求解极值问题常用这种方法.(原创题)如图所示,顶角为2θ的光滑绝缘圆锥,置于竖直向上的匀强磁场中,磁感应强度为B ,现有质量为m ,带电量为-q 的小球,沿圆锥面在水平面内做圆周运动,求小球做圆周运动的最小半径.[解析] 小球受力如图,设小球做圆周运动的速率为v ,轨道半径为R . 由牛顿第二定律得:水平方向:q v B -F N cos θ=m v 2R竖直方向:F N sin θ-mg =0 两式联立得:m v 2R-q v B +mg cot θ=0 因为速率v 为实数,故Δ≥0 即(qB )2-4⎝⎛⎭⎫m R mg cot θ≥0 解得:R ≥4m 2g cot θq 2B 2故最小半径为:R min =4m 2g cot θq 2B 2.[答案] 4m 2g cot θq 2B 21.(单选)(2016·广州模拟)如图所示,船在A 处开出后沿直线AB 到达对岸,若AB 与河岸成37°角,水流速度为4 m/s ,则船从A 点开出的最小速度为( )A .2 m/sB .2.4 m/sC .3 m/sD .3.5 m/s 解析:选B.AB 方向为合速度方向,由图可知,当v 船⊥AB 时最小,即v 船=v 水·sin 37°=2.4 m/s ,B 正确.2.(单选)如图所示,在倾角为θ的斜面上方的A 点处放置一光滑的木板AB ,B 端刚好在斜面上.木板与竖直方向AC 所成角度为α,一小物块自A 端沿木板由静止滑下,要使物块滑到斜面的时间最短,则α与θ角的大小关系应为( )A .α=θB .α=θ2C .α=θ3D .α=2θ解析:选B.如图所示,在竖直线AC 上选取一点O ,以适当的长度为半径画圆,使该圆过A 点,且与斜面相切于D 点.由等时圆知识可知,由A 沿木板滑到D 所用时间比由A 到达斜面上其他各点所用时间都短.将木板下端与D 点重合即可,而∠COD =θ,则α=θ2.3.(2016·宝鸡检测)如图所示,质量为m 的物体,放在一固定斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F 的水平向右的恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F 多大,都不能使物体沿斜面向上滑行,试求:(1)物体与斜面间的动摩擦因数; (2)这一临界角θ0的大小.解析:(1)斜面倾角为30°时,物体恰能匀速下滑,满足 mg sin 30°=μmg cos 30° 解得μ=33.(2)设斜面倾角为α,受力情况如图,由匀速直线运动的条件: F cos α=mg sin α+F f F N =mg cos α+F sin α F f =μF N解得:F =mg sin α+μmg cos αcos α-μsin α当cos α-μsin α=0,即cot α=μ时,F →∞ 即“不论水平恒力F 多大”,都不能使物体沿斜面向上滑行,此时,临界角θ0=α=60°. 答案:(1)33(2)60°4.如图所示,质量为m =0.1 kg 的小球C 和两根细绳相连,两绳分别固定在细杆的A 、B 两点,其中AC 绳长l A =2 m ,当两绳都拉直时,AC 、BC 两绳和细杆的夹角分别为θ1=30°、θ2=45°,g =10 m/s 2.问:细杆转动的角速度大小在什么范围内,AC 、BC 两绳始终张紧?解析:设两细绳都拉直时,AC 、BC 绳的拉力分别为F TA 、F TB ,由牛顿第二定律可知: 当BC 绳中恰无拉力时,F T A sin θ1=mω21l A sin θ1① F TA cos θ1=mg ②由①②解得ω1=1033rad/s. 当AC 绳中恰无拉力时,F TB sin θ2=mω22l A sin θ1③ F TB cos θ2=mg ④ 由③④解得ω2=10 rad/s.所以,两绳始终有张力时细杆转动的角速度的范围是 1033rad/s <ω<10 rad/s. 答案: 1033rad/s <ω<10 rad/s 5.(原创题)一人在距公路垂直距离为h 的B 点(垂足为A ),公路上有一辆以速度v 1匀速行驶的汽车向A 点行驶,当汽车距A 点距离为L 时,人立即匀速跑向公路拦截汽车,求人能拦截住汽车的最小速度.解析:法一:设人以速度v 2沿图示方向恰好在C 点拦住汽车,用时为t .则L +h tan α=v 1t ① hcos α=v 2t ② 联立①②两式得:v 2=h v 1L cos α+h sin α=h v 1L 2+h 2⎝ ⎛⎭⎪⎫L L 2+h 2cos α+h L 2+h 2sin α由数学知识知:v 2min =h v 1L 2+h 2 .法二:选取汽车为参照物.人正对汽车运动即可拦住汽车,即人的合速度方向指向汽车.其中一分速度大小为v 1,另一分速度为v 2,当v 2与合速度v 垂直时,v 2最小,由相似三角形知识可得:v 2v 1=h L 2+h2 v 2=h v 1L 2+h 2 .答案:h v 1L 2+h 26.小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水平距离d 后落地,如图所示.已知握绳的手离地面高度为d ,手与球之间的绳长为34d ,重力加速度为g .忽略手的运动半径和空气阻力.(1)求绳断时球的速度大小v 1和球落地时的速度大小v 2. (2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?解析:(1)设绳断后球飞行时间为t ,由平抛运动规律,有竖直方向14d =12gt 2,水平方向d =v 1t解得v 1=2gd .由机械能守恒定律有12m v 22=12m v 21+mg ⎝⎛⎭⎫d -34d 得v 2=52gd . (2)设绳能承受的最大拉力大小为F T ,这也是球受到绳的最大拉力大小,即球运动到最低点时球所受到的拉力.球做圆周运动的半径为R =34d由圆周运动向心力公式,有F T -mg =m v 21R得F T =113mg .(3)设绳长为l ,绳断时球的速度大小为v 3,绳承受的最大拉力不变,有F T -mg =m v 23l 得v 3=83gl 绳断后球做平抛运动,竖直位移为d -l ,水平位移为x ,时间为t 1,竖直方向有d -l =12gt 21,水平方向x =v 3t 1 得x =4l (d -l )3当l =d 2时,x 有最大值,x max =233d .答案:见解析 7.(原创题)如图所示,电动势为E 、内阻为r 的电源给一可变电阻供电,已知可变电阻变化范围为0~R m ,且R m >r .当R 为何值时功率最大,最大功率为多少?解析:设可变电阻为R ,则I =ER +rP =I 2R =E 2(R +r )2·R ①法一:(配方法)P =E 2(R -r )2R +4r显然,当R =r 时,功率最大,P max =E 24r.法二:(判别式法)将①式整理成关于R 的二次方程 PR 2+(2Pr -E 2)R +Pr 2=0 由于R 为实数,故Δ≥0 即(2Pr -E 2)2-4P 2r 2≥0 解得:P ≤E 24r最大值为P max =E 24r ,代入①式得R =r .答案:见解析 8.质量分别为M 、m 的斜面体A 、B 叠放在光滑水平面上,斜面体倾角为α,两者之间的动摩擦因数为μ(μ<tan α),今用水平外力F 推B ,使两者不发生滑动,假设最大静摩擦力等于滑动摩擦力,求F 的取值范围.(已知:m =3 kg ,M =8 kg ,μ=0.5,α=37°.)解析:B 恰好不向下滑动时,所需F 最小,此时B 受到最大静摩擦力沿斜面向上.如图甲所示.设两者共同的加速度为a 1,对整体有: F min =(M +m )a 1 对B 有:F min +F f1cos α-F N1sin α=ma 1 F f1sin α+F N1cos α=mg F f1=μ·F N1联立以上各式解得:F min =m (M +m )(sin α-μcos α)M (cos α+μsin α)g =7.5 N甲乙B恰好不上滑时所需F最大,此时B受最大静摩擦力沿斜面向下.如图乙所示.设共同加速度为a2,对整体有:F max=(M+m)a2对B有:F max-F f2cos α-F N2sin α=ma2F N2cos α=mg+F f2sin αF f2=μF N2联立以上各式解得:F max=m(M+m)(sin α+μcos α)M(cos α-μsin α)g=82.5 N故取值范围为7.5 N≤F≤82.5 N.答案:7.5 N≤F≤82.5 N。

