七年级数学有理数PPT教学课件
合集下载
2.2.1.1有理数乘法法则 课件(共55张PPT) 七年级数学上册

要点归纳: 几个不等于零的数相乘,积的符号由 _负__因__数__的__个__数__决定. 当负因数有_奇__数__个时,积为负;
} 当负因数有_偶__数__个时,积为正. 奇负偶正
几个数相乘,如果其中有因数为0,_积__等__于__0__
新知探究
3.倒数
计算并观察结果有何特点?
(1)1 ×2; 2
总结归纳
有理数乘法法则 两数相乘,同号得正,异号得负,并把绝对值相
乘.任何数与0相乘,都得0.
如, 所以
(-5)×(-3),………………同号两数相乘 (-5)×(-3)=+( ),………………得正 5×3=15, ……………… 把绝对值相乘 (-5)X(-3)=15.
一断 二定 三算
讨论: (1)若a<0,b>0,则ab< 0 ; (2)若a<0,b<0,则ab > 0 ; (3)若ab>0,则a、b应满足什么条件?a、b同号 (4)若ab<0,则a、b应满足什么条件?a、b异号
分层练习-拓展
21. 我们学习了有理数的加法法则与有理数的乘法法则.在学 习此内容时,掌握了法则,同时也学会了分类思考. (1)若 ab =6,则 a + b 的结果可能是 ①② ;(填序号) ①正数;②负数;③0. 点拨:因为 ab =6,所以 a , b 同号.当 a , b 同为正 数时, a + b >0;当 a , b 同为负数时, a + b <0.
15.如图是一个简单的数值运算程序,当输入 x 的值为 1 时,则输出的数值
为2 .
输 入 x → ×-1 → +3 → 输 出
分层练习-巩固
16.计算: (1)214×(-197);
解:原式=-4;
(2)135×(-343);
} 当负因数有_偶__数__个时,积为正. 奇负偶正
几个数相乘,如果其中有因数为0,_积__等__于__0__
新知探究
3.倒数
计算并观察结果有何特点?
(1)1 ×2; 2
总结归纳
有理数乘法法则 两数相乘,同号得正,异号得负,并把绝对值相
乘.任何数与0相乘,都得0.
如, 所以
(-5)×(-3),………………同号两数相乘 (-5)×(-3)=+( ),………………得正 5×3=15, ……………… 把绝对值相乘 (-5)X(-3)=15.
一断 二定 三算
讨论: (1)若a<0,b>0,则ab< 0 ; (2)若a<0,b<0,则ab > 0 ; (3)若ab>0,则a、b应满足什么条件?a、b同号 (4)若ab<0,则a、b应满足什么条件?a、b异号
分层练习-拓展
21. 我们学习了有理数的加法法则与有理数的乘法法则.在学 习此内容时,掌握了法则,同时也学会了分类思考. (1)若 ab =6,则 a + b 的结果可能是 ①② ;(填序号) ①正数;②负数;③0. 点拨:因为 ab =6,所以 a , b 同号.当 a , b 同为正 数时, a + b >0;当 a , b 同为负数时, a + b <0.
15.如图是一个简单的数值运算程序,当输入 x 的值为 1 时,则输出的数值
为2 .
输 入 x → ×-1 → +3 → 输 出
分层练习-巩固
16.计算: (1)214×(-197);
解:原式=-4;
(2)135×(-343);
有理数的概念ppt课件

3,543.60,27是正数.
情境引入
在巴黎奥运会,网球女子单打金牌赛中,中国选手郑钦文
2比0战胜克罗地亚选手维基奇,为中国网球夺得首枚奥运会女
单金牌。
这些数你熟悉吗?你
会对它们进行分类吗?
2是正数;
0既不是正数也不是负数.
