高中物理函数法极值

合集下载

高中物理中的极值问题

高中物理中的极值问题

物理中的极值问题武穴育才高中 刘敬随着高考新课程改革的深入及素质教育的全面推广,物理极值问题成为中学物理教学的一个重要内容,作为对理解、推理及运算能力都有很高要求的物理学科,如何提高提高学生思维水平,运用数学知识解决物理问题的能力,加强各学科之间的联系,本文筛选出典型范例剖析,从中进行归纳总结。

极值问题常出现如至少、最大、最短、最长等关键词,通常涉及到数学知识有:二次函数配方法,判别式法,不等式法,三角函数法,求导法,几何作图法如点到直线的垂线距离最短,圆的知识等等。

1.配方法:a b ac a b x a c bx ax 44)2(222-++=++ 当a >0时,当2b x a =-时,y min =ab ac 442- 当a <0时当2b x a =-时,y max =ab ac 442- 2.判别式法:二次函数令0≥∆,方程有解求极值.3.利用均值不等式法:ab 2b a ≥+ a=b 时, y min =2ab4.三角函数法:θθcos sin b a y +==)sin(22θϕ++b a当090=+θϕ,22max b a y += 此时,ba arctan =θ 也可用求导法:ba b a y arctan 0sin cos ==-='θθθ,得令 5.求导法:对于数学中的连续函数,我们可以通过求导数的方式求函数的最大值或最小值.由二阶导数判断极值的方法.某点一阶导数为0,二阶导数大于0,说明一阶导数为增函数,判断为最小值;反之,某点一阶导数为0,二阶导数小于0,说明一阶导数为单调减函数,判断此点为最大值.6.用图象法求极值通过分析物理过程所遵循的物理规律,找到变量之间的函数关系,作出其图象,由图象求极值。

7.几何作图法研究复合场中的运动,可将重力和电场力合成后,建立直角坐标系,按等效重力场处理问题。

研究力和运动合成和分解中,可选择合适参考系,将速度及加速度合成,结合矢量三角形处理问题。

高考物理中数学方法

高考物理中数学方法

处理物理问题的数学方法一、极值法1、 利用二次函数求极值:y =ax 2+bx +c =a (x 2+b a x +b 24a 2)+c -b 24a =a (x +b 2a )2+4ac -b 24a(其中a 、b 、c 为实常数),当x =-b2a 时,有极值y m =4ac -b 24a (若二次项系数a >0,y 有极小值;若a <0,y 有极大值).2、 利用三角函数求极值:y =a cos θ+b sin θ=a 2+b 2(a a 2+b 2cos θ+ba 2+b 2sin θ) 令sin φ=a a 2+b 2,cos φ=ba 2+b 2则有:y =a 2+b 2(sin φcos θ+cos φsin θ)=a 2+b 2sin (φ+θ)3、 利用均值不等式求极值:对于两个大于零的变量a 、b ,若其和a +b 为一定值p ,则当a =b 时,其积ab 取得极大值 p 24例题:[2013山东理综 22(15分)]如图所示,一质量m =0.4kg 的小物块,以v 0=2m/s 的初速度,在与斜面成某的角度的拉力F 作用下,沿斜面向上做匀加速运动,经t =2s 的时间物块由A 点运动到B 点,AB 两点间的距离L =10m.已知斜面倾角30=θ,物块与斜面之间的动摩擦因数33=μ,重力加速度g 取10m/s 2. (1)求物块加速度的大小及到达B 点时速度的大小。

(2)拉力F 与斜面夹角多大时,拉力F 最小?拉力F 的最小值是多少? 答:(1)物块加速度的大小为3m/s 2,到达B 点的速度为8m/s ; (2)拉力F 与斜面的夹角30°时,拉力F 最小,最小值是N 53 13=F min解析:(1)物体做匀加速直线运动,根据运动学公式,有:221at L =①, v=at ②联立解得; a=3m/s 2,v=8m/s (2)对物体受力分析 根据牛顿第二定律,有:水平方向:Fcosα-mgsinα-F f =ma 竖直方向:Fsinα+F N -mgcosα=0 其中:F f =μF N 联立解得:α)+sin(60 3 32ma +μcosα)+mg(sin α= sin cos ma +μcosα)+mg(sin α=F ︒+αμα故当α=30°时,拉力F 有最小值,为N 53 13=F min ; 二、几何法利用几何方法求解物理问题时,常用到的有“对称点的性质”、“两点间直线距离最短”、“直角三角形中斜边大于直角边”以及“全等、相似三角形的特性”等相关知识,如:带电粒子在有界磁场中的运动类问题,物体的变力分析时经常要用到相似三角形法、作图法等.与圆有关的几何知识在力学部分和电学部分的解题中均有应用,尤其在带电粒子在匀强磁场中做圆周运动类问题中应用最多,此类问题的难点往往在圆心与半径的确定上常见的几何关系:1.依切线的性质确定.从已给的圆弧上找两条不平行的切线和对应的切点,过切点作切线的垂线,两条垂线的交点为圆心,圆心与切点的连线为半径.2.依垂径定理(垂直于弦的直径平分该弦,且平分弦所对的弧)和相交弦定理(如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项)确定.如图1所示.图1由勾股定理得:R 2=(R -CE )2+EB 2解得:R =EB 22CE +CE2.例题:[2014山东理综 24(20分)]如图-2甲所示,间距为、垂直于纸面的两平行板间存在匀强磁场。