高中物理重要方法典型模型突破5-数学方法(3)--极值问题

高中物理重要方法典型模型突破5-数学方法(3)--极值问题

专题五数学方法(3)极值问题【方法点津】求解极值问题的方法从大的方面可分为物理方法和数学方法。

物理方法即用临界条件求极值。

数学方法主要有:三角函数极值法、二次函数极值法、不等式极值法、一元二次方程判别式法等.其它还有如导数法求解。

一般而言,用物理方法求极值简单、直观、形象,对构建物理模型及动态分析等方面的能力要求较高,而用数学方法求极值思路严谨,对数学建模能力要求较高,若能将二者予以融合,则将相得亦彰,对增强解题能力大有裨益。

1.利用三角函数求极值(1)二倍角公式法:如果所求物理量的表达式可以化成y=A sin θcos θ,则根据二倍角公式,有y=sin2θ,当θ=45°时,y有最大值,y max=.(2)和差角公式法:如果所求物理量的表达式为y=a sin θ+b cos θ,通过和差角公式转化为y=sin(θ+φ),当θ+φ=90°时,y有最大值,y max=.2.利用二次函数求极值二次函数y=ax2+bx+c(a、b、c为常数且a≠0),当x=-时,y有极值y m=(a>0时,y m 为极小值;a<0时,y m为极大值).3.利用均值不等式求极值对于两个大于零的变量a、b,若其和a+b为一定值,则当a=b时,其积ab有极大值;若其积ab为一定值,则当a=b时,其和a+b有极小值.【典例突破】利用数学方法求极值分析求解物理量在某物理过程中的极大值或极小值是很常见的物理问题,这类问题的数学解法Fθ有很多,【例1】重为G 的木块与水平面间动摩擦因数为μ,一人欲用最小的作用力F 使木块沿地面匀速运动,则此最小作用力的大小和方向如何?【练1】如图所示,质量为kg M 2=的木块与水平地面的动摩擦因数4.0=μ,木块用轻绳绕过光滑的定滑轮,轻绳另一端施一大小为20N 的恒力F ,使木块沿地面向右做直线运动,定滑轮离地面的高度cm h 10=,木块M 可视为质点,问木块从较远处向右运动到离定滑轮多远时加速度最大?最大加速度为多少?【例2】 在场强为E 的水平匀强电场中以初速度v 0竖直向上发射一个质量为m 、带电荷量为+q 的小球,求小球在运动过程中具有的最小速度.(重力加速度为g )【练2】一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s 2的加速度开始行驶。

高中物理求极值方法与常用结论总结

高中物理求极值方法与常用结论总结

高中物理求极值方法与常用结论总结(一)利用分式的性质求极值[例1] 物体A放在水平面上,作用在A上的推力F与水平方向成30º角,如图示。

使A作匀速直线运动。

试问,当物体A与水平面之间的摩擦系数μ为多大时,不管F增大到多大,都可以使A在水平面上,作匀速直线运动?解:A受力如图所示,由已知,A处于平衡状态,有:Fcosα=fFcos30º=μ(G+Fsin30º),得F=由已知当公式的分母为零,即F→∞的匀速运动时sin30º-μcos30º=0时得μ=tg30º=0.58,则F→∞,此时都可以使A在水平面上作匀速直线运动。

(二)利用一元二次方程求根公式求极值有些问题,通过分析列关系式,最后整理出关于一个未知量的一元二次方程。

它的根就可能是要求的极值。

这种方法应用是很普遍的。

(三)利用一元二次方程判别式△=b2-4ac≥O求极值[例2] 一个质量为M的圆环,用细线悬挂着。

将两个质量为m的有孔的小珠套在环上,且可沿环无摩擦滑动,如图(a)所示。

今将两小珠从环的顶端由静止开始释放。

证明,当m>M 时,圆环能升起。

证明:取小球为研究对象,受力如图(a)。

由牛顿第二定律,得所mgcosθ+N=由机械能守恒定律,得mgR(1-cosθ)=由此二式得N=2mg-3mgcosθ(1)上式中,N>0,即cosθ<以环为研究对象,受力图如(b),在竖直方向,由牛顿第二定律,有T+2N’cosθ—Mg=Ma当环恰好能上升时,a=0,可得2N’cosθ=Mg (3)将(1)代入(3)式中,其中N’为(a)图中N的反作用力。

有2(2mg-3mgcosθ)cosθ=Mg 即6mcos2θ-4mcosθ+M=0 (4)(4)式是关于cosθ的一元二次方程。

cosθ为实数,则△≥0,即(4m)2-4(6m)M≥0,可得m≥M 当m=M时,T恰好为零,但不升起,所以取m>M为升起条件。

高中物理求极值方法与常用结论总结

高中物理求极值方法与常用结论总结

高中物理求极值方法与常用结论总结高中物理中,求极值是一个重要的数学应用问题。

很多物理问题都需要通过求极值来进行分析和解决,因此掌握求极值方法和常用结论是十分重要的。

下面将为你总结高中物理求极值的方法和常用结论。

一、求极值的方法1.寻找最值法:通过寻找物理问题的最大值或最小值来求出极值。

2.解析法:通过建立数学模型,对其求导或使用其他数学方法得出极值。

3.几何方法:通过几何图形的性质和分析来求出极值。

二、常用结论1.极大值与极小值:对于一元函数f(x),若在x=a处,f'(a)=0,并且在a点左侧由正变负,在a点右侧由负变正,则a称为f(x)的极大值点;若在x=b处,f'(b)=0,并且在b点左侧由负变正,在b点右侧由正变负,则b称为f(x)的极小值点。

2.拐点与拐点性质:对于函数f(x),若在x=c处f''(c)=0,并且在c点左侧由负变正,在c点右侧由正变负,则c称为f(x)的拐点。

拐点的性质为:由凹变凸的拐点称为极小值点,由凸变凹的拐点称为极大值点。

3.一元二次函数的最值结论:一元二次函数y=ax^2+bx+c(其中a≠0)的最值点可以通过如下结论求得:当a>0时,最小值为:y_min=c-b^2/(4a)当a<0时,最大值为:y_max=c-b^2/(4a)4.相对速度最小值结论:当两个运动着的物体相对于一些静止参考系运动时,它们的相对速度最小值出现在它们的运动方向夹角为0°或者180°时。

5.成千上万法:在解决物理问题中,当数据较多时,可以通过逐个数值代入进行计算。

6.速度为零但加速度不为零时的移动物体:当一个物体在其中一时刻速度为零(静止),但加速度不为零时,可以通过如下结论求出物体在这一时刻的位置:位移s = (1/2)at^2,其中a为加速度,t为时间。

