第二章 电磁场运动的基本规律.

合集下载

电磁场与电磁波第二章电磁场的基本规律讲解

电磁场与电磁波第二章电磁场的基本规律讲解
第二章 电磁场的基本规律
• §2.1 电荷和电场 • §2.2 电流和磁场 • §2.3 真空中的麦克斯韦方程组 • §2.4 媒质的电磁性质 • §2.5 媒质中的麦克斯韦方程组 • §2.6 电磁场边值条件 • §2.7 电磁场能量和能流
§2.1 电荷与电场
1. 电荷是什么东西?
摩擦起电 与绸缎摩擦过的玻璃棒能吸引小纸屑; 与皮毛摩擦过的橡胶棒也能吸引纸屑。
例题 无穷大平行板电容器内有两层介质,极板上 的面电荷密度为±σf ,求电场和极化电荷分布。 解:根据边界条件
在导体与电介质的界面处: 介质1与导体界面
介质2与导体界面 两种介质界面
作业:P88 2.31
§2.7 电磁场的能量密度和能流密度 1. 电磁场的能量密度
电场的能量密度 磁场的能量密度 电磁场的能量密度 在非线性介质中,
当回路不随时间变化时,
2. 位移电流假设 稳恒电流产生的磁场满足规律: 非稳恒情况下, 假设:
——称为位移电流。
3. 麦克斯韦方程组
4. 洛仑兹力公式
(点电荷) (体分布电荷)
作业:P86-87 2.24, 2.27
§2.4 媒质的电磁性质
1.媒质的概念——
在电磁学中一般把材料分为导体和绝缘体。 所以电磁学中涉及的空间区域只有真空、导体 和绝缘体三种不同性质的区域。而在电场中, 绝缘体又被称为“电介质”。
库仑定律:
F12
k
q1q2 r122
e12
F21
令 k 1
4π 0
( 0 为真空电容率)
0

1 4π k
8.85421012 C2
N1 m2
8.8542 10 12 F m1

电磁场基本规律

电磁场基本规律

t
V
dV
0
即整个空间的总电荷是守恒的。
2、积分形式反映的是电荷变化与电流流动的宏观关系,而微分形式则描述空间各点电荷变化与电流流动 的局部关系。
3、恒定(稳恒)电流的连续性方程 所谓恒定(或称为稳恒),是指所有物理量不随时间变化。 不随时间变化电流称为恒定电流(或稳恒电流)。 恒定电流空间中,电荷分布也恒定不变,即对时间的偏导数为零,则电流连续性方程为
(r
/
r
)
0
/
(r r )
/
(r r )
函数性质:
(r/Biblioteka r)dV1
V
0
(r r/点在体积V内) (r r/点不在体积V内)
函数取样特性。
V f(r)(rr/)dV 0 f(r(/r)(rr/点 在 r/点 V外 在 )V内 )
/
/
(rr)(rr) 函数对场点和源点的对称性
(2)点电荷的表示
• 库仑力是平方反比径向力,是保守力。 • 库仑定律只能直接用于静止点电荷间。但若施力电荷静止,受力电荷运动,它们间的作用仍满足库仑定律。
2.2.2、 电场强度
E (r )
电场强度是描述电场的基本物理量。 1)定义:电场强度 = 空间中一点处的单位正电荷受的力。
E(r)F/q0 q 点电荷 的场强
J
JlimI ndI n S0S dS
载流导体内每一点都有一个电流密度,构成一个矢量场,称这一矢量场为电流场。电流场的矢量线叫 做电流线。
S 流过任意面积 的电流强度I
I S J d S S J d S c o s S J d S
2)( 面)电流密度
JS
当电荷只在一个薄层内流动时,形成的电流为面电流。

第二章 电磁场的基本规律3

第二章 电磁场的基本规律3

r r r r D = ε0 (1+ χe )E = εE = εrε0E 称为介质的介电常数, 其中 ε = ε0 (1+ χe ) = εrε0 称为介质的介电常数, r =1+ χe 称为介 ε 质的相对介电常数(无量纲)。 质的相对介电常数(无量纲)。
介质有多种不同的分类方法, * 介质有多种不同的分类方法,如: 均匀和非均匀介质 各向同性和各向异性介质 时变和时不变介质 Modified by shaofu.li 线性和非线性介质 确定性和随机介质
故得到电介质表面的极化电荷面密度为
rr ρSP = P en
⊕⊕⊕ ⊕⊕ ⊕ ⊕ ⊕ ⊕ ⊕⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕⊕ ⊕ ⊕ ⊕ ⊕⊕⊕ ⊕⊕ ⊕⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕⊕ ⊕ ⊕⊕ ⊕
r P r dS en
S
Modified by shaofu.li
电磁场与电磁波
第2章 电磁场的基本规律
无极分子 有外加电场
无极分子 有极分子 无外加电场
⊕ ⊕ E ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕⊕ ⊕ ⊕

⊕⊕⊕
有极分子
电磁场与电磁波
第2章 电磁场的基本规律
4
介质极化(Polarization)的种类 1.电子极化 ——(Electronic P…) 2.离子极化 ——(Ionic P…) 3.(分子)取向极化 ——(Orientational P…)
7
极化电荷电量 =单位体积内电荷数x电量x“体积”
Modified by shaofu.li
电磁场与电磁波
第2章 电磁场的基本规律
留在介质体内的总的“净”电荷
8
Modified by shaofu.li

