反证法例题
反证法经典例题
1、已知三个整数a, b, c满足a + b + c = 0,假设a, b, c均不为0,则以下结论不可能成立的是:A. a, b, c均为正数B. a, b, c均为负数C. a, b为正数,c为负数D. a为正数,b, c为负数(答案)A2、假设地球是一个完美的球体,且其自转速度突然加倍,以下哪个现象不会被观察到?A. 地球的赤道半径会因离心力增加而变大B. 地球的一天将缩短为原来的一半C. 地球的重力加速度在赤道处会减小D. 地球的两极地区将变得更加温暖(答案)D3、在三角形ABC中,若∠A > ∠B,则以下结论错误的是:A. 边BC > 边ACB. 若∠C为钝角,则∠B必为锐角C. 若AB = AC,则∠B = ∠CD. 边AB一定大于边BC(答案)D4、假设所有动物都能进行光合作用,以下哪个推论是错误的?A. 动物将不再需要食物来获取能量B. 动物园的饲养成本将大大降低C. 植物的生存空间可能会受到威胁D. 动物的活动范围将不再受食物来源限制(答案)A(因为即使能进行光合作用,动物可能仍需其他营养物质)5、假设人类可以无限期地不睡觉而不受任何负面影响,以下哪个情况最不可能发生?A. 人类的工作效率将大幅提高B. 人类的记忆力可能会增强C. 人类的创造力将无限激发D. 人类的平均寿命会显著缩短(答案)D6、在一个完全由左撇子组成的社区中,假设所有工具都为左手设计,以下哪个说法是不合理的?A. 右手工具将在这个社区中找不到市场B. 社区成员使用工具时将更加高效C. 如果一个右撇子访问该社区,他将难以使用任何工具D. 社区成员的左手将比右手更发达(答案)D(因为未提及左手会比右手更频繁使用导致更发达)7、假设时间可以倒流,但物理定律仍然适用,以下哪个现象不可能发生?A. 破碎的玻璃杯会重新组合完好B. 人可以回到过去并改变历史C. 热量会从低温物体自发流向高温物体D. 光会逆向传播回到光源(答案)C(违反了热力学第二定律)8、在一个假想的宇宙中,所有物体的质量都是负数,以下哪个物理现象将不再成立?A. 万有引力定律B. 牛顿第三定律(作用与反作用)C. 光的传播速度在真空中是恒定的D. 物体具有惯性(答案)A(因为负质量会导致引力方向异常,传统万有引力定律不适用)9、假设声音在真空中的传播速度与光相同,以下哪个现象不会被观察到?A. 太空中的宇航员可以直接对话B. 地球上的雷声会传播得更远C. 声音可以在月球表面传播D. 超声波检测在医学上的应用将受到限制(答案)D(超声波检测的应用不会因声音传播速度变快而受限)10、假设人类可以瞬间移动到地球上的任何地点,以下哪个社会影响是最不可能发生的?A. 交通运输行业将经历重大变革B. 城市拥堵问题将得到彻底解决C. 旅游业将迎来前所未有的繁荣D. 人们对地理知识的兴趣将大幅下降(答案)D(瞬间移动可能增加探索世界的兴趣)。
数学反证法经典例题
数学反证法经典例题一、题目:假设“所有整数都是偶数”成立,则下列结论正确的是?A. 1是奇数B. 2是奇数C. 3是偶数D. 存在奇数(答案)C(注:在假设下,所有整数包括奇数也应被视为偶数,但此假设本身是错误的,此题考察反证法思维)二、题目:若声称“所有质数都是大于2的偶数”,则根据这一错误假设,下列哪个数不应被视为质数?A. 2B. 3C. 5D. 7(答案)B(注:在假设下,只有大于2的偶数被视为质数,但实际上3是质数且为奇数,此题同样考察反证法及质数定义)三、题目:假设“所有三角形的内角和不等于180度”,则以下哪个三角形的内角和在此假设下不可能成立?A. 等边三角形B. 直角三角形C. 钝角三角形D. 任意三角形(答案)D(注:根据几何学基本定理,任意三角形的内角和总是180度,此假设错误,用于考察反证法)四、题目:若有人认为“所有正整数的倒数都小于1”,则下列哪个数的倒数不符合这一错误假设?A. 1B. 2C. 3D. 4(答案)A(注:1的倒数是1,不小于1,此题考察反证法及对倒数概念的理解)五、题目:假设“所有平行线都会相交”,则根据这一错误假设,在平面几何中不可能存在的是?A. 两条平行线B. 两条相交线C. 一条直线和一个点D. 