7.物体自由落体的最高点:自由落体的物体在竖直上抛运动中,最高点时速度为零,也就是物体停止上升,准备掉下来。

高中物理求极值方法与常用结论总结

高中物理求极值方法与常用结论总结

高中物理求极值方法与常用结论总结高中物理中,求极值方法和常用结论是常见的问题类型,通过总结这些方法和结论,有助于高中物理学习者更好地理解和应用。

一、求极值方法:1.极值定理:对于一个连续函数f(x)在闭区间[a,b]上,必然存在至少一个极大值和极小值,即f(x)在[a,b]上必然取得极值。

2.导数法则:利用导数的相关概念和性质,可以简化极值的求解过程。

(1)极值的必要条件:函数f(x)在x=c处取得极值,必然满足f'(c)=0。

(2)极值的充分条件:若函数f'(x)在x=c的邻域内存在符号变化,且在c处f''(c)存在,则f(x)在x=c处取得极值。

3.端点法:闭区间[a,b]上的函数f(x),当x=a或x=b时,可以直接求解f(a)和f(b),作为极值的候选值。

4.区间内部法:闭区间[a,b]上的函数f(x),通过求解f'(x)=0,得到f(x)的驻点。

然后比较驻点和两个端点的函数值,选取最大和最小值作为极值。

5.辅助线法:即画出函数的图像,观察图像的整体形状,然后根据函数的性质和题目要求,确定极值所在的位置。

二、常用结论:1.函数的单调性:函数在给定的定义域内是递增的还是递减的。

(1)若f'(x)>0,则f(x)在区间上递增。

(2)若f'(x)<0,则f(x)在区间上递减。

2.极值判定:通过一、二阶导数的符号来判断函数的极值。

(1)若f''(x)>0,则f(x)在x处取得极小值。

(2)若f''(x)<0,则f(x)在x处取得极大值。

3.凹凸性:函数图像在其中一区间上是凹向上还是凹向下。

(1)若f''(x)>0,则f(x)在区间上是凹向上的。

(2)若f''(x)<0,则f(x)在区间上是凹向下的。

4.零点定理:对于一个连续函数f(x),若f(a)和f(b)异号,则在开区间(a,b)内至少存在一个实根。

【高中物理 极值问题的典型题】(带答案)

【高中物理  极值问题的典型题】(带答案)