练习题(第二章 电磁场的基本规律)

练习题(第二章 电磁场的基本规律)

c
d
x
B • 2.27 解: (1)由麦克斯韦方程组 E t B H 0 B ( E )dt B H (2) H H D E D 0 E D t D H k 1/ 3 t (3)将内导体视为理想导体 ,利用边界条件 1 8 J S en H ez 265.3 cos(10 t z ) a 3 1 D dS e 2 dz (4) J d id J d dS J d 2dz 0 t
E
l a
Hale Waihona Puke 40 2a 2 2 (ez ex cos 'ey sin ' )d '
2 2

l ez 'ex sin 'ey cos ' 2 8 2 0 a 2 l ( ex 2 ez ) 8 2 0 a
l ,求垂直于圆平面 2.10 一个半圆环上均匀分布线电荷 的轴线z=a处的电场强度,设半圆环的半径也为a. 解: 柱坐标系: 1 l ad ' dE z dE eR 2 p e 4 0 2a r a 1 1 eR eZ ( e ) y 2 2 er 1 (ex cos 'e y sin ' ez ) dl 2 x
• 2.31
y 媒质1 理想导体 x
1
1
1
r1 e r1 正电荷在空腔内产生的电场为 E1 3 0
单位向量 e r 1 e r 2 分别以大、小球体的球心为球面坐标 的原点。考虑到
负电荷在空腔内产生的电场为 E 2 r 2 e r2 3 0

第二章电磁场中电子的运动

第二章电磁场中电子的运动
sin m0 cos F Fx sin Fy cos m0 x y sin r sin r 2 cos ) sin m0 ( r cos 2r cos r cos r 2 sin ) cos m0 ( rsin 2r sin 2 r sin 2 r 2 cos sin ) m0 ( r cos sin 2r cos2 r cos2 r 2 sin cos ) m0 ( rsin cos 2r (cos2 sin 2 ) r (cos2 sin 2 ) m0 [2r r ) m0 (2r m0 d 2 ) (r r dt
电子光学第二章(Kang) P.17
牛顿运动方程

直角坐标系、圆柱坐标系以及一般正交坐标系运 动方程
将x和y的微分形式用r和 ψ 的微分形式代入,上述方程可以得到圆柱 坐标方程下的牛顿方程:
2) Fr m0 ( r r
r ) F m0 (2r m0 d 2 ) (r r dt
sin cos r sin cos r 2 cos2 ) Fr m0 ( r cos2 2r cos sin r cos sin r 2 sin 2 ) m0 ( rsin 2 2r 2 (sin 2 cos2 )] m0 [ r(sin 2 cos2 ) r 2) m0 ( r r
拉格朗日方程

直角坐标系下推演拉格朗日方程
拉格朗日函数
静电场是位场,因此将位能和动能函数带入到拉格朗日函数后,得到静电 场中的拉各朗日函数 2 0
m L eU 2

电动力学知识点总结

电动力学知识点总结

第一章电磁现象的普遍规律 一、 主要内容:电磁场可用两个矢量一电场强度电Z,zQ 和磁感应强度B{x r y r zfy 来完全 描写,这一章的主要任务是:在实验定律的根底上找出丘,歹所满足的偏微分方程组 一麦克斯韦方程组以及洛仑兹力公式,并讨论介质的电磁性质及电磁场的能量。

在电 磁学的根底上从实验定律岀发运用矢量分析得出电磁场运动的普遍规律:使学生掌握 麦克斯韦方程的微分形式及物理意义;同时体会电动力学研究问题的方法,从特殊到 一般,由实验定律加假设总结出麦克斯韦方程。

完成由普通物理到理论物理的自然过 渡。

二、 知识体系:介质磁化规律:能量守恒定律n 线性介质能量密度:I 能流密度:洛仑兹力密度;宇二应+" x B三、内容提要:1. 电磁场的根本实验定律:(1) 库仑定律:库仑定理:壮丿=[*虫1厶电磁感应定律:市总•屋=-—[B-dSdV f區 dt k涡旋电场假设 介质的极化规律:V- 5 = /? VxZ=比奥-萨伐尔逹律: D = s Q S + PJdVxr边值关系位移电流假设V-> = 0J+ —B =其中:第2页,共37页对E 个点电荷在空间某点的场强等于各点电荷单独存在时在该点场强的矢量和, 即:〔2〕毕奥——萨伐尔定律〔电流决定磁场的实验定律〕B = ^[^L〔3〕电磁感应定律②磁场与它激发的电场间关系是电磁感应定律的微分形式。

〔4〕电荷守恒的实验定律①反映空间某点Q 与了之间的变化关系,非稳恒电流线不闭合。

空二0月•了二0②假设空间各点Q 与£无关,那么別为稳恒电流,电流线闭合。

稳恒电流是无源的〔流线闭合〕,°, 7均与北无关,它产生的场也与上无关。

2、电磁场的普遍规律一麦克斯韦方程微分形式di——diV • D = p方二勺宜+戶,H = —-MAo积分形式[f] E dl =-\ --dSSJs 冼[fl H-df = I + -\D -d§S念J血Q/40①生电场为有旋场〔鸟又称漩涡场〕,与静电场堤本质不同。