一个三角形(答案)A(注:平行线定义为不相交的直线,此假设与平行线定义相悖,考察反证法及平行线概念)六、题目:若声称“所有实数的平方都是正数”,则下列哪个数的平方不符合这一错误假设?A. 1B. -1C. 0.5D. -0.5(答案)B和D(注:负数和0的平方不是正数,但此题为单选题形式,更严谨的答案是指出存在多个不符合,若必须单选,可选B或D中的任意一个作为代表,此题考察反证法及实数平方性质)七、题目:假设“所有自然数的因数都只有1和它本身”,则根据这一错误假设,下列哪个数不符合这一条件?A. 1B. 2C. 3D. 4(答案)D(注:4除了1和4本身外,还有2作为因数,此假设实际上描述了质数的性质,但4不是质数,考察反证法及质数定义)八、题目:若有人认为“所有圆的周长与其直径的比值都不等于π”,则以下哪个圆的性质在此假设下不成立?A. 圆是闭合曲线B. 圆的对称性C. 圆的面积公式D. 圆的周长与直径之比是常数(答案)D(注:根据圆的定义,其周长与直径之比是π,此假设错误,考察反证法及对圆的基本性质的理解)。
介绍反证法及举例
01
用反证法证明命题的一般步骤是什么?
2.反证法是一种常用的间接证明方法.
02
则C必定是在撒谎.
05
由A假, 知B真. 这与B假矛盾.
03
B、C三个人,A说B撒谎,B说C撒谎,C说A、B都撒谎。则C必定是在撒谎,为什么?
M:为了做出决断,旅游者被送到国王那里。苦苦想了好久,国王才说——
国王:不管我做出什么决定,都肯定要破坏这条法律。我们还是宽大为怀算了,让这个人自由吧。
1
2
3
4
5
6
唐·吉诃德悖论
说谎者悖论
M:小说《唐·吉诃德》里描写过一个国家.它有一条奇怪的法律:每一个旅游者都要回答一个问题。问,你来这里做什么?M:如果旅游者回答对了。一切都好办。如果回答错了,他就要被绞死。
M:一天,有个旅游者回答——
旅游者:我来这里是要被绞死。
M:这时,卫兵慌了神,如果他们不把这人绞死,他就说错了,就得受绞刑。可是,如果他们绞死他,他就说对了,就不应该绞死他。
∴ab + bc + ca = a(b + c) + bc < 0
与题设矛盾
若a = 0,则与abc > 0矛盾,
∴必有a > 0
同理可证:b > 0, c > 0
练习2.已知a + b + c > 0,ab + bc + ca > 0,
abc > 0, 求证:a, b, c > 0
幻灯片切换
反设②归谬③结论 方法小结: 1直接证明:直接从原命题的条件逐步推得结论成立. 正难则反!
初二数学反证法例题
1.下列哪个命题适合用反证法证明?A.两直线平行,同位角相等。
B.若a=b,则a2=b2。
C.三角形中至少有一个角不大于60°。
(答案)D.全等三角形的对应边相等。
2.使用反证法证明“√2是无理数”时,应先假设什么?A.√2是有理数。
(答案)B.√2是无理数。
C.√2是整数。
D.√2不是整数。
3.下列哪个步骤不是反证法的一般步骤?A.假设命题的结论不成立。
B.从假设出发,经过推理得出矛盾。
C.肯定假设正确,从而肯定原命题成立。
(答案)D.得出原命题成立的结论。
4.用反证法证明“三角形的内角和为180°”时,应假设什么?A.三角形的内角和不为180°。
(答案)B.三角形的内角和为180°。
C.三角形的外角和为360°。
D.三角形的内角和大于180°。
5.下列哪个命题不能用反证法证明?A.相邻的两个角不互补。
B.至少有一个角大于或等于60°的三角形存在。
(答案)C.两个连续整数的乘积不是完全平方数。
D.在三角形中,至少有一个角不大于60°。
6.使用反证法证明命题时,如果推出了与哪个条件矛盾,则说明假设错误?A.已知条件B.命题的结论C.已知条件、定义、定理或公理等(答案)D.假设的条件7.下列哪个选项不是反证法中的“归谬”步骤?A.导出与假设相矛盾的结论。
B.导出与已知条件相矛盾的结论。
(答案)C.导出与定义、定理或公理等相矛盾的结论。
D.导出与临时假设相矛盾的结论。
8.用反证法证明“正方形的对角线不相等”是错误的命题时,应先假设什么?A.正方形的对角线相等。
(答案)B.正方形的对角线不相等。
C.正方形的四条边相等。
D.正方形的对角线互相垂直。
9.下列哪个命题适合用反证法证明其不存在性?A.存在一个三角形,其内角和为181°。