【高中物理 极值问题的典型题】一、单项选择题1.(图解法求极值)如图所示,质量为m 的小球用细线拴住放在光滑斜面上,斜面足够长,倾角为α的斜面体置于光滑水平面上,用水平力F 推斜面体使斜面体缓慢地向左移动,小球沿斜面缓慢升高.当线拉力最小时,推力F 等于( )A .mg sin α B.12mg sin α C .mg sin 2α D.12mg sin 2α2.(三角函数法求极值)一个质量为1 kg 的物体放在粗糙的水平地面上,今用最小的拉力拉它,使之做匀速直线运动,已知这个最小拉力大小为6 N ,取g =10 m/s 2,则下列关于物体与地面间的动摩擦因数μ的取值,正确的是( )A .μ=916B.μ=43C .μ=34D.μ=353.(二次函数法求极值)如图,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直.一小物块以速度v 从轨道下端滑入轨道,并从轨道上端水平飞出,小物块落地点到轨道下端的距离与轨道半径有关,此距离最大时,对应的轨道半径为(重力加速度为g )( )A.v 216gB.v 28gC.v 24gD.v 22g二、多项选择题4.(图解法求电场极值问题)如图,在竖直平面内有一匀强电场,一带电量为+q 、质量为m 的小球在力F (大小可以变化)的作用下沿图中虚线由A 至B 做竖直向上的匀速运动.已知力F 和AB 间夹角为θ,AB 间距离为d ,重力加速度为g .则( )A .力F 大小的取值范围只能在0~mgcos θB .电场强度E 的最小值为mg sin θqC .小球从A 运动到B 电场力可能不做功D .若电场强度E =mg tan θq 时,小球从A 运动到B 电势能变化量大小可能为2mgd sin 2 θ5.(三角函数求极值问题)如图甲所示,为测定物体冲上粗糙斜面能达到的最大位移x 与斜面倾角θ的关系,将某一物体每次以不变的初速率v 0沿足够长的斜面向上推出,调节斜面与水平方向的夹角θ,实验测得x 与斜面倾角θ的关系如图乙所示,g 取10 m/s 2,根据图象可求出( )A .物体的初速率v 0=3 m/sB .物体与斜面间的动摩擦因数μ=0.75C .取不同的倾角θ,物体在斜面上能达到的位移x 的最小值x min =1.44 mD .当θ=45°时,物体达到最大位移后将停在斜面上三、计算题6.(三角函数求极值)如图所示,水平地面上放置一个质量为m 的物体,在与水平方向成θ角、斜向右上方的拉力F 的作用下沿水平地面运动.物体与地面间的动摩擦因数为μ,重力加速度为g .求:(1)若物体在拉力F 的作用下能始终沿水平面向右运动且不脱离地面,拉力F 的大小范围.(2)已知m =10 kg ,μ=0.5,g =10 m/s 2,若F 的方向可以改变,求使物体以恒定加速度a =5 m/s 2向右做匀加速直线运动时,拉力F 的最小值.7.(二次函数求极值问题)如图所示,位于竖直平面上有14圆弧的光滑轨道,半径为R ,OB 沿竖直方向,圆弧轨道上端A 点距地面高度为H .当把质量为m 的钢球从A 点静止释放,最后落在了水平地面的C点处.若本地的重力加速度为g,且不计空气阻力.求:(1)钢球运动到B点的瞬间受到的支持力多大;(2)钢球落地点C距B点的水平距离s为多少;(3)比值RH为多少时,小球落地点C距B点的水平距离s最大?这个最大值是多少?8.(极限法求极值问题)如图所示,质量为m的物体,放在一固定斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F的水平向右恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F多大,都不能使物体沿斜面向上滑行,求:(1)物体与斜面间的动摩擦因数;(2)这一临界角θ0的大小.9.(物理过程分析求极值)如图所示,绝缘轨道CDGH位于竖直平面内,圆弧段DG的圆心角为θ=37°,DG与水平段CD、倾斜段GH分别相切于D点和G点,CD段粗糙,DGH 段光滑,在H处固定一垂直于轨道的绝缘挡板,整个轨道处于场强为E=1×104 N/C、水平向右的匀强电场中.一质量m=4×10-3 kg、带电量q=+3×10-6 C的小滑块在C处由静止释放,经挡板碰撞后滑回到CD段的中点P处时速度恰好为零.已知CD段长度L=0.8 m,圆弧DG的半径r=0.2 m,不计滑块与挡板碰撞时的动能损失,滑块可视为质点.求:(1)滑块与CD段之间的动摩擦因数μ;(2)滑块在CD段上运动的总路程;(3)滑块与绝缘挡板碰撞时的最大动能和最小动能.10.(二次函数法求极值)如图所示,质量为km小球a,用l1=0.4 m的细线悬挂于O1点,质量为m小球b,用l2=0.8 m的细线悬挂于O2点,且O1、O2两点在同一条竖直线上.让小球a静止下垂,将小球b向右拉起,使细线水平,从静止释放,两球刚好在最低点对心相碰.相碰后,小球a向左摆动,细线与竖直方向最大偏角为60°,两小球可视为质点,空气阻力忽略不计,仅考虑首次碰撞.取g=10 m/s2.求:(1)两球相碰前小球b的速度大小;(2)讨论k可能的取值范围;(3)所有满足题干要求的碰撞情形中,k取何值时?机械能损失最多.11.(不等式法求极值)如图所示,在粗糙水平台阶上静止放置一质量m=0.5 kg的小物块,它与水平台阶表面间的动摩擦因数μ=0.5,且与台阶边缘O点的距离s=5 m.在台阶右侧固定了一个以O点为圆心的圆弧形挡板,现用F=5 N的水平恒力拉动小物块,一段时间后撤去拉力,小物块最终水平抛出并击中挡板.(g取10 m/s2)(1)若小物块恰能击中挡板的上边缘P点,P点的坐标为(1.6 m,0.8 m),求其离开O点时的速度大小;(2)为使小物块击中挡板,求拉力F作用的距离范围;(3)改变拉力F的作用时间,使小物块击中挡板的不同位置,求击中挡板时小物块动能的最小值.(结果可保留根式)【高中物理极值问题的典型题】【高中物理 极值问题的典型题】答案解析1.D 以小球为研究对象.小球受到重力mg 、斜面的支持力N 和细线的拉力T ,在小球缓慢上升过程中,小球受的合力为零,则N 与T 的合力与重力大小相等、方向相反,根据平行四边形定则作出三个力的合成图如图,则当T 与N 垂直,即线与斜面平行时T 最小,则得线的拉力最小值为:T min =mg sin α,再对小球和斜面体组成的整体研究,根据平衡条件得:F =T min cos α=(mg sinα)cos α=12mg sin 2α,故A 、B 、C 错误,D 正确.2.C 物体在水平面上做匀速直线运动,可知拉力在水平方向的分力与滑动摩擦力相等.以物体为研究对象,受力分析如图所示,因为物体处于平衡状态.水平方向有F cos α=μF N ,竖直方向有F sin α+F N =mg .联立可解得:F =μmg cos α+μsin α=μmg1+μ2sin α+φ,当α+φ=90°时,sin(α+φ)=1,F 有最小值,F min =μmg 1+μ2,代入数值得μ=34. 3.B 据机械能守恒定律有12mv 2=mg ·2R +12mv 2x ,物块从轨道上端水平飞出做平抛运动,有2R =12gt 2和x =v x t ,联立x =-16R 2+4v2gR ,解得水平距离最大时,对应的轨道半径为v 28g,故选B. 4.BCD 因为小球做匀速直线运动,合力为零,则F 与qE 的合力与重力mg 大小相等、方向相反,作出F 与qE 的合力,如图所示,拉力F 的取值随着电场强度方向的变化而变化,如果电场强度方向斜向右下方,则F 的值将大于mgcos θ,故A 错误;由图可知,当电场力qE 与F 垂直时,电场力最小,此时场强也最小,则qE =mg sin θ,解得电场强度的最小值为E =mg sin θq,故B 正确;当电场力qE 与AB 方向垂直时,小球从A 运动到B 电场力不做功,故C 正确;若电场强度E =mg tan θq时,即qE =mg tan θ时,电场力qE 可能与AB 方向垂直,如图位置1,电场力不做功,电势能变化量为0,电场力的方向也可能位于位置2方向,则电场力做功为W =qE sin 2θ·d =q ·mg tan θqsin 2θ·d =2mgd sin 2θ,故D 正确.5.BC 由图可知,当θ=90°时,物体做竖直上抛运动,位移为1.80 m ,则由动能定理得-mgh =0-12mv 20,解得v 0=2gh =2×10×1.80 m/s =6 m/s ,故A 错误;当θ=0°时,位移为2.40 m ,由动能定理得-μmgx =0-12mv 20,解得μ=v 202gx =622×10×2.4=0.75,故B 正确;由动能定理得-mgx sin θ-μmgx cos θ=0-12mv 20,解得x =v 202g sin θ+μcos θ=622×10sin θ+0.75cos θ= 1.854sin θ+α,当θ+α=90°时,sin(θ+α)=1,此时位移最小,解得x min =1.44 m ,故C 正确;若θ=45°时,由于mg sin 45°>μmg cos 45°,故物体到达最大位移后会下滑,故D 错误.6.解析 (1)要使物体运动时不离开地面, 应有:F sin θ≤mg 要使物体能一直向右运动, 应有:F cos θ≥μ(mg -F sin θ) 联立解得:μmg cos θ+μsin θ≤F ≤mgsin θ(2)根据牛顿第二定律得F cos θ-μ(mg -F sin θ)=ma 解得:F =μmg +macos θ+μsin θ上式变形得F =μmg +ma1+μ2sin θ+α其中α=arcsin11+μ2当sin(θ+α)=1时,F 有最小值 解得:F min =μmg +ma1+μ2代入相关数据解得:F min =40 5 N答案 (1)μmg cos θ+μsin θ≤F ≤mgsin θ(2)40 5 N7.解析 (1)钢球由A 到B 过程由机械能守恒定律得:mgR =12mv 2在B 点对钢球由牛顿第二定律得:F N -mg =m v 2R解得:F N =3mg(2)钢球离开B 点后做平抛运动,则有:H -R =12gt 2 s =vt解得:s =2H -R R (3)s =2H -R R =2-⎝ ⎛⎭⎪⎫R -H 22+H 24根据数学知识可知,当R =12H ,即R H =12时,s 有最大值,s 最大=H答案 (1)3mg (2)2H -R R (3)12H8.解析 (1)对物体受力分析,由平衡条件得:mg sin 30°-μmg cos 30°=0解得:μ=tan 30°=33(2)设斜面倾角为α时,受力情况如图所示:由平衡条件得:F cos α=mg sin α+F fF N =mg cos α+F sin α F f =μF N解得:F =mg sin α+μmg cos αcos α-μsin α当cos α-μsin α=0,即tan α=3时,F →∞,即“不论水平恒力F 多大,都不能使物体沿斜面向上滑行”,此时,临界角θ0=α=60°答案 (1)33(2)60° 9.解析 (1)滑块由C 处释放,经挡板碰撞后第一次滑回P 点的过程中,由动能定理得:qE ·L 2-μmg ⎝ ⎛⎭⎪⎫L +L 2=0解得:μ=0.25(2)滑块在CD 段上受到的滑动摩擦力μmg =0.01 N ,电场力qE =0.03 N ,滑动摩擦力小于电场力,故不可能停在CD 段,滑块最终会在DGH 间来回往复运动,到达D 点的速度为0,全过程由动能定理得:qE ·L -μmgs =0解得:s =2.4 m(3)滑块在GH 段运动时:qE cos θ-mg sin θ=0故滑块与绝缘挡板碰撞的最大动能为滑块第一次运动到G 点的动能 对C 到G 过程,由动能定理得:Eq (L +r sin θ)-μmgL -mgr (1-cos θ)=E kmax -0解得:E kmax =0.018 J滑块最终在DGH 间来回往复运动,碰撞绝缘挡板有最小动能 对D 到G 过程由动能定理得:Eqr sin θ-mgr (1-cos θ)=E kmin -0 E kmin =0.002 J答案 (1)0.25 (2)2.4 m (3)0.018 J 0.002 J 10.解析 (1)对小球b 下摆过程:mgl 2=12mv 2b ,得出碰前v b =4 m/s ,(2)小球a 上摆过程:kmgl 1(1-cos 60°)=12kmv 2a ,碰后v a =2 m/s ,对两球碰撞过程有mv b =mv b ′+kmv a ,得出v b ′=4-2k .由碰撞过程动能不增加有:12mv 2b ≥12mv b ′2+12kmv 2a ,得出k ≤3,此外由碰撞中合理性原则得:v b ′=4-2k ≤v a =2,得出k ≥1.综上所述1≤k ≤3. (3)碰撞中动能损失ΔE =12mv 2b -12mv b ′2-12kmv 2a =2m (3k -k 2)可以得出当k =1.5时,动能损失最大. 答案 (1)4 m/s (2)1≤k ≤3 (3)1.511.解析 (1)设小物块离开O 点时的速度为v 0,由平抛运动规律,水平方向:x =v 0t 竖直方向:y =12gt 2解得:v 0=4 m/s(2)为使小物块击中挡板,小物块必须能运动到O 点,设拉力F 作用的最短距离为x 1,由动能定理:Fx 1-μmgs =0解得x 1=2.5 m为使小物块击中挡板,小物块的平抛初速度不能超过4 m/s ,设拉力F 作用的最长距离为x 2,由动能定理:Fx 2-μmgs =12mv 20解得x 2=3.3 m则为使小物块击中挡板,拉力作用的距离范围为 2.5 m <x ≤3.3 m(3)设小物块击中挡板的任意一点坐标为(x ,y ),则有x =v 0′t ′,y =12gt ′2由机械能守恒定律得E k =12mv 0′2+mgy又x 2+y 2=R 2由P 点坐标可求R 2=3.2 m 2化简得E k =mgR 24y +3mgy 4=4y +154y =⎝ ⎛⎭⎪⎫2y -15y 22+215(式中物理量均取国际单位制的单位)由数学方法求得E kmin =215 J答案 (1)4 m/s (2)2.5 m <x ≤3.3 m (3)215 J。