专题极值法-高中物理八大解题方法含解析

专题极值法-高中物理八大解题方法含解析

高中物理解题方法之极值法高中物理中的极值问题,是物理教学研究中的活跃话题。

本文通过例题归纳综合出极值问题的四种主要解法。

一、 二次函数求极值二次函数a ac b a b x a c bx ax y 44)2(222--+=++=,当ab x 2-=时,y 有极值ab ac y m 442-=,若a>0,为极小值,若a<0,为极大值。

例1试证明在非弹性碰撞中,完全非弹性碰撞(碰撞后两物体粘合在一起)动能损失最大。

设第一个物体的质量为1m ,速度为1V 。

第二个物体的质量为2m ,速度为2V 。

碰撞以后的速度分别为'1V 和'2V 。

假使这四个速度都在一条直线上。

根据动量守恒定律有:'+'=+22112211V m V m V m V m (1)如果是完全非弹性碰撞,两物体粘合在一起,(1)则变为V m m V m V m '+=+)(212211,即212211m m V m V m V ++=' (2)现在就是要证明,在满足(1)式的碰撞中,动能损失最大的情况是(2)式。

碰撞中动能损失为ΔE k =()22()22222211222211'+'-+vm v m v m v m (3) 转变为数学问题:ΔE k 为v 的二次函数:由(1)得:v 2ˊ=2112211)(m v m v m v m '-+ (4)将(4)代入(3)得:k =++++-'12221112'1211)(2)(v m v m v m m v m m m m [2222112222112)(22m v m v m v m v m +-+] 二次函数求极值,当v 1ˊ=)()(212211m m v m v m ++ (5) 时∆E k 有极大值。

回到物理问题,将(5)代入(4)得v 2ˊ=)()(212211m m v m v m ++此两式表明,m 1和m 2碰后速度相等,即粘合在一起,此时动能损失(ΔE k )最大。

高中物理最值问题的求法-最新年精选文档

高中物理最值问题的求法-最新年精选文档

高中物理最值问题的求法中学物理中经常涉及到一些求最值的问题,使有的同学感到十分棘手。

其原因是,此类问题的综合性较强、灵活性大。

本文对求解最值问题的方法归纳如下,供参考。

一、运用二次函数的极值求解此方法主要根据二次函数y=ax2+bx+c(a≠0),当x=-■时,有极值ym=■,其中当a0时,ym为最小值。

例1.平直公路上一汽车A以20m/s的速度行驶,现发现前方200m处有一货车B以6m/s的速度同向匀速行驶,A车司机立即以最大加速度0.5m/s2刹车,求A、B车间的最小距离。

解析:数学方法,写出经过时间t,A、B两车距离的表达式d=sB+200-sA=6t+200-(20t-0.25t2)=200-14t+0.25t2 讨论其最值即可,即:d=4+0.25(t-28)2≥4所以当t=28s时,A、B间的最小距离为4m。

物理方法,通过定性分析可得:共速前A快,距离减小;共速后B快,距离增大,所以共速时距离最小。

sA=■=■=364m,sB=6×■=168mdmin=sB+200-sA=4m二、运用均值不等式求解此方法主要根据均值不等式a+b≥2■,a>0,b>0;当a=b时取等号,对不等式的左边有最小值,对右边有最大值。

例2. 如图1所示,为一稳压电路,电源电动势为E,内阻为r,负载电阻为R,求当R取何值时电源的输出功率为最大值,并求出最大值。

解析:设电源的输出功率为P,则有P=(■)2R=■因为(r2/R)?R=r2(定值),故当时(r2/R)=R,即R=r时,(r2/R)+R有最小值2r,这时P为最大值Pmax,即Pmax=■三、运用三角公式asinθ+bcosθ=■sin(θ+Φ)求解此方法主要根据三角函数sin(θ+Φ)=±1时,asinθ+bcosθ有最值,且tgΦ=b/a。