(答案)B.所有三角形的内角和都为180°。
C.三角形的外角和为360°。
浙教版数学八年级下册_反证法应用例析
“反证法”应用例析反证法是一种间接证题方法。
证题时,首先假设结论不成立,然后以此为出发点,通过正确的逻辑推理,推导出与已知条件、定义、公理或定理等相矛盾的结果,从而肯定假设错误,得出结论正确。
下面举例加以说明,供同学们参考。
一、证明与三角形有关的问题例题1、求证:一个三角形中不能有两个角是直角。
分析:应首先据题意画出一个三角形草图,并写出已知、求证,然后按照反证法的步骤进行推理即可。
已知:△ABC。
求证:∠A、∠B、∠C中不能有两个角是直角。
证明:假设∠A、∠B、∠C中有两个角是直角,不妨设∠A=∠B=90º,则∠A+∠B+∠C=90º+90º+∠C>180º,这与三角形的内角和定理相矛盾,所以假设∠A=∠B=90º不成立,因此,一个三角形中不能有两个角是直角。
二、证明与一元二次方程有关的问题例题2、已知a>2,b>2,请判断关于x的方程x2-(a+b)x+ab=0与x2-abx+(a+b)=0有没有公共根;并说明理由。
分析:可用反证法,先假设两个方程有公共根,然后推导出与已知相矛盾。
解:这两个方程没有公共根。
理由如下:假设所给的这两个方程有公共根x0,根据题意,得x02-(a+b)x0+ab=0①x02-abx0+(a+b)=0②②-①得:(x0+1) (a+b-ab)=0。
因为:a>2,b>2,所以a+b≠ab。
这样有,x0=-1。
将x0=-1代入到方程②中,得:1+ a+b+ab=0,显然这是不可能的。
故假设两个方程存在着公共根x0不成立。
因此,已知的两个方程没有公共根。
评注:应用反证法解题应首先掌握基本的解题步骤,其次熟练有关图形和代数等的基础知识,这些都是不可或缺的。
应认真体会、总结,并配合强化训练等加以融会贯通。
反证法的生活例子
反证法的生活例子【篇一:反证法的生活例子】甲是乙父,乙是丙父,欲证明甲是丙的爷爷。
设甲不是丙的爷爷,则甲不是乙的父亲或乙不是甲的父亲而这与题设相矛盾,所以甲是丙的爷爷【篇二:反证法的生活例子】反证法的例子范文一:【案例】反证法北京丰台二中张健内容和内容解析:推理与证明是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式。
反证法是继前面学习完推理知识后的证明方法中的一种间接证明问题的基本方法,它弥补了直接证明的不足,完善了证明方法,有利于培养学生的逆向思维能力。
目标和目标解析:①结合熟悉的生活实例和典型的数学命题,帮助学生了解反证法的作用;②学生通过探究发现,了解反证法的思考过程,特点,并会用反证法思考和证明一些简单的数学问题;③通过让学生亲身经历证明的过程,从中逐步体会反证法的内涵,培养他们的逆向思维能力。
教学重点:了解反证法的思考过程和特点。
教学难点:对命题的否定的全面、准确考虑以及恰当地寻找矛盾。
教学问题诊断分析:学生从初中开始就已初步接触过反证法,反证法的逻辑规则并不复杂,但用反证法证明数学问题却让学生感到困难。
究其原因,反证法主要是需要逆向思维,而在中小学阶段,逆向思维训练和发展都是不充分的;其次反证法中的假设部分涉及命题的否定知识,学生在学习那部分的知识时就存在一定的困难。
教学过程设计:1.情境引入回忆综合法和分析证明问题的过程,思考并解决下面三个问题:1.1 小故事:王戎7 岁时,与小伙伴们外出游玩,看到路边的李子树上结满了果子.小伙伴们纷纷去摘取果子,只有王戎站在原地不动.伙伴问他为什么不去摘?王戎回答说: “树在道边而多子,此必苦李. ”小伙伴摘取一个尝了一下,果然是苦李.王戎是怎么知道李子是苦的呢?他运用了怎样的推理方法?1.2 桌面上有 3 枚正面朝上的硬币,每次用双手同时翻转 2 枚硬币,那么无论怎样翻转,都不能使硬币全部反面朝上。
你能解释这种现象吗?1.3 a 、b、c 三个人,a 说b 撒谎,b 说c 撒谎,c 说a、b 都撒谎。
初二数学反证法试题