《电磁场与电磁波》复习纲要(含答案)

《电磁场与电磁波》复习纲要(含答案)

S
第二类边值问题(纽曼问题) 已知场域边界面上的位函数的法向导数值,即 第三类边值问题(混合边值问题) 知位函数的法向导数值,即
|S f 2 ( S ) n
已知场域一部分边界面上的位函数值,而其余边界面上则已
|S1 f1 ( S1 )、 | f (S ) S 2 2 n 2
线处有无限长的线电流 I,圆柱外是空气(µ0 ),试求圆柱内 外的 B 、 H 和 M 的分布。 解:应用安培环路定理,得 H C dl 2 H I I H e 0 磁场强度 2π I e 0 a 2 π 磁感应强度 B I e 0 a 2 π 0 I B e 2π M H 磁化强度 0 0 0

C
F dl F dS
S
5、无旋场和无散场概念。 旋度表示场中各点的场量与旋涡源的关系。 矢量场所在空间里的场量的旋度处处等于零,称该场为无旋场(或保守场) 散度表示场中各点的场量与通量源的关系。 矢量场所在空间里的场量的散度处处等于零,称该场为无散场(或管形场) 。 6、理解格林定理和亥姆霍兹定理的物理意义 格林定理反映了两种标量场 (区域 V 中的场与边界 S 上的场之间的关系) 之间满足的关系。 因此,如果已知其中一种场的分布,即可利用格林定理求解另一种场的分布 在无界空间,矢量场由其散度及旋度唯一确定 在有界空间,矢量场由其散度、旋度及其边界条件唯一确定。 第二章 电磁现象的普遍规律 1、 电流连续性方程的微分形式。
D H J t B E t B 0 D
D ) dS C H dl S ( J t B E dl dS S t C SB dS 0 D dS ρdV V S

02第二章电磁场的基本规律

02第二章电磁场的基本规律

第11页
电磁场与电磁波 第二章__电磁场的基本规律 2.1.2 电流及电流密度
电流 i : 电荷作定向运动形成 形成电流的条件:存在可以自由移动的电荷;存在电场 电流大小定义:单位时间内通过某一横截面S 的电荷量 q ( A , 安 培) 恒定电流 I :不随时间变化的电流 I t [ q 是在 t 时刻通过面积 S 的电荷量];
则 电荷密度为: ( r ) q ( r r )
积分区域不包含 r r 的点 0 V ( r r )dV 积 分 区 域 包 含 r r 的点 1 ( r ) q ( r ) 位于坐标原点的点电荷的电荷密度为:
电场中某点一个实验电荷 q 受力为 F
是场点的位置矢量 q ( r r ) r 是源点的位置矢量 E 3 4 0 r r r
电场强度反映作用力的强度 电场强度不是力
第21页
电磁场与电磁波_ 2.2.1 库仑定律 电场强度
库仑定律的适用条件:无限大的均匀、线性、各向同性介质 库仑定律的两个重要结论: 点电荷电场强度与距离平方成反比(平方反比) 电场强度与点电荷的电量成正比(叠加原理) n个点电荷的电场
第二章 电磁场的基本规律
电磁场与电磁波
通信与信息工程学院
王玲芳
电磁场与电磁波 第一章__矢量分析
第一章内容总结
场的基本概念 三个坐标系 三个度 两个转换(公式) 两个恒等式 一个运算 两个定理 场基本方程的微分和积分形式 场点和源点的梯度关系
第 2页
电磁场与电磁波 第一章__矢量分析总结 哈密顿算符: 梯度:
3、线电流
Δl
电流在极细的导线中做定向运动形 成的电流。

电磁场的源与边界条件

电磁场的源与边界条件

根据安培环路定理可得恒定磁场的磁感应强度 B 的旋度为
当有磁介质存在时,上式变为
B 0J B 0 (J JM )
式中 J 为传导电流密度, J M 为磁化电流密度。
(3)磁感应强度 B 的边界条件 将积分形式的麦克斯韦第三方程应用于如图 4 所示的圆
柱,易得
en (B1 B2 ) 0 上式表明磁感强度的法向分量是连续的。
球的极限当带电体的尺寸相对于观察点至带电体的距离可以忽略时,就可以认为电荷分布于
带电体中心上,即将带电体抽象为一个几何点。点电荷的电荷密度分布可以用数学上的 (r )
来描述。
二、 电流及电流分布
电荷做定向运动形成电流,通常以电流强度来描述其大小。在电磁理论研究中,常用到 体电流模型,面电流模型和线电流模型。 1、 体电流
移矢量的切向分量是不连续的(两种介质的 通常不等)。
3、磁感应强度 B 的散度、旋度和边界条件
(1)磁感应强度 B 的散度 根据磁通连续性原理的微分形式可知恒定磁场为无散场,故 B0
磁通连续性原理表明自然界无孤立的磁荷存在。上式即为麦克斯韦第二方程的微分形式。 (2)磁感应强度 B 的旋度