例3. 如图2所示,用力F拉一物体在水平地面上匀速前进,物体的质量为m,物体与地面间的动摩擦因数为μ,欲使F为最小,则F应与竖直方向成多大的夹角?最小的力为多大?解析:设F与竖直方向的夹角为θ,物体匀速前进则有Fsinθ=μ(mg-Fcosθ)即F=■=■其中tgΦ=μ,当θ=90°-Φ=90°-arctgμ时,F有最小值FminFmin=■四、运用判别式法求解此方法主要根据一元二次方程ax2+bx+c=0的判别式△=b2-4ac来确定各物理量之间的相互关系进行求解。

高考复习专题四—求极值的六种方法(解析版)

高考复习专题四—求极值的六种方法(解析版)

微讲座(四)——求极值的六种方法从近几年高考物理试题来看,考查极值问题的频率越来越高,由于这类试题既能考查考生对知识的理解能力、推理能力,又能考查应用数学知识解决问题的能力,因此必将受到高考命题者的青睐.下面介绍极值问题的六种求解方法.一、临界条件法对物理情景和物理过程进行分析,利用临界条件和关系建立方程组求解,这是高中物理中最常用的方法.某高速公路同一直线车道上有同向匀速行驶的轿车和货车,其速度大小分别为v 1=30 m/s ,v 2=10 m/s ,轿车在与货车距离x 0=25 m 时才发现前方有货车,此时轿车只是立即刹车,两车可视为质点.试通过计算分析回答下列问题:(1)若轿车刹车时货车以v 2匀速行驶,要使两车不相撞,轿车刹车的加速度大小至少为多少?(2)若该轿车刹车的最大加速度为a 1=6 m/s 2,轿车在刹车的同时给货车发信号,货车司机经t 0=2 s 收到信号并立即以加速度大小a 2=2 m/s 2加速前进,两车会不会相撞?[解析] (1)两车恰好不相撞的条件是轿车追上货车时两车速度相等,即 v 1-at 1=v 2①v 1t 1-12at 21=v 2t 1+x 0②联立①②代入数据解得:a =8 m/s 2. (2)假设经过时间t 后,两车的速度相等 即v 1-a 1t =v 2+a 2(t -t 0)此时轿车前进的距离x 1=v 1t -12a 1t 2货车前进的距离x 2=v 2t 0+v 2(t -t 0)+12a 2(t -t 0)2代入数据解得:x 1=63 m ,x 2=31 m 因为:x 1-x 2=32 m>x 0,两车会相撞. [答案] (1)8 m/s 2 (2)会相撞 二、二次函数极值法 对于二次函数y =ax 2+bx +c ,当a >0时,y 有最小值y min =4ac -b 24a,当a <0时,y 有最大值y max =4ac -b 24a.也可以采取配方法求解.一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以a =3 m/s 2的加速度开始行驶,恰在这一时刻一辆自行车以v 自=6 m/s 的速度匀速驶来,从旁边超过汽车.试求:汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?[解析] 设汽车在追上自行车之前经过时间t 两车相距最远,则 自行车的位移:x 自=v 自t汽车的位移:x 汽=12at 2则t 时刻两车的距离Δx =v 自t -12at 2代入数据得:Δx =-32t 2+6t当t =-62×⎝⎛⎭⎫-32 s =2 s 时,Δx 有最大值Δx max =0-624×⎝⎛⎭⎫-32 m =6 m对Δx =-32t 2+6t 也可以用配方法求解:Δx =6-32(t -2)2显然,当t =2 s 时,Δx 最大为6 m. (说明:此题也可用临界法求解) [答案] 见解析 三、三角函数法某些物理量之间存在着三角函数关系,可根据三角函数知识求解极值.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2.(1)求物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面的夹角多大时,拉力F 最小?拉力F 的最小值是多少?[解析] (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得:L =v 0t +12at 2①v =v 0+at ②联立①②式,代入数据解得:a =3 m/s 2,v =8 m/s.(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面之间的夹角为α,受力分析如图所示,由牛顿第二定律得:F cos α-mg sin θ-F f =ma ③F sin α+F N -mg cos θ=0④ 又F f =μF N ⑤联立③④⑤解得:F =mg (sin θ+μcos θ)+macos α+μsin α⑥由数学知识得:cos α+33sin α=233sin(60°+α)⑦ 由⑥⑦式可知对应的F 最小值与斜面的夹角α=30°⑧ 联立⑥⑧式,代入数据得F 的最小值为:F min =1335N. [答案] (1)3 m/s 2 8 m/s(2)夹角为30°时,拉力最小,为1335N四、图解法此种方法一般适用于求矢量极值问题,如动态平衡问题,运动的合成问题,都是应用点到直线的距离最短求最小值.质量为m 的物体与水平地面间的动摩擦因数为μ,用图解法求维持物体做匀速运动的最小拉力.[解析] 由F fF N =μ知,不论F f 、F N 为何值,其比值恒定由图知F fF N=μ=tan α,即F ′的方向是确定的.