情境引入
在巴黎奥运会举重男子61公斤级决赛中,中国队选手李发
彬最终总成绩310公斤(抓举143公斤,挺举167公斤)夺冠,卫
人教版数学七年级上册
第一章 有理数
1.2 有理数及其大小比较
1.2.1 有理数的概念
−5℃
25℃
情境引入
在巴黎奥运会跳水男子3米板决赛中,来自潮汕的中国选手
谢思埸以总分543.60分夺得金牌,成功卫冕,帮助中国跳水队
实现该项目的三连冠,这也是中国代表团的第27枚金牌.
这些数你熟悉吗?你
会对它们进行分类吗?
正数
0
(2)非负数包括________和_______;
负数
0
(3)非正数包括________和_______;
自然数
正整数
(4)非负整数包括________和_______,又称为________;
0
正分数
整数
(5)非负分数包括________和_______;
整数
负分数
(6)非正分数包括________和_______.
课堂小结
有 关 概 念
可以写成分数形式的数称为有理数.
正整数
有
理
有理数的分类
数
有
理
数
整数 0
负整数
正分数
分数
2024版人教版数学七年级上册第一章有理数1.1 正数和负数 教学课件ppt

下图是吐鲁番盆地的示意图,你能用语言表述它与海平 面的高度关系吗?它的含义是什么?
记为+8848.86m 8848.86m
珠 穆
高度看作0米
朗
玛
峰
155m
海平面
吐鲁番盆地 记为-155m
探究新知
知识点 3 0的意义及用正负数表示相对基准量 【思考】 0只表示没有吗?
0可以用来表示基准,一般地, 高于基准的量用正数表示, 低于基准的量用负数表示.
第一章 有理数
1.1 正数和负数
学习目标
1. 了解正数与负数是从实际需要中产生的. 2. 理解正数、负数及0的意义,掌握正数、负数的表示方法. 3. 会用正数、负数表示具有相反意义的量.
探究新知
由记数、排序,产生数1,2,3, …
由表示“没有”“空位”,产生数0
由分物、测量,产生分数
1,1, 23
概念
正数和负数的定义
0的意义不仅是表示“没有”,还是正 数和负数的分界.
正数和负数表示实际问题中的具有相反意义的量.
在具体的问题情境中,明确正数和负数代表的实际 意义.
0℃
巩固练习
下面是某存折中记录的支出、存入信息,试着说说其中 “支出或存入”那一栏的数字表示什么含义.
存折中的正数表示存入, 反之,负数表示支出.
当堂训练
基础巩固题
1.下列说法,正确的是( C ) A. 加正号的数是正数,加负号的数是负数 B. 0是最小的正数 C. 字母a既可是正数,也可是负数,也可是0 D. 任意一个数,不是正数就是负数
探究新知
知识点 1 正数、负数的定义
【思考】根据实际生活的需要,人们引进了另一种数,你知道是 什么数吗?结合你在实际生活中接触到的数,试举例.
记为+8848.86m 8848.86m
珠 穆
高度看作0米
朗
玛
峰
155m
海平面
吐鲁番盆地 记为-155m
探究新知
知识点 3 0的意义及用正负数表示相对基准量 【思考】 0只表示没有吗?
0可以用来表示基准,一般地, 高于基准的量用正数表示, 低于基准的量用负数表示.
第一章 有理数
1.1 正数和负数
学习目标
1. 了解正数与负数是从实际需要中产生的. 2. 理解正数、负数及0的意义,掌握正数、负数的表示方法. 3. 会用正数、负数表示具有相反意义的量.
探究新知
由记数、排序,产生数1,2,3, …
由表示“没有”“空位”,产生数0
由分物、测量,产生分数
1,1, 23
概念
正数和负数的定义
0的意义不仅是表示“没有”,还是正 数和负数的分界.
正数和负数表示实际问题中的具有相反意义的量.
在具体的问题情境中,明确正数和负数代表的实际 意义.
0℃
巩固练习
下面是某存折中记录的支出、存入信息,试着说说其中 “支出或存入”那一栏的数字表示什么含义.
存折中的正数表示存入, 反之,负数表示支出.