高中物理教学论文 数学极值法在物理问题中的妙用

高中物理教学论文 数学极值法在物理问题中的妙用

“数学极值法”在物理问题中的妙用应用数学知识处理物理问题的能力,是物理教学培养学生五个方面能力中的重要一个.其中,数学求极值的方法在解决物理问题时被广泛应用.现就高中物理解题过程中常遇到的几种数学求极值的方法归纳如下,以期同广大同仁进行交流. 1.关于 θθcos sin b a Y += 的应用 )sin(cos sin 22ϕθθθ++=+=b a b a Y 且ϕtg =ab.要使Y 有最大值,需1)sin(=+ϕθ, 即︒=+90ϕθ.例1.如图1所示,质量为m 的物块放置在水平地面上,物块与地面的动摩擦因数为μ,要使小物块沿水平面匀速运动,θ为何值时,F 有最小值?是多少?解:以m 为研究对象, 受力分析如右图: m 匀速运动时:mgF F F F N N =+=θμθsin cos)sin(1mgsin cos mg 2ϕθμμθμθμ++=+=F ,μϕ1=tg . 当 2min 1mgF 1arctan 22μμμπϕπθ+=-=-=时,.2.关于c bx axY ++=2的应用根据二次函数的特点:0>a 时, 图象开口向上,Y 有最小值; 0<a 时,图象开口向下,Y 有最大值.且当abx 2-=时,Y 有最值. 例2.一辆汽车在十字路口等候绿灯,当绿灯亮时汽车汽车以2/3s m 的速度开始行驶,恰在这时一辆自行车以s m /6的速度匀速驶来,从后面赶过汽车.试求:汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此距离是多少?解析:设汽车在追上自行车之前经t 秒两车相距最远,则有:6)2(2323621222+--=-=-=∆t t t at t v s 自由二次函数的极值条件知:s t 2=时,s ∆最大,最大值为m 6图 1F NF3.关于判别式0≥∆的应用要使方程02=++c bx ax 有解,须满足0≥∆.例3 质点从A 点由静止出发沿直线运动到B 点停止,在这段时间内,物体可以做匀速运动,也可以做加速度为a 的匀变速运动,要使质点从A 到B 运动的时间最短,质点应如何运动已知?最短时间是多少?已知A 、B 间的距离为s .解析:质点从A 到B 最简单的运动形式为:先做匀加速,再做匀速,最后做匀减速. 设质点从A 到B 运动的总时间为t ,做匀加速的时间为1t ,做匀减速运动的时间为3t ,则做匀速直线运动的时间为31t t t --根据题意有:31t t = ①)(21213112321t t t at at at s --++=② 由①②两式得: 0121=+-s att at ③要使③式有解,须满足0≥∆ 即 04)(2≥-as at 得as t 2≥ 即t 的最小值为:a st 2= 带入③得ast t ==31 即物体先做匀加速直线运动后做匀 减速直线运动.4.关于定和求积原理的应用两数和为常数,当两数相等时其乘积最大.由)0,0(,2)(2>>+≤y x y x xy ,若P y x =+(定值),则当y x =时:x 、y 的乘积有极大值. 例5.已知Ω=21R ,Ω=32R ,Ω=53R 电源电动势V 6=ε,电源内阻 Ω=5.0γ.问:变阻器滑动片在何处时,电源发热功率最小?解析:设电源发热功率为P ,干路电流为I 据γ⋅=2I P , 可知:I 最小时,P 最小.外R I +=γε ①32132x 1)()R R R R R R R R R x ++-+⋅+=(外 ②根据定和求积原理可知:当x x R R R R R -+=+321时,I 有最小值. 即Ω=-+=32132R R R R x 时,I 的最小值为A I 2min =得:W P 2min = 5.关于定积求和原理的应用两数乘积为常数时,两数相等时,其和值最小. 由xy y x 2≥+, 若常数)(k xy =, 则x y =时,x 与y 的和最小.例6:一个连同装备总质量为M 的宇航员,在距离飞船S 处与飞船处于相对静止状态,他准备对太空中的哈勃望远镜进行维修.宇航员背着装有质量为0m 的2O 贮气筒,筒内有一个可以使2O 以速度v 喷出的喷嘴,宇航员维修完毕后,必须向反方向释放2O ,才能回到飞船,同时又必须保留一部分2O 供途中呼吸之用,宇航员的耗氧率为Q (kg/s).若不考虑喷出2O 对质量的影响,求:为了使总耗氧量最低,应该一次喷出多少氧气?解析:以飞船为参照物,设喷出质量m 的氧气时,宇航员获得'v 的速度,则由动量守 恒可知:0)('=--mv v m M因不考虑喷出2O 对质量的影响,所以有:Mmvv ='宇航员返回时间: mv Msvs t =='宇航员返回过程中呼吸用氧mvQMsQt m =='故总耗氧量为mvQMsm m m +=+'因: 定值)(v QMs mv QMs m=,故当mvQMsm =时耗氧量最少 则总耗氧量最少为vQMs26.关于求导法求函数极限的应用一般地,当函数)(x f y =在0x 连续时,判别)(0x f 是极大(小)值的方法是:(1)如果在0x 附近的左侧0)('>x f ,右侧0)('<x f ,那么,)(0x f 是极大值. (2)如果在0x 附近的左侧0)('<x f ,右侧0)('>x f ,那么,)(0x f 是极小值. 例7 如图所示.一根不可伸长的轻绳两端各系一个小球a 和b ,跨在两根固定在同一高度的光滑水平细杆上,质量为3m 的a 球置于地面上,质量为m 的b 球从水平位置静止释放.当a 球对地面压力刚好为零时,b 球摆过的角度为θ.下列结论正确的是 ( ) A .θ=90° B .θ=45°C .b 球摆动到最低点的过程中,重力对小球做功的功率先增大后减小D .b 球摆动到最低点的过程中,重力对小球做功的功率一直增大解析:由机械能守恒以及圆周运动的相关知识可求得:当a 球对地面压力刚好为零时,b 球摆过的角度θ为090.设b 球的摆动半径为R ,当摆过角度θ时的速度为v ,对b 球由动能定理:221mv sin mgR =θ① 此时重力的瞬时功率为: θcos mgv p = ② 由① ②得: θθ2322cos sin 2R g m p = ③对于函数θθ2cos sin =y 其一阶导数为:)sin 31(cos cos sin 3cos 22'θθθθθ-=-=y33arcsin0<<θ 0'>y 原函数单调递增 233arcsinπθ<< 0'<y 原函数单调递减 故当33arcsin =θ y 取极大值.即b 球摆动到最低点的过程中,重力对小球做功的功率先增大后减小.。