由平衡条件推论可知:mg 、F ′、F 构成闭合三角形.显然,当F ⊥F ′时,F 最小.F min =mg sin α=mg tan α1+tan 2 α=μmg1+μ2.(说明:此题也可用三角函数法求解.) 物体受力分析如图. 由平衡条件得:F ·cos θ=F f ①F ·sin θ+F N =mg ② 又F f =μF N ③联立①②③得:F =μmgcos θ+μsin θ令sin α=11+μ2,cos α=μ1+μ2 则F =μmg1+μ2 sin (α+θ)当sin(α+θ)=1时,F min =μmg1+μ2.[答案] μmg1+μ2五、均值不等式法任意两个正整数a 、b ,若a +b =恒量,当a =b 时,其乘积a ·b 最大;若a ·b =恒量,当a =b 时,其和a +b 最小.在一次国际城市运动会中,要求运动员从高为H 的平台上A 点由静止出发,沿着动摩擦因数为μ的滑道向下运动到B 点后水平滑出,最后落在水池中.设滑道的水平距离为L ,B 点的高度h 可由运动员自由调节(取g =10 m/s 2).(1)求运动员到达B 点的速度与高度h 的关系.(2)运动员要达到最大水平运动距离,B 点的高度h 应调为多大?对应的最大水平距离x max 为多少?(3)若图中H =4 m ,L =5 m ,动摩擦因数μ=0.2,则水平运动距离要达到7 m ,h 值应为多少?[解析] (1)设斜面长度为L 1,斜面倾角为α,根据动能定理得mg (H -h )-μmgL 1cos α=12m v 20①即mg (H -h )=μmgL +12m v 20②v 0=2g (H -h -μL ).③ (2)根据平抛运动公式 x =v 0t ④ h =12gt 2⑤ 由③④⑤式得x =2(H -μL -h )h ⑥由⑥式可得,当h =12(H -μL )时水平距离最大x max =L +H -μL .(3)在⑥式中令x =2 m ,H =4 m ,L =5 m ,μ=0.2 则可得到-h 2+3 h -1=0 求得h 1=3+52m =2.62 m ;h 2=3-52m =0.38 m.[答案] 见解析 六、判别式法一元二次方程的判别式Δ=b 2-4ac ≥0时有实数根,取等号时为极值,在列出的方程数少于未知量个数时,求解极值问题常用这种方法.(原创题)如图所示,顶角为2θ的光滑绝缘圆锥,置于竖直向上的匀强磁场中,磁感应强度为B ,现有质量为m ,带电量为-q 的小球,沿圆锥面在水平面内做圆周运动,求小球做圆周运动的最小半径.[解析] 小球受力如图,设小球做圆周运动的速率为v ,轨道半径为R . 由牛顿第二定律得:水平方向:q v B -F N cos θ=m v 2R竖直方向:F N sin θ-mg =0 两式联立得:m v 2R-q v B +mg cot θ=0 因为速率v 为实数,故Δ≥0 即(qB )2-4⎝⎛⎭⎫m R mg cot θ≥0 解得:R ≥4m 2g cot θq 2B 2故最小半径为:R min =4m 2g cot θq 2B 2.[答案] 4m 2g cot θq 2B 21.(单选)(2016·广州模拟)如图所示,船在A 处开出后沿直线AB 到达对岸,若AB 与河岸成37°角,水流速度为4 m/s ,则船从A 点开出的最小速度为( )A .2 m/sB .2.4 m/sC .3 m/sD .3.5 m/s 解析:选B.AB 方向为合速度方向,由图可知,当v 船⊥AB 时最小,即v 船=v 水·sin 37°=2.4 m/s ,B 正确.2.(单选)如图所示,在倾角为θ的斜面上方的A 点处放置一光滑的木板AB ,B 端刚好在斜面上.木板与竖直方向AC 所成角度为α,一小物块自A 端沿木板由静止滑下,要使物块滑到斜面的时间最短,则α与θ角的大小关系应为( )A .α=θB .α=θ2C .α=θ3D .α=2θ解析:选B.如图所示,在竖直线AC 上选取一点O ,以适当的长度为半径画圆,使该圆过A 点,且与斜面相切于D 点.由等时圆知识可知,由A 沿木板滑到D 所用时间比由A 到达斜面上其他各点所用时间都短.将木板下端与D 点重合即可,而∠COD =θ,则α=θ2.3.(2016·宝鸡检测)如图所示,质量为m 的物体,放在一固定斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F 的水平向右的恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F 多大,都不能使物体沿斜面向上滑行,试求:(1)物体与斜面间的动摩擦因数; (2)这一临界角θ0的大小.解析:(1)斜面倾角为30°时,物体恰能匀速下滑,满足 mg sin 30°=μmg cos 30° 解得μ=33.(2)设斜面倾角为α,受力情况如图,由匀速直线运动的条件: F cos α=mg sin α+F f F N =mg cos α+F sin α F f =μF N解得:F =mg sin α+μmg cos αcos α-μsin α当cos α-μsin α=0,即cot α=μ时,F →∞ 即“不论水平恒力F 多大”,都不能使物体沿斜面向上滑行,此时,临界角θ0=α=60°. 答案:(1)33(2)60°4.