故有
(P1 P2 ) enS SPS
en (P1 P2 ) SP 上式表明极化强度的法向分量是不连续的。一般情况下,其切向分量也不连续。
7、磁化强度 M 的散度、旋度和边界条件
7/9
电磁场与电磁波
第二章 电磁场的基本规律
学习报告
(1)磁化强度 M 的散度
对于各向同性和线性磁介质, M m H ,由于 H 的散度为零,故
自然界中存在两种电荷:正电荷和负电荷。带电体上所带的电荷是以离散的方式分布的, 任何带电体的电荷量都是基元电荷的整数倍,但在研究宏观电磁现象时,人们关注的是大量 微观带电粒子的整体效应,因此可以认为电荷是以一定形式连续分布的,并用电荷密度来描 述电荷的分布。 1、 电荷体密度

电磁场与电磁波--电磁场的基本规律

电磁场与电磁波--电磁场的基本规律

2 J C E ex J m cos tA / m , 所以E=ex E m cos t D E Jd = r 0 ex r 0 E m sin t t t 位移电流与传导电流幅值比 J dm r 0 E m = =9.58 10 13 f J Cm Em 通常金属电导率很大,其中的位移电流可忽略。
物理意义:随时间变化的磁场将产生电场。
4
当导体棒以速度v在静态磁场中运动时,导体回路中的 磁通量也发生变化。此时磁场力 Fm qv B 将使导体中 的自由电荷朝一端运动,则作用在单位电荷上的磁场力 F m 可看成作用于沿导体的感应电场,即:
q
v B
19
说明:时变电磁场的基本量包括电场和磁场,因此其 基本方程应包含四个式子。 注意:时变电磁场的源: 1、真实源(变化的电流和电荷); 2、变化的电场和变化的磁场。 二、麦克斯韦方程组的积分形式
D C H dl S ( J e t )dS B E dl C S t dS B dS 0 S D dS dV Q V S



Байду номын сангаас

B0bvt sin t B0bv cos t
11
位移电流
一、安培环路定律的局限性
H dl J dS I
c s
C
S2
l
S1
I
如图:以闭合路径 l 为边界的 曲面有无限多个,取如图所示的 两个曲面S1,S2。
则对S1面: H J I c dl S1 dS 矛盾 对S2面: H dl J dS 0

2电磁场与电磁波-第二章

2电磁场与电磁波-第二章
复习
1.通量: 矢量 A 沿某一有向曲面 S 的面积分称为矢量 A 通过该有向曲面 S 的通量,即:
2.散度
当闭合面 S 向某点无限收缩时,矢量 A 通过该 闭合面S 的通量与该闭合面包围的体积之比的极限 称为矢量场 A 在该点的散度,以 div A 表示,即
3.散度定理(高斯定理)
某一矢量散度的体积分等于该矢量穿过该体积的 封闭表面的总通量.
μo称为真空中的磁导率:
理论上可以认为是孤立电流元I1dl1对另一个孤立电流 元I2dl2的安培力。对换1、2则:
可见并不满足牛顿第三定律孤立直流电源不存在。 记任何电流元产生的磁场为:
上式为任意电流元产生磁场的定义式,B(或dB)称为磁感 应强度或磁通密度,单位为T(特斯拉)或Wb/m2,三者间满足右 手螺旋定则.
p r r` dr`
在r=a处E(a)=ρ0a/3ε0,且从球内到球外两个区域的场 表示式计算到的E(a)是相同的.
2.7 磁感应强度的矢量积分公式
对于体电流J(r`)和面电流Js(r`),相应的矢量源分别 为J(r`)dσ`和JsdS`,相应的比奥-沙伐公式改为:
例2.7.1 计算长度为l直线电流I的磁场
若将微电流放在柱坐标原点,取+Z方向 则:
任何直流回路周围空间的磁场分布:
积分号可放到里面
例题2.5.1 求半径为a的微小电流元的磁场.
解:采用球面坐标,圆环面积为ds=πa2,法向单位矢量为ez, 因为磁场圆对称,显然将场点P(r,θ,π/2)置于yoz平 面不失普遍性: 投影关系: 余弦定理:
微电流源长度为:
将这些结果代入2.5.5就可得到磁场的计算公式2.5.6。
远场区r>>a,可用泰勒级数展开:

电磁场中的电荷运动规律

电磁场中的电荷运动规律

电磁场中的电荷运动规律电磁场是由带电粒子(电荷)产生的一个区域,同时包含了电场和磁场两个要素。

其中,电场是由电荷的静止产生的,而磁场则是由电荷的运动产生的。

在电磁场中,电荷的运动规律受到电场和磁场的相互作用影响。

本文将围绕电磁场中的电荷运动规律展开论述。

一、电场中的电荷运动规律在电磁场中,电荷受到电场力的作用而运动。

根据库仑定律,电场力与电荷之间的关系可以用公式F = qE表示,其中F为电场力,q为电荷量,E为电场强度。

电场力的方向与电场强度E的方向一致。

当电荷受到电场力作用时,其运动可以遵循牛顿第二定律,即电场力等于质量乘以加速度,即F = ma。

根据这个定律,我们可以推导出电荷在电场中的运动规律。

1.1 电场中的正电荷运动规律正电荷的电荷量为正,当正电荷进入电场区域时,它会受到电场力的作用而受力运动。

正电荷的运动方向与电场力的方向相同。

如果电场力的方向与速度方向一致,那么正电荷将继续加速;如果电场力的方向与速度方向相反,那么正电荷将受到减速的影响。

1.2 电场中的负电荷运动规律负电荷的电荷量为负,当负电荷进入电场区域时,它会受到电场力的作用而受力运动。

负电荷的运动方向与电场力的方向相反。

如果电场力的方向与速度方向相反,那么负电荷将继续加速;如果电场力的方向与速度方向一致,那么负电荷将受到减速的影响。

二、磁场中的电荷运动规律在电磁场中,电荷也可能受到磁场力的作用而运动。

根据洛伦兹力的公式F = qvBsinθ,其中F为磁场力,q为电荷量,v为电荷的速度,B为磁场的磁感应强度,θ为电荷速度与磁场方向之间的夹角。

磁场力的方向垂直于速度v和磁场B所构成的平面。

根据洛伦兹力公式,我们可以得出磁场中电荷运动的规律。

2.1 磁场中的正电荷运动规律正电荷在磁场中运动时,它会受到磁场力的作用。

磁场力的方向垂直于速度和磁场方向之间的夹角。

如果正电荷的速度与磁场方向平行,那么正电荷将不受磁场力的影响;如果正电荷的速度与磁场方向垂直,那么正电荷将受到最大的磁场力影响。

电磁场与电磁波第四版

电磁场与电磁波第四版

电磁场与电磁波第四版引言《电磁场与电磁波》是一本经典的电磁学教材,被广泛应用于大学电子信息类专业的教学。

本书第四版对前三版进行了全面修订和更新,并添加了一些新的内容,以便更好地满足读者的需求。

本文将介绍《电磁场与电磁波第四版》的主要内容,并对其中涉及的一些重要主题进行简要概述。

主要内容第一章:电磁场的基本概念本章介绍了电磁场的基本概念,包括电场和磁场的定义、电场强度、磁感应强度等基本量的引入,并通过一些简单的例子来解释这些概念。

第二章:电磁场的基本规律本章介绍了电磁场的基本规律,包括电场和磁场的基本方程、电场和磁场的高斯定律、安培环路定理等。

通过这些规律,读者可以深入理解电磁场的本质和特性。

第三章:静电场本章主要讨论静电场的性质和特点,包括静电场的产生、电势、电场强度分布等。

此外,还介绍了一些与静电场相关的重要定理,如电势差定理、电场强度叠加原理等。

第四章:静电场的应用本章介绍了静电场在工程和科学中的应用,包括静电场的能量和能量密度,以及静电场在电容器和电磁屏蔽中的应用。

第五章:恒定电流本章讨论了恒定电流的概念和性质,包括导体中的电流分布、欧姆定律、电阻和电阻器等。

此外,还介绍了一些与恒定电流相关的重要定理,如基尔霍夫定律和焦耳定律。

第六章:恒定磁场本章主要讨论恒定磁场的性质和特点,包括磁场的产生、磁力、磁感应强度等。

此外,还介绍了一些与恒定磁场相关的重要定理,如比奥-萨伐尔定律、洛伦兹力和安培环路定理等。

第七章:电磁感应本章介绍了电磁感应的基本原理和应用,包括法拉第电磁感应定律、楞次定律、自感和互感等。

此外,还介绍了一些与电磁感应相关的重要概念,如感应电动势和感应电磁力。

第八章:交流电路本章主要讨论交流电路的性质和特点,包括交流电源、交流电路中的电压和电流关系、交流电路的频率等。

此外,还介绍了一些与交流电路相关的重要定理,如波形和相位关系等。

结语本文简要介绍了《电磁场与电磁波第四版》的主要内容。

物理学电磁场的运动规律

物理学电磁场的运动规律

物理学电磁场的运动规律电磁场是物理学中重要的研究对象之一,它包含了电场和磁场两个组成部分。

在电磁场中,电荷和电流的运动会产生电场和磁场的变化,而这些变化又会影响到电荷和电流的运动。

因此,了解电磁场的运动规律对于理解电磁现象和应用电磁学原理具有重要意义。

1. 静电场中的运动规律在静电场中,电荷的分布不随时间变化,因此产生的电场也是静态的。

根据库仑定律,电荷之间的相互作用力与它们之间的距离成反比,与电荷的大小成正比。

在静电场中,电荷受到的作用力等于电场强度乘以电荷的大小。

2. 静磁场中的运动规律在静磁场中,电流的分布不随时间变化,因此产生的磁场也是静态的。

根据安培定律,电流元产生的磁场与电流元之间的距离成正比,与电流大小成正比,与电流元的方向垂直。

在静磁场中,电流受到的作用力等于磁场的磁感应强度与电流元长度的乘积。

3. 动电场中的运动规律在动电场中,电荷的分布随时间变化,因此产生的电场也是随着时间变化的。

根据法拉第电磁感应定律,当磁场的变化穿过一个电路线圈时,会在电路中产生感应电动势,从而驱动电荷的运动。

该电动势的大小与磁场变化率成正比,与线圈的匝数和面积有关。

4. 动磁场中的运动规律在动磁场中,电流的分布随时间变化,因此产生的磁场也是随着时间变化的。

根据法拉第电磁感应定律,当磁场的变化穿过一个电路线圈时,会在电路中产生感应电动势,从而驱动电流的变化。

该电动势的大小与磁场变化率成正比,与线圈的匝数和面积有关。

总结:电磁场的运动规律涉及静电场、静磁场、动电场和动磁场四个方面。

在静态情况下,电荷和电流的分布不随时间变化,电场和磁场也是静态的。

而在动态情况下,电场和磁场的变化会引起电荷和电流的运动,并产生相应的感应电动势。

通过研究电磁场的运动规律,我们可以更好地理解电磁现象并应用于实际生活中的各种电磁设备和技术中。

以上就是物理学电磁场的运动规律,希望对您有所帮助。

电磁场与电磁波(第二章)