初二数学反证法试题1.“a<b”的反面应是()A.a≠b B.a>b C.a=b D.a=b或a>b【答案】D【解析】根据反证法的步骤,直接得出即可.“a<b”的反面应是a=b或a>b,故选D.【考点】此题主要考查了反证法点评:解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.2.用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设()A.a不垂直于c B.a,b都不垂直于cC.a⊥b D.a与b相交【答案】D【解析】根据反证法的步骤,直接得出即可.∵用反证法证明“若a⊥c,b⊥c,则a∥b”,∴第一步应假设:若a⊥c,b⊥c,则a、b相交.故选D.【考点】此题主要考查了反证法点评:解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.3.用反证法证明命题“在一个三角形中,如果两条边不相等,那么它们所对的角也不相等”时,应假设___________.【答案】两条边所对的角相等【解析】根据反证法的步骤,直接得出即可.用反证法证明命题“在一个三角形中,如果两条边不相等,那么它们所对的角也不相等”时,应假设两条边所对的角相等.【考点】此题主要考查了反证法点评:解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.4.用反证法证明“若│a│<2,则a<4”时,应假设__________.【答案】a2≥4【解析】根据反证法的步骤,直接得出即可.用反证法证明“若│a│<2,则a<4”时,应假设a2≥4.【考点】此题主要考查了反证法点评:解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.5.请说出下列结论的反面:(1)d是正数;(2)a≥0;(3)a<5.【答案】(1)d是非正数;(2)a<0;(3)a≥5【解析】根据反证法的步骤,直接得出即可.(1)d是正数的反面是d是非正数;(2)a≥0的反面是a<0;(3)a<5的反面是a≥5.【考点】此题主要考查了反证法点评:解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.6.如图,直线AB,CD相交,求证:AB,CD只有一个交点.证明:假设AB,CD相交于两个交点O与O′,那么过O,O′两点就有_____条直线,这与“过两点______”矛盾,所以假设不成立,则________.【答案】两;有且只有一条直线;原命题成立【解析】根据反证法的步骤,即可得到结果.假设AB,CD相交于两个交点O与O′,那么过O,O′两点就有两条直线,这与“过两点有且只有一条直线”矛盾,所以假设不成立,则原命题成立.【考点】此题主要考查了反证法点评:解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.7.完成下列证明.如图,在△ABC中,若∠C是直角,那么∠B一定是锐角.证明:假设结论不成立,则∠B是______或______.当∠B是____时,则_________,这与________矛盾;当∠B是____时,则_________,这与________矛盾.综上所述,假设不成立.∴∠B一定是锐角.【答案】直角;钝角;直角;∠A+∠B+∠C>•180°;三角形的内角和等于180°;钝角;∠A+∠B+∠C>180°;•三角形的内角和等于180°【解析】根据反证法的步骤,即可得到结果.假设结论不成立,则∠B是直角或钝角.当∠B是直角时,则∠A+∠B+∠C>180°,这与三角形的内角和等于180°矛盾;当∠B是钝角时,则∠A+∠B+∠C>180°,这与三角形的内角和等于180°矛盾.综上所述,假设不成立.∴∠B一定是锐角.【考点】此题主要考查了反证法点评:解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.8.用反证法证明“三角形中至少有一个内角不小于60°”,•应先假设这个三角形中()A.有一个内角小于60°B.每一个内角都小于60°C.有一个内角大于60°D.每一个内角都大于60°【答案】B【解析】反证法的第一步是假设命题的结论不成立,据此可以得到答案.用反证法证明“三角形中至少有一个内角不小于60°”,•应先假设这个三角形中每一个内角都小于60°,故选B.