如图所示,质量为m =0.1 kg 的小球C 和两根细绳相连,两绳分别固定在细杆的A 、B 两点,其中AC 绳长l A =2 m ,当两绳都拉直时,AC 、BC 两绳和细杆的夹角分别为θ1=30°、θ2=45°,g =10 m/s 2.问:细杆转动的角速度大小在什么范围内,AC 、BC 两绳始终张紧?解析:设两细绳都拉直时,AC 、BC 绳的拉力分别为F TA 、F TB ,由牛顿第二定律可知: 当BC 绳中恰无拉力时,F T A sin θ1=mω21l A sin θ1① F TA cos θ1=mg ②由①②解得ω1=1033rad/s. 当AC 绳中恰无拉力时,F TB sin θ2=mω22l A sin θ1③ F TB cos θ2=mg ④ 由③④解得ω2=10 rad/s.所以,两绳始终有张力时细杆转动的角速度的范围是 1033rad/s <ω<10 rad/s. 答案: 1033rad/s <ω<10 rad/s 5.(原创题)一人在距公路垂直距离为h 的B 点(垂足为A ),公路上有一辆以速度v 1匀速行驶的汽车向A 点行驶,当汽车距A 点距离为L 时,人立即匀速跑向公路拦截汽车,求人能拦截住汽车的最小速度.解析:法一:设人以速度v 2沿图示方向恰好在C 点拦住汽车,用时为t .则L +h tan α=v 1t ① hcos α=v 2t ② 联立①②两式得:v 2=h v 1L cos α+h sin α=h v 1L 2+h 2⎝ ⎛⎭⎪⎫L L 2+h 2cos α+h L 2+h 2sin α由数学知识知:v 2min =h v 1L 2+h 2 .法二:选取汽车为参照物.人正对汽车运动即可拦住汽车,即人的合速度方向指向汽车.其中一分速度大小为v 1,另一分速度为v 2,当v 2与合速度v 垂直时,v 2最小,由相似三角形知识可得:v 2v 1=h L 2+h2 v 2=h v 1L 2+h 2 .答案:h v 1L 2+h 26.小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水平距离d 后落地,如图所示.已知握绳的手离地面高度为d ,手与球之间的绳长为34d ,重力加速度为g .忽略手的运动半径和空气阻力.(1)求绳断时球的速度大小v 1和球落地时的速度大小v 2. (2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?解析:(1)设绳断后球飞行时间为t ,由平抛运动规律,有竖直方向14d =12gt 2,水平方向d =v 1t解得v 1=2gd .由机械能守恒定律有12m v 22=12m v 21+mg ⎝⎛⎭⎫d -34d 得v 2=52gd . (2)设绳能承受的最大拉力大小为F T ,这也是球受到绳的最大拉力大小,即球运动到最低点时球所受到的拉力.球做圆周运动的半径为R =34d由圆周运动向心力公式,有F T -mg =m v 21R得F T =113mg .(3)设绳长为l ,绳断时球的速度大小为v 3,绳承受的最大拉力不变,有F T -mg =m v 23l 得v 3=83gl 绳断后球做平抛运动,竖直位移为d -l ,水平位移为x ,时间为t 1,竖直方向有d -l =12gt 21,水平方向x =v 3t 1 得x =4l (d -l )3当l =d 2时,x 有最大值,x max =233d .答案:见解析 7.(原创题)如图所示,电动势为E 、内阻为r 的电源给一可变电阻供电,已知可变电阻变化范围为0~R m ,且R m >r .当R 为何值时功率最大,最大功率为多少?解析:设可变电阻为R ,则I =ER +rP =I 2R =E 2(R +r )2·R ①法一:(配方法)P =E 2(R -r )2R +4r显然,当R =r 时,功率最大,P max =E 24r.法二:(判别式法)将①式整理成关于R 的二次方程 PR 2+(2Pr -E 2)R +Pr 2=0 由于R 为实数,故Δ≥0 即(2Pr -E 2)2-4P 2r 2≥0 解得:P ≤E 24r最大值为P max =E 24r ,代入①式得R =r .答案:见解析 8.质量分别为M 、m 的斜面体A 、B 叠放在光滑水平面上,斜面体倾角为α,两者之间的动摩擦因数为μ(μ<tan α),今用水平外力F 推B ,使两者不发生滑动,假设最大静摩擦力等于滑动摩擦力,求F 的取值范围.(已知:m =3 kg ,M =8 kg ,μ=0.5,α=37°.)解析:B 恰好不向下滑动时,所需F 最小,此时B 受到最大静摩擦力沿斜面向上.如图甲所示.设两者共同的加速度为a 1,对整体有: F min =(M +m )a 1 对B 有:F min +F f1cos α-F N1sin α=ma 1 F f1sin α+F N1cos α=mg F f1=μ·F N1联立以上各式解得:F min =m (M +m )(sin α-μcos α)M (cos α+μsin α)g =7.5 N甲乙B恰好不上滑时所需F最大,此时B受最大静摩擦力沿斜面向下.如图乙所示.设共同加速度为a2,对整体有:F max=(M+m)a2对B有:F max-F f2cos α-F N2sin α=ma2F N2cos α=mg+F f2sin αF f2=μF N2联立以上各式解得:F max=m(M+m)(sin α+μcos α)M(cos α-μsin α)g=82.5 N故取值范围为7.5 N≤F≤82.5 N.答案:7.5 N≤F≤82.5 N。