高中物理解题方法之三角函数法

高中物理解题方法之三角函数法

5三角函数法三角函数配角法求极值是数学中常用的技巧之一,即将三角函数式中的自变量进行配角整理画成两角和的正弦或余弦,便能得到函数的极值。

当得出的式中不是典型的函数类型时,可通过等效变换进行转化。

利用三角函数公式把所列的方程简化,变成仅含有单个三角函数的式子,然后利用单个三角函数的性质解决问题θθθ2sin 2cos sin AA y ==当24A Y 有极大值时πθ=。

[例题1]已知底边AB 长恒为L 的光滑斜面,斜面倾角可变,物块从斜面顶端C 由静止释放,求倾角为多大时物块滑到底端所用的时间最短?最短为多少?解析:由几何关系得斜面长θcos LS =下滑的加速度θsin g a =,下滑的时间θθθ2sin 4cos sin 22g l g la s t ===,所以当倾角gLe 42s i n 450小值有最大值此时时间有最时θθ= [例题2]一辆有1/4光滑圆弧的小车停在粗糙的水平地面上,质量为m 的小球从静止开始由车顶滑下,且小车始终保持静止状态,求小球运动到什么位置时财面对小车的摩擦力最大?最大值为多少?解析:设圆弧半径为R 。

当小球运动到重力与半径夹角为时,速度为v ,根据机械能守恒定律θcos 212mgR mv =,根据牛顿第二定律Rmv mg N 2cos =-θ联立解得θcos 3mg N =小车处于平衡状态所以静摩擦力θθθθ2sin 23sin cos 3sin mg mg N f === 所以当12sin 450有最大值时e θθ=,此时地面对小车的静摩擦力有最大值,mg f 23max =当物理方程中含有x b x a cos sin +的形式时,可将式子变形为)cos sin (222222x ba b x b a a b a ++++令22cos ba a +=ϕ则22sin ba b +=ϕ则()()x b a x x b a x ba b x ba ab a ++=++=++++ϕϕϕsin cos sin sin cos )cos sin (2222222222当()1sin =+x ϕ时,上式极大值为22b a +[例题3]如图所示质量为m=5kg 的物块置于粗糙的水平 地面上,物块与地面间的摩擦因数为31,若使物块匀速运动,求所施加最小力F 的大小和方向?解析:设所加力与水平面的夹角为,由平衡条件0sin 0cos =-+=-mg F N N F θμθ竖直方向水平方向 解得)c os1s in11(1s inc os222222θμμθμμμθμθμ++++=+=mgmg F令2211sin μϕ+=则221cos μμϕ+=,所以()()θϕμμθϕθϕμμ++=++=si n1s i nc o sc o s s i n 12222m gm gF ,所以当当()1s i n=+θϕ时,即时之和为与090θϕ,力F 有极小值为N mgF 2512min =+=μμ,此时2311s i n22=+=μϕ,所以060=ϕ,则030=θ所以最小力25N ,与水平面的夹角为030=θ斜向上[例题4]如图所示,山高为h ,山顶A 到山下B 处的水平距离为s ,现要修一条水道ACB ,其中AC 为斜面,若不计一切摩擦,则斜面AC 的倾角θ为多大时,方可使物体由A 点静止释放后滑到B 点历时最短?最短时间为多长?解析:由于物体从倾角为θ的斜面上静止释放后做的是初速度为零、加速度为θsin g的匀加速直线运动,进入水平面后将做匀速直线运动,于是有21sin 21sin t g h θθ= 1sin t g v θ= 2cot vt h s =-θ消去1t 、2t 、v 可把t 表示为θ函数θθsin cos 2.22-+=g h ghs t 上述函数的复杂性将使得春极值点与极值的求解较为困难,可作如下处理,将其转换成典型的函数类型进而求解。

高中物理-第二篇 四、数学方法在物理中的应用

高中物理-第二篇 四、数学方法在物理中的应用

二、均值不等式 由均值不等式a+b≥ 2 ab (a>0,b>0)可知: (1)两个正数的积为定值时,若两数相等,和最小; (2)两个正数的和为定值时,若两数相等,积最大.
例5 如图所示,在直角坐标系xOy的第一象限区域 中,有沿y轴正方向的匀强电场,电场强度的大小为 E=kv0.在第二象限有一半径为R=b的圆形区域磁场, 圆形磁场的圆心O1坐标为(-b,b),与两坐标轴分别 相切于P点和N点,磁场方向垂直纸面向里.在x=3b处垂直于x轴放置一平 面荧光屏,与x轴交点为Q.大量的电子以相同的速率在纸面内从P点进入 圆形磁场,电子的速度方向在与x轴正方向成θ角的范围内,其中沿y轴正 方向的电子经过磁场到达N点,速度与x轴正方向成θ角的电子经过磁场到 达M点且M点坐标为(0,1.5b).忽略电子间的相互作用力,不计电子的重力, 电子的比荷为 me =kvb0 .求:
射出电场时的夹角为α,vy=at
有 tan α=vv0y=
2y b
有H=(3b-x)tan α
=(3 b- 2y)· 2y
当 3 b- 2y= 2y,
即 y=98b 时,H 有最大值. 由于98b<1.5b,所以 Hmax=94b.
三、利用二次函数求极值 二次函数:y=ax2+bx+c (1)当 x=-2ba时,有极值 ym=4ac4-a b2(若二次项系数 a>0,y 有极小值; 若 a<0,y 有极大值).
答案
3 4mg
方向水平向右
根据题设条件,电场力大小 F 电=mgtan 37°=34mg,方向水平向右.
(2)小球的最小速度的大小及方向.
答案
3 5v0
与电场方向夹角为 37°斜向上
小球沿竖直方向做匀减速运动: vy=v0-gt; 沿水平方向做初速度为零的匀加速运动: ax=Fm电=34g,vx=axt; 小球的速度 v= vx2+vy2, 由以上各式可得关于v2的函数解析式: v2=2156g2t2-2v0gt+v02.