【考点】此题主要考查了反证法点评:解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.9.若用反证法证明命题“在直角三角形中,至少有一个锐角不大于45 °”时,应假设______________.【答案】每一个角都小于45°【解析】反证法的第一步是假设命题的结论不成立,据此可以得到答案.若用反证法证明命题“在直角三角形中,至少有一个锐角不大于45 °”时,应假设每一个角都小于45°.【考点】此题主要考查了反证法点评:解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.10.用反证法证明:是一个无理数.(说明:任何一个有理数均可表示成的形式,且a,b互质)【答案】见解析【解析】根据反证法的步骤,即可得到结果.假设是一个有理数,则存在a,b使=(a,b互质),所以2=,所以b2=2a2.因为2a2为偶数,所以b2为偶数,所以b为偶数.设b=2k(k为整数),则b2=4k2,所以4k2=2a2,所以a2=2k2,所以a为偶数,这与a,b•互相矛盾,所以假设不成立,原命题成立.【考点】此题主要考查了反证法点评:解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.。
2.2.2 反证法
反证法的一般适用情形: 反证法的一般适用情形: (1)结论为否定性命题; 结论为否定性命题; (2)结论为“至少”、“至多”类命题; 结论为“至少” 至多”类命题; (3)结论为 “唯一”类命题; 唯一”类命题; 有无穷多个”类命题。 (4)结论为 “有无穷多个”类命题。 假设结论的反面成立
二、典型例题 1、结论为“否定”或“唯一”的命题 、结论为“否定” 唯一” 例1.求证: 2 , 3 , 5 不可能成等差数列 求证:
反证法的思维方法: 反证法的思维方法:
正难则反
反证法的基本步骤: 反证法的基本步骤: (1)假设命题结论不成立,即假设结论的反面成立; (1)假设命题结论不成立,即假设结论的反面成立; 假设命题结论不成立 (2)从这个假设出发 经过推理论证,得出矛盾 矛盾; (2)从这个假设出发,经过推理论证,得出矛盾; 从这个假设出发, (3)从矛盾判定假设不正确, (3)从矛盾判定假设不正确,从而肯定命题的结论正确 从矛盾判定假设不正确 归缪矛盾: 归缪矛盾: (1)与已知条件矛盾; 与已知条件矛盾; (2)与已有公理、定理、定义矛盾; 与已有公理、定理、定义矛盾; (3)自相矛盾。 自相矛盾。
C
B
例2、求证:抛物线上任取四点所组成的四边 求证: 形不可能是平行四边形。 形不可能是平行四边形。 2 证明:如图, 证明:如图,设抛物线方程为 y = ax (a>0)
,
,
,
例5、已知 p + q = 2,求证: p + q ≤ 2 求证:
3 3
2、证明“至多”、“至少”类型的结论 、证明“至多” 至少”
例1、设 f ( x ) = x 2 + ax + b, 1 求证: f f f 求证:(1)、( 2)、( 3)中至少有一个不小于 2
反证法典型例题
例3.已知a≠0,求证关于x的方程ax=b有且只有 一个根。
证:假设方程ax + b = 0(a ≠ 0)至少存在两个根,
证明: 假设c<0, 则a+b>0, ab<0. ab+bc+ca=ab+(a+b)c<0. 矛盾!假设不成立.
所以, a,b,c>0.
例7.已知0<a,b,c<1, 求证: (1-a)b, (1-b)c, (1-c)a不可能同时大于1/4.
证明: 假设(1-a)b, (1-b)c, (1-c)a同时大于1/4.
2 22
例9.已知A,B,C为三个正角. 且sin2A+sin2B+sin2C=1. 求证: A+B+C<900.
解:假设A+B+C ≥900, 由于A,B,C为三个正角, 所以 它们都为锐角, 且有cos(A+B)<cos(A-B). 1=sin2A+sin2B+sin2C=1-cos(A+B)cos(A-B)
所以假设不成立,2是有理数成立。
应用反证法的情形:
(1)直接证明困难; (2)需分成很多类进行讨论; (3)结论为“至少”、“至多”、“有无穷多个” 这一类的命题; (4)结论为 “唯一”类的命题。
正难则反!