高中物理重要方法典型模型突破5-数学方法(3)--极值问题

高中物理重要方法典型模型突破5-数学方法(3)--极值问题

专题五数学方法(3)极值问题【方法点津】求解极值问题的方法从大的方面可分为物理方法和数学方法。

物理方法即用临界条件求极值。

数学方法主要有:三角函数极值法、二次函数极值法、不等式极值法、一元二次方程判别式法等.其它还有如导数法求解。

一般而言,用物理方法求极值简单、直观、形象,对构建物理模型及动态分析等方面的能力要求较高,而用数学方法求极值思路严谨,对数学建模能力要求较高,若能将二者予以融合,则将相得亦彰,对增强解题能力大有裨益。

1.利用三角函数求极值(1)二倍角公式法:如果所求物理量的表达式可以化成y=A sin θcos θ,则根据二倍角公式,有y=sin2θ,当θ=45°时,y有最大值,y max=.(2)和差角公式法:如果所求物理量的表达式为y=a sin θ+b cos θ,通过和差角公式转化为y=sin(θ+φ),当θ+φ=90°时,y有最大值,y max=.2.利用二次函数求极值二次函数y=ax2+bx+c(a、b、c为常数且a≠0),当x=-时,y有极值y m=(a>0时,y m 为极小值;a<0时,y m为极大值).3.利用均值不等式求极值对于两个大于零的变量a、b,若其和a+b为一定值,则当a=b时,其积ab有极大值;若其积ab为一定值,则当a=b时,其和a+b有极小值.【典例突破】利用数学方法求极值分析求解物理量在某物理过程中的极大值或极小值是很常见的物理问题,这类问题的数学解法Fθ有很多,【例1】重为G 的木块与水平面间动摩擦因数为μ,一人欲用最小的作用力F 使木块沿地面匀速运动,则此最小作用力的大小和方向如何?【练1】如图所示,质量为kg M 2=的木块与水平地面的动摩擦因数4.0=μ,木块用轻绳绕过光滑的定滑轮,轻绳另一端施一大小为20N 的恒力F ,使木块沿地面向右做直线运动,定滑轮离地面的高度cm h 10=,木块M 可视为质点,问木块从较远处向右运动到离定滑轮多远时加速度最大?最大加速度为多少?【例2】 在场强为E 的水平匀强电场中以初速度v 0竖直向上发射一个质量为m 、带电荷量为+q 的小球,求小球在运动过程中具有的最小速度.(重力加速度为g )【练2】一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s 2的加速度开始行驶。