当堂训练
基础巩固题
1.下列说法,正确的是( C ) A. 加正号的数是正数,加负号的数是负数 B. 0是最小的正数 C. 字母a既可是正数,也可是负数,也可是0 D. 任意一个数,不是正数就是负数
探究新知
知识点 1 正数、负数的定义
【思考】根据实际生活的需要,人们引进了另一种数,你知道是 什么数吗?结合你在实际生活中接触到的数,试举例.
人教版七年级数学上册 第一章 有理数复习课件(共51张PPT)

01
复习课
有理数
1. 正__整_数__、__零_、__负__整_数统称整数,试举例说明。
2. 正_分__数__、_负__分__数___统称分数,试举例说明。
3. __整__数__、_分__数____统称有理数。
有理数的分类表
整数 有 理 数 分数
正整数 0
自然数
(非负整数)
负整数
正分数 负分数
有理数的分类
②下列说法正确的是( )A A.–1/4的相反数是0.25
B.4的相反数是-0.25
C.0.25的倒数是-0.25,
D.0.25的相反数的倒数是-0.25
③用-a表示的数一定是( D) A.负数 B.正数 C.正数或负数 D.都不对
④一个数的相反数是最小的正整数,那么这个数 是( A)
A .–1 B. 1 C .±1 D. 0
A.“向东5米”与“向西10米”不是相反意义的 量; B.如果汽球上升25米记作+25米,那么-15米
的意义就是下降-15米; C.如果气温下降6℃记作-6℃,那么+8℃的意
义就是零上8℃; D.若将高1米设为标准0,高1.20米记作+0.20
米,那么-0.05米所表示的高是0.95米.
6.正数、负数在实际生活中的应用
8.05×106
解:⑴ 0.07010 ,精确到 十万分位(或精确到0.00001),
有四个有效数字: 7,0,1,0
⑵ 103.2万 ,精确到 千位
有四个有效数字 1,0,3, 2 (3) 2.4千,精确到 百位, 有二个有效数字2,4
(4) 8.05×106 ,精确到 万位,
有三个有效数字 8,0,5
小测验
1. 22 2 22
复习课
有理数
1. 正__整_数__、__零_、__负__整_数统称整数,试举例说明。
2. 正_分__数__、_负__分__数___统称分数,试举例说明。
3. __整__数__、_分__数____统称有理数。
有理数的分类表
整数 有 理 数 分数
正整数 0
自然数
(非负整数)
负整数
正分数 负分数
有理数的分类
②下列说法正确的是( )A A.–1/4的相反数是0.25
B.4的相反数是-0.25
C.0.25的倒数是-0.25,
D.0.25的相反数的倒数是-0.25
③用-a表示的数一定是( D) A.负数 B.正数 C.正数或负数 D.都不对
④一个数的相反数是最小的正整数,那么这个数 是( A)
A .–1 B. 1 C .±1 D. 0
A.“向东5米”与“向西10米”不是相反意义的 量; B.如果汽球上升25米记作+25米,那么-15米
的意义就是下降-15米; C.如果气温下降6℃记作-6℃,那么+8℃的意
义就是零上8℃; D.若将高1米设为标准0,高1.20米记作+0.20
米,那么-0.05米所表示的高是0.95米.
6.正数、负数在实际生活中的应用
8.05×106
解:⑴ 0.07010 ,精确到 十万分位(或精确到0.00001),
有四个有效数字: 7,0,1,0
⑵ 103.2万 ,精确到 千位
有四个有效数字 1,0,3, 2 (3) 2.4千,精确到 百位, 有二个有效数字2,4
(4) 8.05×106 ,精确到 万位,
有三个有效数字 8,0,5
小测验
1. 22 2 22
《有理数的除法》有理数PPT教学课件(第1课时)

254
如果有带分
数,可以将带分 数写成整数部分 和分数部分的和, 利用分配律进行 运算,更加简便.