例6.已知a+b+c>0, ab+bc+ca>0, abc>0. 求证: a,b,c>0
反证法例题
反证法:从矛盾到证明
反证法是一种常用的证明方法,它通过假设一个命题不成立,然后推导出矛盾的结论,从而证明原命题成立。
下面是一个反证法的例题和练习。
例题:证明“一个三角形中最大的角是直角”
证明:假设一个三角形中最大的角不是直角,那么它只能是锐角或钝角。
根据三角形内角和定理,三个内角的和等于180度。
如果最大的角不是直角,那么它要么是锐角(小于90度),要么是钝角(大于90度)。
因此,三角形的内角和要么小于180度,要么大于180度,这与三角形内角和定理相矛盾。
因此,假设不成立,原命题成立。
练习:证明“一个正方形中最大的角是直角”
证明:假设一个正方形中最大的角不是直角,那么它只能是锐角或钝角。
根据正方形内角和定理,四个内角的和等于360度。
如果最大的角不是直角,那么它要么是锐角(小于90度),要么是钝角(大于90度)。
因此,正方形的内角和要么小于360度,要么大于360度,这与正方形内角和定理相矛盾。
因此,假设不成立,原命题成立。
通过反证法的例题和练习,我们可以发现反证法的思路是通过假设命题不成立,然后推导出矛盾的结论,从而证明原命题成立。
在应用反证法时,需要注意一些关键点:
确定假设的命题是什么。
根据已知条件和定理,推导出与假设相矛盾的结论。
证明矛盾的结论是由于假设不成立导致的。
通过不断练习和应用反证法,我们可以提高自己的逻辑推理能力和证明能力。
反证法练习题
反证法精选题26道一.选择题(共18小题)1.利用反证法证明“直角三角形至少有一个锐角不小于45°”,应先假设()A.直角三角形的每个锐角都小于45°B.直角三角形有一个锐角大于45°C.直角三角形的每个锐角都大于45°D.直角三角形有一个锐角小于45°2.用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时应假设()A.三角形中有一个内角小于或等于60°B.三角形中有两个内角小于或等于60°C.三角形中有三个内角小于或等于60°D.三角形中没有一个内角小于或等于60°3.选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设()A.∠A>45°,∠B>45°B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45°D.∠A≤45°,∠B≤45°4.已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾.②因此假设不成立.∴∠B<90°.③假设在△ABC中,∠B≥90°.④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②5.要证明命题“若a>b,则a2>b2”是假命题,下列a,b的值不能作为反例的是()A.a=1,b=﹣2B.a=0,b=﹣1C.a=﹣1,b=﹣2D.a=2,b=﹣1 6.下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=﹣2B.a=﹣1C.a=1D.a=27.反证法证明“三角形中至少有一个角不小于60°”先应假设这个三角形中()A.有一个内角小于60°B.每个内角都小于60°C.有一个内角大于60°D.每个内角都大于60°8.用反证法证明“三角形中至少有一个内角大于或等于60°”时,应先假设()A.有一个内角小于60°B.每一个内角都小于60°C.有一个内角大于60°D.每一个内角都大于60°9.下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是()A.5B.2C.4D.810.用反证法证明命题“一个三角形中至多有一个角是直角”,应先假设这个三角形中()A.至少有两个角是直角B.没有直角C.至少有一个角是直角D.有一个角是钝角,一个角是直角11.用反证法证明,“在△ABC中,∠A、∠B对边是a、b,若∠A>∠B,则a>b.”第一步应假设()A.a<b B.a=b C.a≤b D.a≥b12.用反证法证明:“一个三角形中,至少有一个内角大于或等于60°”.应假设()A.一个三角形中没有一个角大于或等于60°B.一个三角形中至少有一个角小于60°C.一个三角形中三个角都大于等于60°D.一个三角形中有一个角大于等于60°13.用反证法证明:“一个三角形中至多有一个角不小于90°”时,应假设()A.