高中物理求极值方法与常用结论总结

高中物理求极值方法与常用结论总结

高中物理求极值方法与常用结论总结(一)利用分式的性质求极值[例1] 物体A放在水平面上,作用在A上的推力F与水平方向成30º角,如图示。

使A作匀速直线运动。

试问,当物体A与水平面之间的摩擦系数μ为多大时,不管F增大到多大,都可以使A在水平面上,作匀速直线运动?解:A受力如图所示,由已知,A处于平衡状态,有:Fcosα=fFcos30º=μ(G+Fsin30º),得F=由已知当公式的分母为零,即F→∞的匀速运动时sin30º-μcos30º=0时得μ=tg30º=0.58,则F→∞,此时都可以使A在水平面上作匀速直线运动。

(二)利用一元二次方程求根公式求极值有些问题,通过分析列关系式,最后整理出关于一个未知量的一元二次方程。

它的根就可能是要求的极值。

这种方法应用是很普遍的。

(三)利用一元二次方程判别式△=b2-4ac≥O求极值[例2] 一个质量为M的圆环,用细线悬挂着。

将两个质量为m的有孔的小珠套在环上,且可沿环无摩擦滑动,如图(a)所示。

今将两小珠从环的顶端由静止开始释放。

证明,当m>M 时,圆环能升起。

证明:取小球为研究对象,受力如图(a)。

由牛顿第二定律,得所mgcosθ+N=由机械能守恒定律,得mgR(1-cosθ)=由此二式得N=2mg-3mgcosθ(1)上式中,N>0,即cosθ<以环为研究对象,受力图如(b),在竖直方向,由牛顿第二定律,有T+2N’cosθ—Mg=Ma当环恰好能上升时,a=0,可得2N’cosθ=Mg (3)将(1)代入(3)式中,其中N’为(a)图中N的反作用力。

有2(2mg-3mgcosθ)cosθ=Mg 即6mcos2θ-4mcosθ+M=0 (4)(4)式是关于cosθ的一元二次方程。

cosθ为实数,则△≥0,即(4m)2-4(6m)M≥0,可得m≥M 当m=M时,T恰好为零,但不升起,所以取m>M为升起条件。

高中物理求极值方法与常用结论总结

高中物理求极值方法与常用结论总结

高中物理求极值方法与常用结论总结高中物理中,求极值是一个重要的数学应用问题。

很多物理问题都需要通过求极值来进行分析和解决,因此掌握求极值方法和常用结论是十分重要的。

下面将为你总结高中物理求极值的方法和常用结论。

一、求极值的方法1.寻找最值法:通过寻找物理问题的最大值或最小值来求出极值。

2.解析法:通过建立数学模型,对其求导或使用其他数学方法得出极值。

3.几何方法:通过几何图形的性质和分析来求出极值。

二、常用结论1.极大值与极小值:对于一元函数f(x),若在x=a处,f'(a)=0,并且在a点左侧由正变负,在a点右侧由负变正,则a称为f(x)的极大值点;若在x=b处,f'(b)=0,并且在b点左侧由负变正,在b点右侧由正变负,则b称为f(x)的极小值点。

2.拐点与拐点性质:对于函数f(x),若在x=c处f''(c)=0,并且在c点左侧由负变正,在c点右侧由正变负,则c称为f(x)的拐点。

拐点的性质为:由凹变凸的拐点称为极小值点,由凸变凹的拐点称为极大值点。

3.一元二次函数的最值结论:一元二次函数y=ax^2+bx+c(其中a≠0)的最值点可以通过如下结论求得:当a>0时,最小值为:y_min=c-b^2/(4a)当a<0时,最大值为:y_max=c-b^2/(4a)4.相对速度最小值结论:当两个运动着的物体相对于一些静止参考系运动时,它们的相对速度最小值出现在它们的运动方向夹角为0°或者180°时。

5.成千上万法:在解决物理问题中,当数据较多时,可以通过逐个数值代入进行计算。

6.速度为零但加速度不为零时的移动物体:当一个物体在其中一时刻速度为零(静止),但加速度不为零时,可以通过如下结论求出物体在这一时刻的位置:位移s = (1/2)at^2,其中a为加速度,t为时间。

7.物体自由落体的最高点:自由落体的物体在竖直上抛运动中,最高点时速度为零,也就是物体停止上升,准备掉下来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1.如图直线MN 上方有磁感应强度为B 的匀强磁场。

正、负电子同时从同一点O 以与MN 成30°角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?射出的时间差是多少? 解:由公式知,它们的半径和周期是相同的。