= (125 5) 1
75
= 125 1 5 1
5 75
= 25 1
7
=
25 1 7
将小数化为分数
=1
探究新知
归纳总结
1. 有理数除法化为有理数乘法以后,可以利用有理数 乘法的运算律简化运算.
1. a b a 1 (b 0) b
2. 两数相除,同号得正,异号得负,并把绝对值相
除. 0除以任何一个不等于0的数,都得0 .
有理数除法化为有理数乘法以后,可以利用有 理数乘法的运算律简化运算.
乘除混合运算往往先将除法化为乘法,然后确 定积的符号,最后求出结果(乘除混合运算按 从左到右的顺序进行计算).
2. 乘除混合运算往往先将除法化为乘法,然后确定积 的符号,最后求出结果(乘除混合运算按从左到右 的顺序进行计算).
巩固练习
计算:
(1)(
3 4
)
(1
1 2
)
2
1 4
解:原式= 3 3 9
42 4
=
3 4
3 2
4 9
= 1
2
(2)(3)
[(
2 5
)
(
1 4
)]
解:原式= (3) [( 2) (4)]
因为 (- 2)×(- 4)=8
所以 8÷(- 4)=- 2
①
另外,我们知道,8×(- 14)= - 2 ② 由①、②得 8÷(- 4)=8× (- 14) ③ ③式表明,一个数除以-4可以转化为乘以-14来进行,即 一个数除以-4,等于乘以-4的倒数-14
如果有带分
数,可以将带分 数写成整数部分 和分数部分的和, 利用分配律进行 运算,更加简便.
= (125 5) 1
75
= 125 1 5 1
5 75
= 25 1
7
=
25 1 7
将小数化为分数
=1
探究新知
归纳总结
1. 有理数除法化为有理数乘法以后,可以利用有理数 乘法的运算律简化运算.
1. a b a 1 (b 0) b
2. 两数相除,同号得正,异号得负,并把绝对值相
除. 0除以任何一个不等于0的数,都得0 .
有理数除法化为有理数乘法以后,可以利用有 理数乘法的运算律简化运算.
乘除混合运算往往先将除法化为乘法,然后确 定积的符号,最后求出结果(乘除混合运算按 从左到右的顺序进行计算).
2. 乘除混合运算往往先将除法化为乘法,然后确定积 的符号,最后求出结果(乘除混合运算按从左到右 的顺序进行计算).
巩固练习
计算:
(1)(
3 4
)
(1
1 2
)
2
1 4
解:原式= 3 3 9
42 4
=
3 4
3 2
4 9
= 1
2
(2)(3)
[(
2 5
)
(
1 4
)]
解:原式= (3) [( 2) (4)]
因为 (- 2)×(- 4)=8
所以 8÷(- 4)=- 2
①
另外,我们知道,8×(- 14)= - 2 ② 由①、②得 8÷(- 4)=8× (- 14) ③ ③式表明,一个数除以-4可以转化为乘以-14来进行,即 一个数除以-4,等于乘以-4的倒数-14
有理数的除法(第1课时有理数除法法则)课件(共39张PPT) 七年级数学上册(人教版2024)

这两个法则分别在什么情况下使用?
如果两数相除,能够整除的就选择法则2,不能够整除的就选择用法则1.
总结归纳
思考:
到现在为止我们有了两个除法法则,那么两
个法则是不是都可以用于解决两数相除呢?
要点归纳:
1.两个法则都可以用来求两个有理数相除.
2.如果两数相除,能够整除的就选择法则二,
不能够整除的就选择用法则一.
(3)原式=1 8÷(-54)=- ;(4)原式=-[(-9)÷3 6 ]=-(- )= .
练一练
4.化简:
-
(1)
; 解:原式=-9;
-
(2)
;
-
56 7
原式=48=6;
-
(3)
; 原式=-30=-2;
45
3
-
(4) ;
.
原式=-30.