一个三角形中至少有两个角不小于90°B.一个三角形中至多有一个角不小于90°C.一个三角形中至少有一个角不小于90°D.一个三角形中没有一个角不小于90°14.用反证法证明“在直角三角形中,至少有一个锐角不大于45°”,应先假设这个直角三角形中()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°15.在用反证法证明“三角形的最大内角不小于60°”时,假设三角形的最大内角不小于60°不成立,则有三角形的最大内角( )A .小于60°B .等于60°C .大于60°D .大于或等于60°16.已知五个正数的和等于1,用反证法证明:这五个正数中至少有一个大于或等于15,先要假设这五个正数( )A .都大于15B .都小于15C .没有一个小于15D .没有一个大于1517.下列说法正确的个数( )①近似数32.6×102精确到十分位: ②在√2,−(−2)2,√83,﹣|−√2|中,最小的数是√83③如图所示,在数轴上点P 所表示的数为﹣1+√5④反证法证明命题“一个三角形中最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”⑤如图②,在△ABC 内一点P 到这三条边的距离相等,则点P 是三个角平分线的交点A .1B .2C .3D .418.用反证法证明“a >0”时,应先假设结论的反面,下列假设正确的是( )A .a <0B .a =0C .a ≠0D .a ≤0二.填空题(共8小题)19.用反证法证明命题“三角形中至少有一个内角大于或等于60°“,应假设 .20.用反证法证明“一个三角形中最多有一个内角是钝角”的第一步是 .21.用反证法证明“如果|a |>a ,那么a <0.”是真命题时,第一步应先假设 .22.用反证法证明“在三角形中,至少有一个内角大于或等于60°”时,应先假设 .23.用反证方法证明“在△ABC 中,AB =AC ,则∠B 必为锐角”的第一步是假设 .24.用反证法证明“内错角相等,两直线平行”时,首先要假设 .25.如图,直线AB 、CD 被直线EF 所截,∠1、∠2是同位角,如果∠1≠∠2,那么AB 与CD不平行.用反证法证明这个命题时,应先假设:.26.数学课上,同学提出如下问题:老师说这个证明可以用反证法完成,思路及过程如下:小贴士反证法不是直接从命题的已知得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立.在某些情形下,反证法是很有效的证明方法.如图1,我们想要证明“如果直线AB,CD被直线所截EF,AB∥CD,那么∠EOB=∠EO'D.”如图2,假设∠EOB≠∠EO'D,过点O作直线A'B',使∠EOB'=∠EO'D,可得A'B'∥CD.这样过点O就有两条直线AB,A′B′都平行于直线CD,这与基本事实矛盾,说明∠EOB≠∠EO'D的假设是不对的,于是有∠EOB=∠EO'D.请补充上述证明过程中的基本事实:.。
高中数学 反证法
复习引入
思 考:
将9个球分别染成红色或者白色,那么 无论怎样染,至少有5个球是同色的. 你能证明这个结论吗?
新课不成立(即在原 命题的条件下,结论不成立),经过正确 的推理,最后得出矛盾,因此说明假设错 误,从而证明了原命题成立,这样的证明 方法叫做反证法.
课堂练习
1. 用反证法证明命题“若a2+b2+c2=0, 则a=b=c=0”时,第一步应假设 ( A. a≠b≠c≠0 B. abc≠0 C. a≠0,b≠0,c≠0 D. a≠0或b≠0或c≠0 )
课堂练习
1. 用反证法证明命题“若a2+b2+c2=0, 则a=b=c=0”时,第一步应假设 ( D A. a≠b≠c≠0 B. abc≠0 C. a≠0,b≠0,c≠0 D. a≠0或b≠0或c≠0 )
课堂练习
2. 在△ABC中,若∠C是直角,则
∠B 一定是锐角.
3. 求证: 2 , 3 , 5 不可能成 等差数列.
课堂练习
4. 已知a,b,c均为实数,且
a x 2y
2
2
,b y 2 z
2
3
,
6 求证:a,b,c中至少有一个大于0.
c z 2x
2
.
课堂小结
1.“反证法”的解题步骤: (1)提出反设(否定结论); (2)推出矛盾(与已知、假设、定义、 定理、公理、事实矛盾,这是关键 的一步); (3)否定假设,肯定结论.
2.反证法一般应用于证明“结论含有否定词、 至多、至少、唯一性”的问题.
课后作业
《学案》与《习案》.
例题讲解
例1. 已知a 0,证明x的方程ax b
有且只有一个根 .
