12认识无理数(第2课时)教学设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 实数
1. 认识无理数(第2课时)
教学目标是:
1.借助计算器探索无理数是无限不循环小数,借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并从中体会无限逼近的思想.
2.探索无理数的定义,比较无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练学生的思维判断能力.
3.能够准确地将目前所学习的数按不同角度进行分类,并说明理由,进一步体会分类思想,培养学生解决问题的能力.
4.充分调动学生参与数学问题的积极性,培养学生的合作精神,提高他们的辨识能力.
教学环节:
第一环节:新课引入
内容:想一想:
1. 有理数是如何分类的?
整数(如1-,0,2,3,…) 有理数
分数(如31,52-,11
9
,0.5,… )
2. 除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如22=a ,25=b 中的a ,b 不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.
意图:通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它的真面目.
效果:激发学生的好奇心和求知欲,引出本节课题“数不够用了(2)”.
第二个环节:活动与探究
1. 探索无理数的小数表示
内容:借助计算器以小组讨论的形式对面积为2的正方形的边长a和面积为5的正方形的边长b进行估计.
请看图,判断下面3个正方形的边长之间有怎样的大小关系?边长a的取值范围大致是多少?如何估算的?是否存在一个小数的平方等于2?说说你的理由.
边长a面积s
1<a<21<s<4
1.4<a<1.5 1.96<s<
2.25
1.41<a<1.42 1.9881<s<
2.0164
1.414<a<1.415 1.999396<s<
2.002225
1.4142<a<1.4143 1.99996164<s<
2.00024449
归纳总结:a是介于1和2之间的一个数,既不是整数,也不是分数,则a 一定不是有理数.如果写成小数形式,它们是无限不循环小数.
请大家用上面的方法估计面积为5的正方形的边长b的值.
目的:让学生有充分的时间进行思考和交流,逐渐地缩小范围,借助计算器探索出a=1.41421356…,b=2.2360679…,是无限不循环小数的过程,体会无限逼近的思想.
效果:学生感受到无理数确实是无限不循环的,为后续定义无理数打下基础.
2. 探索有理数的小数表示,明确无理数的概念
内容:请同学们以学习小组的形式活动:一同学举出任意一分数,另一同学将此分数表示成小数,并总结此小数的形式.
议一议:分数化成小数,最终此小数的形式有哪几种情况?
探究结论:分数只能化成有限小数或无限循环小数.
即任何有限小数或无限循环小数都是有理数.
强调:像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.
我们把无限不循环小数叫做无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数).
目的:通过学生的活动与探究,得出无理数的概念.
效果:通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必然性,建立了无理数的概念.
第三个环节:知识分类整理
内容:到目前为止我们所学过的数可以分为几类?(按小数的形式来分).
强调“无限不循环小数”与“无限循环小数”的联系和区别.无理数还可以进行怎样的分类?
目的:培养学生总结归纳的能力,把新学知识纳入已有的知识体系,进一步发展学生的思维判断能力,加强学生对分类思想的理解.
效果:通过师生的共同探究,形成对中学现阶段数的系统认识,提高了总结归纳能力.
第四个环节:知识运用与巩固
内容:认识一个数是无理数还是有理数. 例1填空:
0.351,
4.96••
-,32-, 3.14159, 6, -5.2323332…,3
π
,1234567891011…(由相继的正整数组成).
有理数:有限小数或无限循环小数
无理数:无限不循环小数

整数
分数


例2 判断下列说法是否正确
(1)有限小数是有理数; ( ) (2)无限小数都是无理数; ( ) (3)无理数都是无限小数; ( ) (4)有理数是有限数. ( )
例3以下各正方形的边长是无理数的是( ) (A )面积为25的正方形; (B ) 面积为
25
4
的正方形; (C ) 面积为8的正方形;
(D ) 面积为1.44的正方形.
例4一个直角三角形两条直角边的长分别是3和5,则斜边a 是有理数吗?
解:由勾股定理得: 22235a =+,即2=34a .因为34不是完全平方数,所以a 不是有理数.
强调:
1. 无理数是无限不循环小数,有理数是有限小数或无限循环小数.
2. 任何一个有理数都可以化成分数q
p
形式(q ≠0, p ,q 为整数且互质),而无理数则不能.
练一练:
1.课本P 23 随堂练习.
2.已知:在数4
3-,5, 1.42••
-,π,3.1416,32
,0,24,2n (1)- ,
-1.424224222…中, (1)写出所有有理数; (2)写出所有无理数;
(3)把这些数按由小到大的顺序排列起来,并用符号“<”连接.
目的:通过例题的讲解、练习,让学生充分理解无理数、有理数的概念、区别,感受数的分类.
有理数集合
无理数集合
5
效果:通过学生练习,更加明确了有理数、无理数的概念,及它们之间的区别与联系,激发学生学习兴趣,巩固了对概念的理解.
第五个环节:课堂小结
内容:本节课你有哪些收获?
1.无理数的定义.
2.你是怎样判断一个数是无理数还是有理数的?
3.请把已学过的数怎样分类?
目的:让学生学会及时对知识点、数学方法进行总结,并整理成经验,形成知识体系,培养学生良好的学习习惯,提高其归纳总结能力.
效果:师生共同总结补充,形成完整的知识体系.
第六个环节:布置作业
习题2.2 1.2.3.
附:板书设计。

相关文档
最新文档