高中物理中的极值问题及求解方法

高中物理中的极值问题及求解方法

高中物理中的极值问题及求解方法随着高考新课程改革的深入及素质教育的全面推广,物理极值问题成为中学物理教学的一个重要内容,它对培养学生的理解能力、逻辑推理能力、数学运算能力、综合分析能力都有很高要求,所以研究极值问题的规律和探究解决解决极值问题的方法,对于培养学生创造性思维能力和掌握科学研究的方法均有重要的意义。

一、 利用数学方法求极值1.配方法: 2224()24b ac b ax bx c a x a a-++=++当a >0时,当2bx a=-时,y 有最小值为:2min 44ac b y a -=当a <0时,当2bx a=- 时,y 有最大值为:2max 44ac b y a -=例1.如图所示摩托车做腾跃特技表演,以速度v 0=10m /s 冲上顶部水平的高台试分析:当台高h 多大时飞出,求跳板高度h 多大时,飞出的水平距离最远?且最大值是多少?(一切摩擦不计,取g=10 m /s 2)。

解析:设摩托车从高台飞出的水平速度为v ,根据机械能守恒定律有:2201122mv mgh mv =+ ① 摩托车飞出后做平抛运动,飞出的水平距离:2hs vt vg== ② 由①和②有:222002224h v s v gh h h g g=-=-g③ 因为40a =-<,所以s 有最大值的条件为:22002/ 2.522(4)4b v g v h m a g=-=-==⨯- ④且最大距离为; 2max 52v s m g== ⑤ 例2甲、乙两车同时从同一地点出发,向同一方向运动,其中甲以10 m/s 的速度匀速行驶,乙以2 m/s 2的加速度由静止启动,求:(1)经多长时间乙车追上甲车?此时甲、乙两车速度有何关系? (2)追上前经多长时间两者相距最远?此时二者的速度有何关系?【解析】(1)乙车追上甲车时,二者位移相同,设甲车位移为x 1,乙车位移为x 2,则x 1=x 2,即211a 2v t t 11=,解得12110 s 20 m /s t v at =,==,因此212v v =.(2)设追上前二者之间的距离为x ∆,则22221 2x x x v t at t t 12122Δ10=-=-=-由数学知识知:当10s 521t s =⨯2=时,两者相距最远,此时21v v '=. 例3、.(2017新课标II)如图,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直。

物理中求极值的常用方法

物理中求极值的常用方法
R≤Ω,即Rmax=Ω。
[方法四]用均值定理法求解
考虑R= ,设a=2+x;b=8-x。
当a=b时,即2+x=8-x,
即x=3Ω时,Rmax(3)= =Ω。
也可以用上面公式(a+b)max= =25,
Rmax= = =Ω。
以上用四种方法求出Rmax=Ω,下边求伏特计的最大读数。
Imin= = =4(A)。Umax=ε- Iminr= =10(V)。即变阻器的滑动头P滑到R3的中点Ω处,伏特计有最大值,最大值为10伏。
1、利用顶点坐标法求极值
对于典型的一元二次函数y=ax2+bx+c,
若a>0,则当x=- 时,y有极小值,为ymin= ;
若a<0,则当x=- 时,y有极大值,为ymax= ;
2、利用一元二次函数判别式求极值
对于二次函数y=ax2+bx+c,用判别式法
利用Δ=b2-4ac≥0。(式中含y)
若y≥A,则ymin=A。
考虑本题分母:μsinθ+cosθ与a sinθ+b cosθ用比较法,得:a=μ;b=1。
于是tgф= ,则ф=arc tg 。所以,μsinθ+cosθ= sin(θ+arctg )。
要使F最小,则分母μsinθ+cosθ需最大,因此,θ+arc tg = 。
所以有:θ= -arc tg = -arcctgμ=arctgμ。
mgsinθ—μmgcosθ— =0②
②解式得:Vmax= 。
综上所述,求解极值习题常用的方法列举了七种、即均值定理法、顶点坐标法、配方法、判别式法、三角函数中“化一”法、图解法、分析法。针对有些习题所给的条件的“有界性”,运用求极值的方法时要特别注意,求出的极值不能“出界”,要注意定义域和值域的对应关系。

高中证明不等式的四大方法

高中证明不等式的四大方法

高中证明不等式的四大方法
研究不等式是很重要的,它作为数学、物理和其他领域的基础,对日常生活也有着十分重要的意义。

高中时期学习不等式的过程中,常常会遇到如何证明不等式所带来的问题,证明不等式一般可以有四种方法:
一、函数极值法
函数极值法是借助函数及其导数的性质来证明不等式,判断函数的极值的性质,然后用极值来证明不等式。

这种方法适用于不等式中带有 x 的函数及其导数,比如函数 f ( x ) = x^2 + ax + b ( a,b 为常数) 的大于、小于及其证明,都可以用函数极值法来证明。

二、不等式组合法
不等式组合法是利用不等式和其他熟悉的性质,把不等式组合起来,以有效证明一个不等式的方法,一般可用自然数的定理、AM-GM 定理、费马平方和定理、牛顿黎曼不等式等方法结合不等式证明原不等式。

三、几何法
几何法是一种综合的方法,它的核心是运用间接证明的思想,通过几何形象中的定理,证明几何形象和不等式之间的关系,如正方形边长和正数之间的关系等。

四、数学归纳法
数学归纳法是一种经典的元素数学思想,包括数学归纳和数学归纳法,它利用数学归纳法的思想,由简到难,从某一特定情况,以及一切类似的情况中得出一般性的结论和推论,最终证明某个不等式。

以上就是证明不等式的四大方法。

不等式是所有科目中都有用到的知识,学习不等式也需要一定技巧,上面介绍的四大方法可以帮助我们更好的学习不等式,并有助于我们准确地研究不等式。

在数学学习中,不要把不等式搞混、弄回,按照上面介绍的四大方法认真学习,才能更好的掌握不等式的学习方法,正确地解答各种不等式的问题。

高中物理-求极值的六种方法

高中物理-求极值的六种方法

高中物理-求极值的六种方法求极值是数学中的重要问题,解决这个问题不仅有助于我们理解函数的性质,还有助于应用于很多实际问题的求解。

下面介绍六种常用的方法求极值:导数法、辅助线法、割线法、牛顿法、拉格朗日乘数法和试探法。

一、导数法:导数法是最常见,也是最基本的求极值方法。

极值点处的导数为零或不存在。

1.求导数:设函数y=f(x),首先求出导数f'(x)。

2.导数为零:令f'(x)=0,得出x的值。

3.导数不存在:检查导数在f'(x)为零的点附近是否存在极值点。

二、辅助线法:辅助线法是通过构造一条辅助线,将函数转化为一个变量的方程,然后通过解方程来求解极值点。

1.构造辅助线:根据函数的特点,选取一个合适的辅助线方程(比如斜率为1或-1),将函数转化为一个变量的方程。

2.解方程:将辅助线方程和原函数方程联立,解得x的值。

3.求解极值点:将x的值代入原函数方程,求出对应的y值。

三、割线法:割线法是通过构造一条割线,通过不断迭代来逼近极值点。

1.选择初始值:选择一个合适的初始值x0。

2.构造割线:构造一条过(x0,f(x0))和(x1,f(x1))两点的割线,其中x1=x0-λf(x0),λ是一个合适的步长。

3.迭代求值:迭代求解极值点,即不断重复步骤2,直到割线趋近于极值点。

四、牛顿法:牛顿法利用函数的导数和二阶导数的信息来逼近极值点,是一种高效的求解极值的方法。

1.选择初始值:选择一个合适的初始值x0。

2.迭代求值:根据牛顿迭代公式x1=x0-f(x0)/f'(x0),不断迭代求解极值点,直到满足结束条件。

五、拉格朗日乘数法:拉格朗日乘数法是一种求解约束条件下极值问题的方法,适用于那些涉及多个变量和多个约束条件的问题。

1. 列出函数和约束条件:设函数为f(x1, x2, ..., xn),约束条件为g(x1, x2, ..., xn)=c。

2. 构造拉格朗日函数:构造拉格朗日函数L(x1, x2, ..., xn, λ) = f(x1, x2, ..., xn) + λ(g(x1, x2, ..., xn)-c),其中λ是拉格朗日乘数。