只是偏转方向相反。

先确定圆心,画出半径,由对称性知:射入、射出点和圆心恰好组成正三角
形。

所以两个射出点相距2r ,由图还可看出,经历时间相差2T /3。

答案为射出点相距Be
mv
s 2=,时间差为Bq
m
t 34π=
∆。

关键是找圆心、找半径和用对称。

例2.圆心为O 、半径为r 的圆形区域中有一个磁感强度为B 、方向为垂直于纸面向里的匀强磁场,与区域边缘的最短距离为L 的O '处有一竖直放置的荧屏MN ,今有一质量为m 的电子以速率v 从左侧沿
OO '方向垂直射入磁场,越出磁场后打在荧光屏上之P 点,如图所示,求O 'P 的长度和电子通过磁场所
用的时间。

解析 :电子所受重力不计。

它在磁场中做匀速圆周运动,圆心为O ″,半径为R 。

圆弧段轨迹AB 所对的圆心角为θ,电子越出磁场后做速率仍为v 的匀速直线运动, 如图4所示,连结OB ,∵
OAO OBO ∆"∆"≌,又OA O A ⊥",故OB ⊥O ″B ,由于原有BP ⊥O ″B ,可见O 、B 、P 在同一直线上,
且O OP AO B θ∠=∠"=',在直角三角形OO'P 中,O P L r tan θ=+()',而)
2
(t a n 1)
2
t a n (
2t a n 2θ
θθ-=

R r =)2tan(θ,所以求得R 后就可以求出O 'P 了,电子经过磁场的时间可用AB R v t v
θ==来求得。

由R
v m Bev 2
=得.()tan mv OP R L r eB θ=+=,mV eBr R r ==)2tan(θ,
2
222222)
2
(tan 1)
2tan(2tan r
B e v m eBrmv -=-=θθ
θ 2
2222,
)(2tan )(r
B e v m eBrmv
r L r L P O -+=+=θ, )2arctan(2
2222r B e v m eBrmv
-=θ,
M
N
B
O
v
P
M
N
O ,
L
A
O
R θ/2 θ θ/2 B
P
O //
O '
M
N
L
A
)2arctan(2
2222r B e v m eBrmv eB m v
R
t -=
=
θ 例3.如图所示,光滑水平面上,质量为2m 的小球B 连接着轻质弹簧,处于静止;质量为m 的小
球A 以初速度v 0向右匀速运动,接着逐渐压缩弹簧并使B 运动,过一段时间,A 与弹簧分离,设小球A 、B 与弹簧相互作用过程中无机械能损失,弹簧始终处于弹性限度以内
(1)求当弹簧被压缩到最短时,弹簧的弹性势能E .
(2)若开始时在小球B 的右侧某位置固定一块挡板(图中未画出),在小球A 与弹簧分离前使小球B 与挡板发生正撞,并在碰后立刻将挡板撤走.设小球B 与固定挡板的碰撞时间极短,碰后小球B 的速度大小不变、但方向相反。

设此后弹簧弹性势能的最大值为m E ,试求m E 可能值的范围. 解:(1)当A 球与弹簧接触以后,在弹力作用下减速运动,而B 球在弹力作用下加速运动,弹簧势能增加,当A 、B 速度相同时,弹簧的势能最大.
设A 、B 的共同速度为v ,弹簧的最大势能为E ,则A 、B 系统动量守恒,有
v m m mv )2(0+=①;由机械能守恒E v m m mv ++=
220)2(212
1
②;联立两式得2
3
1mv E =③. (2)设B 球与挡板碰撞前瞬间的速度为v B ,此时A 的速度
为v A ,系统动量守恒B A mv mv mv 20+=④
B 与挡板碰后,以v B 向左运动,压缩弹簧,当A 、B 速度相同(设为v 共)时,弹簧势能最大,有共mv mv mv B A 32=-⑤
m E mv mv +⨯=22032
121共⑥ 由④⑤两式得340B v v v -=共⑦联立④⑤⑥式,得]16
3)4([382
020v v v m
E B m +--=⑧
当弹簧恢复原长时与小球B 挡板相碰,B v 有最大值Bm v ,有
''
02A Bm
mv mv mv =+⑨2'220111222A Bm mv mv mv =+⑩ 联立以上两式得023Bm v v =,即v B 的取值范围为03
2
0v v B ≤<⑾
结合⑦式知,当04B v v =
时E m 有最大值为20112
m E mv =⑿ 当023B v v =时,m E 有最小值为2
2127
m E mv =
第18题图
m
2m
A
B
v 0。

相关文档
最新文档