电磁场与电磁波(第二章)

S
s
t
dS
v
Ñl JS
g(n)
v dl )
0
对时变面电流 对恒定面电流
第二节 库仑定律 电场强度
一、库仑定律
❖库仑定律描述了真空中两个点电荷间相互作用力的规律。
v
❖库仑定律内容:如图,电荷q1 对电荷q2的作用力为:
q1
R
v F12
q1 q2
4 0 R 2
evR
q1 q2
4 0 R3
v R
rv' vO
(
1
)
v ex
(
1
)
v ey
(
1
)
v ez
(1)
R x R y R z R
v ex
uv
x
x R3
' uur
v ey
y
y R3
'
v ez
zz' R3
R R3
eR R2
第二章
❖电荷、电流 2.4
❖电场强度、矢量积分公式 2.8 2.9
作业
t 0
讨论:1)
v J
vv
式中: 为空间中电荷体密度,vv 为
正电荷流动速度。
2) I Jv(rv)gdsv Jv(rv)gn)ds
S
S
S Jv(rv) cos ds
n)
S
Jv(rv)
2、面电流密度
❖当电荷只在一v个薄层内流动时,形成的电流为面电流。 ❖面电流密度 J s 定义:
电流在曲面S上流动,在垂直于
电流方向取一线元 l ,若通过
I l
v J
线元的电流为 I ,则定义
S

电磁场与电磁波 总结

电磁场与电磁波 总结

主要内容o第一章矢量分析o第二章电磁场的基本规律o第三章静态电磁场o第四章静态场的边值问题o第五章平面电磁波o第六章平面电磁波的反射与折射o第七章导行电磁波o第八章电磁波的辐射第一章矢量分析1.梯度、散度、旋度的定义2.梯度、散度、旋度的计算。

记住直角坐标系、圆柱坐标系和球坐标系的拉米系数。

(广义坐标系中的梯度、散度、旋度公式不必记)3.散度定理、斯托克斯定理单位体积内发出的通量 环量最大面密度2.梯度、散度、旋度的计算。

记住直角坐标系、圆柱坐标系和球坐标系的拉米系数。

(广义坐标系中的梯度、散度、旋度公式不必记)sin ,,1321r h r h h 1231,,1h h h 1231,1,1h hh直角坐标系圆柱坐标系球坐标系,,x y z,,z ,,r第二章电磁场的基本规律1.麦克斯韦方程组的微分形式和积分形式。

记住并理解每一方程的物理意义。

2.电磁场的边界条件3.本构方程4.极化电荷和磁化电流分布的计算5.电磁能量和电磁传输功率的计算3.本构方程各向同性线性介质EP E D 0HM H B 0EJ H)(H M 1r m EE P 0r 0)1( e4.极化电荷和磁化电流分布的计算P PM J mP e nPSMeJ nmSPS12n)(PPemS12n)(JMMe第三章静态电磁场1.静电位、矢量磁位的概念及方程2.电位满足的边界条件第四章静态场的边值问题1. 理想导体平面和球面镜像法。

2. 分离变量法。

会由通解公式根据边界条件确定问题的特解。

第四章静态场的边值问题在给定的边界条件下求解泊松方程或拉普拉斯方程。

方法:1. 镜像法在所求解场区域以外的空间中适当位置上,设置适当的像电荷来替代界面上的电荷的效果,像电荷与源电荷共同作用结果满足场域边界面上给定的边界条件,从而可以将界面移去,使所求解的边值问题转化为无界空间的问题。

导体平面的镜像:q = – q,q , q 的位置关于平面对称。

导体球面的镜像:q = – aq/d,q , q 的位置关于球面反演。

25电磁感应定律和位移电流

25电磁感应定律和位移电流

15
2.5.2 位移电流
r
E 0
(静电场)
r E
r B
t
(动态场)
时变磁场可 以激发电场。
问题: 随时间变化的磁场会产生电场,那么随时间变化的
电场是否会产生磁场?
在时变情况下,静态场下的安培环路定理是否会变化?
rr
r
H J (恒定磁场)
H ? (动态场)
中国矿业大学
电磁场与电磁波
第 2 章 电磁场的基本规律
解: (1)线圈静止时,感应电动势是由时变磁场引起,故
z
a
b
x
B
y
en
in
B dS S t
S
t
[ey
B0
sin(t
)]
endS
S B0 cos(t) cosdS
时变磁场中的矩形线圈
B0ab cos(t) cos
中国矿业大学
电磁场与电磁波
第 2 章 电磁场的基本规律
13
(2)线圈绕 x 轴旋转时,en 的指向将随时间变化。线圈内的
D t
r Jd
电位移矢量随时间的变化率,能像电
流一样产生磁场,故称“位移电流”。
位移电流只表示电场的变化率,与传导
电流不同,它不是由电荷移动形成的真实电流,不产生热效应。
在时变电场中,电场变化愈快,产生的位移电流密度也愈大。
位移电流的引入是建立麦克斯韦方程组的至关重要的一步,它
揭示了时变电场产生磁场这一重要的物理概念。 注:在绝缘介质中,无传导电流,但有位移电流。
y
a
r oB
L
r v
b x
x
均匀磁场中的矩形环
中国矿业大学