反证法经典专题(带解析)
反证法专题50道18.用反证法证明命题“设a,b为实数,则方程30至少有两个实根”时,要x ax b做的假设是()A.方程30恰好有两个实根x ax bx ax b没有实根B.方程30C.方程30至多有一个实根x ax b至多有两个实根D.方程30x ax ba b ,则,a b至少有一个小于0”时,假设应为()19.利用反证法证明“若0A.,a b都小于0B.,a b都不小于0C.,a b至少有一个不小于0D.,a b至多有一个小于020.用反证法证明命题时,对结论:“自然数a,b,c中至少有一个是奇数”正确的假设为()A.a,b,c都是偶数B.a,b,c都是奇数C.a,b,c中至少有两个奇数D.a,b,c中至少有两个偶数或都是奇数第1页,共17页参考答案:1.A【分析】根据命题的结论的否定进行判断即可.【详解】因为a ,b 中至少有一个能被5整除的否定是a ,b 都不能被5整除,所以假设的内容应该是a ,b 都不能被5整除,故选:A 2.B【分析】“至少有一个”的否定是“一个也没有”,进而可得答案.【详解】由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.“至少有一个”的否定是“一个也没有”,故命题“a ,b ∈N+,如果ab 可被5整除,那么a ,b 至少有1个能被5整除”的否定是“a ,b 都不能被5整除”.故选:B .3.C【分析】根据反证法的定义即可直接得出结果.【详解】由反证法的定义,知在推导过程中,不能把原结论作为条件使用,其他都可以当作条件来使用,所以可以使用结论的否定、已知条件、公理、定理、定义等.故选:C.4.C【分析】根据反证法基本原理,对结论进行否定即可得到结果.【详解】“a 与b 都不能被7整除”的否定为:,a b 至少有一个能被7整除.故选:C.5.D【分析】根据给定条件,利用反证法的意义写出结论的否定作答.【详解】命题“如果0a b ”,“那么22a b ”的结论是22a b ,而反证法证明命题时,是假设结论不成立,即结论的反面成立,所以所求假设是22a b .故选:D 6.C答案第2页,共17页【分析】取命题的反面即可.【详解】用反证法证明命题,应先假设它的反面成立,即1x 且1y ,故选:C .7.D【分析】利用反证法证明规则即可得到应假设0x 或0y .【详解】利用反证法证明,应先假设结论不成立,本题应假设0x 或0y 故选:D 8.C【分析】根据反证法证明命题的方法,应先假设命题的反面成立,故求出命题的反面即可.【详解】“x ,y 至多有一个大于0”包括“x ,y 都不大于0和有且仅有一个大于0”,故其对立面为“x ,y 都大于0”.故选:C.9.C【分析】反证法中“a ,b ,c 至少有一个是无理数”的假设为“假设a ,b ,c 都不是无理数”,对照选项即可得到答案.【详解】依题意,反证法中“a ,b ,c 至少有一个是无理数”的假设为“假设a ,b ,c 都不是无理数”,即“假设a ,b ,c 都是有理数”.故选:C.10.A【分析】根据“至少有一个大于”的反设是“三个都不大于”可直接得到结果.【详解】“至少有一个大于”的反设是“三个都不大于”,反设正确的是“三个内角都不大于60 ”.故选:A.11.B【分析】根据“至少有一个是偶数”的否定形式可直接判断出结果.【详解】∵“至少有一个是偶数”的否定形式为“都不是偶数”,假设正确的是:假设,,a b c 都不是偶数.故选:B.12.B【分析】“反证法”就是从命题的反面即否定形式入手考虑题设.故答案为:若“6x y ,则3x 且4y ”成立.45.0x 且0y 【分析】根据反证法思想,写出原命题证明中的假设条件即可.【详解】由反证法思想:否定原结论,推出矛盾,所以题设命题的证明,应假设0x 且0y .故答案为:0x 且0y 46.02a 【分析】根据反证法的结构特点可得正确的假设.【详解】对于命题:“已知a R ,若|1|1a ,则a<0或2a ”,用反证法证明时应假设:若02a .故答案为:02a .47.a b 且b c 成立【分析】假设结论的反面成立,即可求解.【详解】解:假设结论的反面成立,即a b 且b c 成立.故答案为:a b 且b c 成立.48.在一个三角形中至少有两个内角是钝角【分析】依据命题的否定即可求得结论的否定为“在一个三角形中至少有两个内角是钝角”【详解】命题“一个三角形中最多只有一个内角是钝角”的否定为“在一个三角形中至少有两个内角是钝角”故答案为:在一个三角形中至少有两个内角是钝角49.1x 且1y 【分析】根据给定条件,写出已知命题结论的否定作答.【详解】命题若2x y ,则1x 或1y 的结论是“1x 或1y ”,其否定为“1x 且1y ”,所以假设的内容应该是:1x 且1y .故答案为:1x 且1y 50.1x 且1y 【分析】根据反证法的原理可知.【详解】根据反证法的原理可知,求证1x 或1y 时,应首先假设1x 且1y .故答案为:1x 且1y 51.a ,b ,c 中至少有两个偶数【分析】用反证法证明某命题时,应先假设命题的否定成立,所以找出命题的否定是解题的关键.【详解】用反证法证明某命题时,应先假设命题的否定成立.因为“自然数a,b,c中至多有一个偶数”的否定是:“a,b,c中至少有两个偶数”,所以用反证法证明“自然数a,b,c中至多有一个偶数”时,假设应为“a,b,c中至少有两个偶数”,故答案为:a,b,c中至少有两个偶数.。