物理中求极值的常用方法

物理中求极值的常用方法

物理解题中求极值的常用方法运用数学工具处理物理问题的能力是高考重点考查的五种能力之一,其中极值的计算在教学中频繁出 现。

因为极值问题范围广、习题多,会考、高考又经常考查,应该得到足够重视。

另外很多学生数、理结 合能力差,这里正是加强数理结合的“切人点”。

学生求极值,方法较少,教师应该在高考专题复习中提 供多种求极值的方法。

求解物理极值问题可以从物理过程的分析着手,也可以从数学方法角度思考,下面 重点对数学方法求解物理极值问题作些说明。

1、利用顶点坐标法求极值对于典型的一元二次函数 y=ax 2+bx+c, b 4ac 一 b 2若 a>0,则当 x=-时,y 有极小值,为 y min =;b 4ac 一 b 2若 a<0,则当 x=-时,y 有极大值,为 y max =;2、利用一元二次函数判别式求极值 对于二次函数 y=ax 2+bx+c ,用判别式法利用Δ=b 2-4ac ≥0 。

(式中含 y) 若 y ≥A ,则 y min =A 。

若 y ≤A ,则 y max =A 。

3、利用配方法求极值对于二次函数 y=ax 2+bx+c , 函数解析式经配方可变为 y=(x-A)2+常数: (1) 当 x =A 时, 常数为极小值; 或者函数解析式经配方可变为 y = -( x -A)2+常数 。

(2) 当 x =A 时,常数为极大值。

4、利用均值定理法求极值a +b 均值定理可表述为> ab ,式中 a 、b 可以是单个变量,也可以是多项式。

2当 a =b 时, (a+b)min =2 ab 。

当 a =b 时, (a+b) max =。

5、利用三角函数求极值如果所求物理量表达式中含有三角函数,可利用三角函数的极值求解。

若所求物理量表达式可化为 “y=Asin a cos a ”的形式,则 y= 1 Asin 2α,在a =45º时, y 有极值 A。

2 2对于复杂的三角函数, 例如y=asin θ+bcos θ,要求极值时先需要把不同名的三角函数 sin θ和 cos θ, 变成同名的三角函数,比如 sin ( θ+ф) 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1.如图直线MN 上方有磁感应强度为B 的匀强磁场。

正、负电子同时从同一点O 以与MN 成30°角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?射出的时间差是多少? 解:由公式知,它们的半径和周期是相同的。

只是偏转方向相反。

先确定圆心,画出半径,由对称性知:射入、射出点和圆心恰好组成正三角
形。

所以两个射出点相距2r ,由图还可看出,经历时间相差2T /3。

答案为射出点相距Be
mv
s 2=,时间差为Bq
m
t 34π=
∆。

关键是找圆心、找半径和用对称。

例2.圆心为O 、半径为r 的圆形区域中有一个磁感强度为B 、方向为垂直于纸面向里的匀强磁场,与区域边缘的最短距离为L 的O '处有一竖直放置的荧屏MN ,今有一质量为m 的电子以速率v 从左侧沿
OO '方向垂直射入磁场,越出磁场后打在荧光屏上之P 点,如图所示,求O 'P 的长度和电子通过磁场所
用的时间。

解析 :电子所受重力不计。

它在磁场中做匀速圆周运动,圆心为O ″,半径为R 。

圆弧段轨迹AB 所对的圆心角为θ,电子越出磁场后做速率仍为v 的匀速直线运动, 如图4所示,连结OB ,∵
OAO OBO ∆"∆"≌,又OA O A ⊥",故OB ⊥O ″B ,由于原有BP ⊥O ″B ,可见O 、B 、P 在同一直线上,
且O OP AO B θ∠=∠"=',在直角三角形OO'P 中,O P L r tan θ=+()',而)
2
(t a n 1)
2
t a n (
2t a n 2θ
θθ-=

R r =)2tan(θ,所以求得R 后就可以求出O 'P 了,电子经过磁场的时间可用AB R v t v
θ==来求得。

由R
v m Bev 2
=得.()tan mv OP R L r eB θ=+=,mV eBr R r ==)2tan(θ,
2
222222)
2
(tan 1)
2tan(2tan r
B e v m eBrmv -=-=θθ
θ 2
2222,
)(2tan )(r
B e v m eBrmv
r L r L P O -+=+=θ, )2arctan(2
2222r B e v m eBrmv
-=θ,
M
N
B
O
v
P
M
N
O ,
L
A
O
R θ/2 θ θ/2 B
P
O //
O '
M
N
L
A
)2arctan(2
2222r B e v m eBrmv eB m v
R
t -=
=
θ 例3.如图所示,光滑水平面上,质量为2m 的小球B 连接着轻质弹簧,处于静止;质量为m 的小
球A 以初速度v 0向右匀速运动,接着逐渐压缩弹簧并使B 运动,过一段时间,A 与弹簧分离,设小球A 、B 与弹簧相互作用过程中无机械能损失,弹簧始终处于弹性限度以内
(1)求当弹簧被压缩到最短时,弹簧的弹性势能E .
(2)若开始时在小球B 的右侧某位置固定一块挡板(图中未画出),在小球A 与弹簧分离前使小球B 与挡板发生正撞,并在碰后立刻将挡板撤走.设小球B 与固定挡板的碰撞时间极短,碰后小球B 的速度大小不变、但方向相反。

设此后弹簧弹性势能的最大值为m E ,试求m E 可能值的范围. 解:(1)当A 球与弹簧接触以后,在弹力作用下减速运动,而B 球在弹力作用下加速运动,弹簧势能增加,当A 、B 速度相同时,弹簧的势能最大.
设A 、B 的共同速度为v ,弹簧的最大势能为E ,则A 、B 系统动量守恒,有
v m m mv )2(0+=①;由机械能守恒E v m m mv ++=
220)2(212
1
②;联立两式得2
3
1mv E =③. (2)设B 球与挡板碰撞前瞬间的速度为v B ,此时A 的速度
为v A ,系统动量守恒B A mv mv mv 20+=④
B 与挡板碰后,以v B 向左运动,压缩弹簧,当A 、B 速度相同(设为v 共)时,弹簧势能最大,有共mv mv mv B A 32=-⑤
m E mv mv +⨯=22032
121共⑥ 由④⑤两式得340B v v v -=共⑦联立④⑤⑥式,得]16
3)4([382
020v v v m
E B m +--=⑧
当弹簧恢复原长时与小球B 挡板相碰,B v 有最大值Bm v ,有
''
02A Bm
mv mv mv =+⑨2'220111222A Bm mv mv mv =+⑩ 联立以上两式得023Bm v v =,即v B 的取值范围为03
2
0v v B ≤<⑾
结合⑦式知,当04B v v =
时E m 有最大值为20112
m E mv =⑿ 当023B v v =时,m E 有最小值为2
2127
m E mv =
第18题图
m
2m
A
B
v 0。

相关文档
最新文档