电磁场与电磁波(第四版)课后答案 谢处方 第二章习题

电磁场与电磁波(第四版)课后答案 谢处方 第二章习题

uu uu v v (4)H = eϕ ar
u v uu v , B = µ0 H
解:(1)uu v
∇H=
1 ∂ 1 ∂ ( ρ Bρ ) = (a ρ 2 ) = 2a ≠ 0 该矢量不是磁场的矢量。 ρ ∂ρ ρ ∂ρ
uu ∂ v ∂ (2) H = (−ay ) + (ax) = 0 ∇ ∂r ∂r uu v ex u v uu v ∂ J = ∇× H = ∂x
(
)
(
(
)
)
2.9无限长线电荷通过点A(6,8,0)且平行于z轴,线电荷密度为 ρl ,试求点 P (x,y,0)处的电场强度E。 。 解:线电荷沿z轴无限长,故电场分布与z无关。设点P位于z=0的平面上,线电 荷与点P的距离矢量为
r ˆ ˆ R = x( x −6) + y( y −8) r 2 2 R = ( x−6) +( y −8)
u v 2.21下面的矢量函数中哪些可能是磁场?如果是,求其源变量 J
uu v (1)H = ρ aρ ˆ
u v uu v , B = µ0 H (圆柱坐标)
u v uu v uu uu v v uu v (2)H = ex (−ay ) + ey ax , B = µ0 H uu uu v v uu v u v uu v (3)H = ex ax − ey ay , = µ0 H B
v v ∂D 解:(1)由 ∇ × H = 得 ∂t
v v v ∂D ∂ Jd = = ∇× H = ∂t ∂x Hx v ex v ey ∂ ∂y 0 v ez ∂ v ∂H x = − ez ∂z ∂y 0
v Bb =
d
a
µ0 v v J × ρb

电动力学-复习-第二章-电磁场的基本规律

电动力学-复习-第二章-电磁场的基本规律

*
电场力服从叠加原理
真空中的N个点电荷 (分别位于 ) 对点电荷 (位于 )的作用力为
q
q1
q2
q3
q4
q5
q6
q7
*
2. 电场强度
空间某点的电场强度定义为置于该点的单位点电荷(又称试验电荷)受到的作用力,即
多层同心球壳
*
无限大平面电荷:如无限大的均匀带电平面、平板圆柱壳等。
(a)
(b)
*
例2.2.3 求真空中均匀带电球体的场强分布。已知球体半径为a ,电 荷密度为 0 。
解:(1)球外某点的场强
(2)求球体内一点的场强
( r ≥ a )
• 宏观分析时,电荷常是数以亿计的电子电荷e的组合,故可不考虑其量子化的事实,而认为电荷量q可任意连续取值。
2.1.1 电荷与电荷密度
*
1. 电荷体密度
单位:C/m3 (库仑/米3 )
根据电荷密度的定义,如果已知某空间区域V中的电荷体密度,则区域V中的总电量q为
电荷连续分布于体积V内,用电荷体密度来描述其分布
如果已知某空间曲线上的电荷线密度,则该曲线上的总电量q 为
单位: C/m (库仑/米)
*
对于总电量为 q 的电荷集中在很小区域 V 的情况,当不分析和计算该电荷所在的小区域中的电场,而仅需要分析和计算电场的区域又距离电荷区很远,即场点距源点的距离远大于电荷所在的源区的线度时,小体积 V 中的电荷可看作位于该区域中心、电量为 q 的点电荷。
第二章 电磁场的基本规律
*
2.1 电荷守恒定律 2.2 真空中静电场的基本规律 2.3 真空中恒定磁场的基本规律 2.4 媒质的电磁特性 2.5 电磁感应定律和位移电流 2.6 麦克斯韦方程组 2.7 电磁场的边界条件

电磁场中粒子的运动规律

电磁场中粒子的运动规律

电磁场中粒子的运动规律是经典电动力学研究的重要课题。

当一个粒子在电磁场中运动时,其受到的力是由电场力和磁场力共同作用的。

电磁场的作用力不仅会改变粒子的速度和方向,也会影响粒子的跃迁和旋转,从而影响其物理性质。

一、电场力与磁场力的作用电磁场是由电场和磁场组成的,其中电场的作用是使带电粒子具有电势能,而磁场则是使带电粒子受到洛伦兹力的作用。

电场力和磁场力的作用方式不同:当粒子带电荷并静止的时候,它就处于电场中,受到的力就是电场力;而当粒子在移动过程中,除了受到电场力的作用外,还会受到一种称为洛伦兹力的磁场作用力。

二、带电粒子在电场中的运动当粒子在电场中运动时,电场会使其具有电势能。

根据电场力的方向,粒子的运动方向会受到影响,电场力的作用会导致粒子具有加速度。

如果粒子的速度和电场方向相同,那么受力方向则不会改变,其运动状态将会保持不变。

如果粒子的速度和电场方向相反,那么这个粒子会被反向加速,直到速度和加速度方向相同,引力变成摩擦力之后才会逐渐静止。

三、带电粒子在磁场中的运动当粒子在磁场中运动时,其速度会受到磁场力的作用,并且会跟随着一个螺旋轨迹。

在电磁场的作用下,一个带电粒子在磁场中的运动路径是呈螺旋线的,而且带电粒子的运动方向和磁场的方向都会对粒子的螺旋轨迹产生影响。

由于洛伦兹力的作用,粒子在一个平面上形成的螺旋轨迹叫做在磁场作用下的霍尔效应。

四、电磁场对粒子的影响电磁场的作用不仅仅只影响着带电粒子的理论模型,还会改变粒子原有的物理性质,例如其动量,能量和自旋,甚至可以通过电子的旋转轨道对化学反应产生影响。

因此,研究电磁场以及粒子在其中的行为是非常重要的。

对于电磁场中的电子来说,如何将电子带电,如何在对不同磁场的作用下产生霍尔效应等都是我们所关心的问题。

这些不仅是理论模型的研究,也有着广泛的应用,例如在材料电学方面,应用此类知识可以研究材料的电性能,以及材料在外界电磁场的作用下的电学特性变化等。

综上所述,电磁场中的粒子运动规律是电动力学研究的重点之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注: ©媒质在电场 E 作用下会产生极化作用,电位移 D 考
虑极化的影响 ©媒质在磁场作用下会产生磁化作用,磁场强度 H 考虑
了磁化作用的影响 ©有些媒质会产生交叉极化或磁化作用,
©在铁氧体、等离子体等各向异性媒质中,介电常数和 导磁率中一个或两个都是张量.

上海交通大学电子工程系
2.2 洛伦磁力 以速度 V 运动的电子(密度为ρ)将产生电流(密度为 ρV )。在电磁场中同时受到电场和磁场的作用力。
11
∂D(x,y,z,t)/∂t: 位移电流密度

上海交通大学电子工程系
注解: ² (2.1a)为微分形式的法拉第定律
φ = − ∂ψ ∂t

C
E(r )

dl
=

∂ ∂t

S
B(r)

n(r)dS
∫∇×
S
E(r)

n(r)dS
=

∂ ∂t

S
B(r)

n(r)dS
∫[∇
S
×
E(r)
+
∂ ∂t

上海交通大学电子工程系
Why is Displacement Current necessary? 矛盾:
安培定律:
è
电荷守恒定律:
(cc)
解决方法:引入位移电流

×
H
=
∂D ∂t
+
J
,
代入(cc)è ∇ • D = ρ
² (2.1c)表明磁单极(“磁荷”)不存在

上海交通大学电子工程系

上海交通大学电子工程系
2.1.1 麦克斯韦方程
基本方程
∇ × E = − ∂B (a) ∂t
∇ × E = ∂B + J (b) ∂t
∇•B = 0
(c)
∇•D= ρ
(d)
? 2.1?
物理量: E(x,y,z,t): 电场强度(V/m) B(x,y,z,t): 磁感应强度(T) D(x,y,z,t): 电位移(C/m2) H(x,y,z,t): 磁场强度(A/m) J(x,y,z,t): 电流密度(A/m2) ρ(x,y,z,t): 电荷密度(C/m3)
电场力密度:
fe = ρE (N/m3 )
磁场力密度:
fe = J × B = ρ v × H (N/m3)
洛伦磁力:
fe = ρE + ρ v × H (N/m3 )
10
上海交通大学电子工程系
小结 1. 麦克斯韦方程的微分形式的导出 2. 位移电流的引入 3. 本构关系反映媒质的电磁特性 4. 洛仑兹力包括电场力与磁场力
B(r)]•
n(r )dS
=
0
∇ × E(r) + ∂ B(r) ∂t

上海交通大学电子工程系
² (2.1b)为微分形式的安培环路定律。由麦克斯韦补 充了位移电流项∂D(x,y,z,t)/∂t 之后才完备

上海交通大学电子工程系

上海交通大学电子工程系
² (2.1d)为电荷守恒定律
上海交通大学电子工程系
第二章 电磁场运动的基本规律 ² 电磁场ó物质ó波粒二相性 ²电场强度 E(r,t)和磁感应强度 B(r,t)随时空变化的 动力系统(电磁动力学)
2.1 电磁场的基本方程 麦克斯韦方程组和本构关系 宏观电磁场理论 è忽略物质的颗粒离散性,E,B 为局部平均值的空 间连续分布
2.1.2 本构关系(Constitutive Relations) 描述媒质的性质,电磁场与媒质相互作用
均匀、线性、各向同性媒质,介电常数与磁导率 为标量常数,本构关系为:
D = εE
B = µH
真空中:
ε0
=
π ×10−9 (F/m), 36
µ 0 = 4π ×10−7 (H/m)

上海交通大学电子工程系
相关文档
最新文档