总结归纳
一般地,根据有理数的除法,形如 (p,q 是整数, q ≠0)的数都是
4/5
(-12/25)×(-5/3)=___
-8
-72×(1/9)=___
问题:上面各组数计算结果有什么关系?由此你能
得到有理数的除法法则吗?
观察下列两组式子,你能找到它们的共同点吗?
“÷”变“×”
(1)(+6)÷(+2)= +3
6
1
=
2
+3
互为倒数
“÷”变“×”
(2)(+6)÷(-2)= -3
分层练习-巩固
11. 下列四名同学的说法中,正确的是(
A
)
A. 墨墨:0除以任何一个不等于0的数都得0
(2024秋新版本)北师大版七年级数学上册 《 有理数的加减运算》PPT课件

5
4
5
4
2
3
思考:有没有简便的方法?
探究新知
(1)解:原式=(31+69)+[(-28)+28](加法交换律和结合律)
=100+0 (一个数同0相加,仍得这个数)
=100;
(2) 解:原式=[(-64)+(-23)]+(17+68)
(加法交换律和结合律)
=(-87)+85 (异号相加法则)
=-2.
加法的结合律: (a+b)+c=a+(b+c).
探究新知
知识点
有理数加法的运算律
计算并比较每组的两个算式的结果:
(1)(-8)+(-9)= -17
(-9)+(-8)= -17
(2) 4 +(-7)= -3
(-7) + 4 = -3
(3) [2+(-3)]+(-8)= -9
2+[(-3)+(-8)]= -9
同号两数相加,取相同的符号,并把绝对值相加.
异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对
值较大的数的符号,并用较大的绝对值减去较小的绝对值.
一个数同0相加,仍得这个数.
探究新知
( - 4 ) + ( - 8 ) = - ( 4 + 8 )= - 12
↓
↓
同号两数相加
取相同符号
通过绝对值化归
不合格
径18mm,该零件____________
(填“合格”或“不合格”)。
课堂检测
基 础 巩 固 题
5.小虫从某点O出发在一条直线上来回爬行,假定向右为正方
4
5
4
2
3
思考:有没有简便的方法?
探究新知
(1)解:原式=(31+69)+[(-28)+28](加法交换律和结合律)
=100+0 (一个数同0相加,仍得这个数)
=100;
(2) 解:原式=[(-64)+(-23)]+(17+68)
(加法交换律和结合律)
=(-87)+85 (异号相加法则)
=-2.
加法的结合律: (a+b)+c=a+(b+c).
探究新知
知识点
有理数加法的运算律
计算并比较每组的两个算式的结果:
(1)(-8)+(-9)= -17
(-9)+(-8)= -17
(2) 4 +(-7)= -3
(-7) + 4 = -3
(3) [2+(-3)]+(-8)= -9
2+[(-3)+(-8)]= -9
同号两数相加,取相同的符号,并把绝对值相加.
异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对
值较大的数的符号,并用较大的绝对值减去较小的绝对值.
一个数同0相加,仍得这个数.
探究新知
( - 4 ) + ( - 8 ) = - ( 4 + 8 )= - 12
↓
↓
同号两数相加
取相同符号
通过绝对值化归
不合格
径18mm,该零件____________
(填“合格”或“不合格”)。
课堂检测
基 础 巩 固 题
5.小虫从某点O出发在一条直线上来回爬行,假定向右为正方
有理数的混合运算ppt课件

1
1
1
1
1
1
解:令 x = + + + + + ,
2
4
8
16
32
64
1
1
1
1
1
则2 x =1+ + + + + .
2
4
8
16
32
1
1
1
1
1
1
1
1
1
1
所以2 x - x =(1+ + + + + )-( + + + +
2
4
8
16
32
2
4
8
16
32
1
+ ).
64
1
63
63
故 x =1- = ,即原式= .
−
3
解:(1)原式=-1+25×
-|-1-5|;
3
−
5
-6
=-1-15-6
=-22.
返回目录
数学 七年级上册 BS版
1
4
2
(2)-2 × +4÷ +(-1)2025;
4
9
1
9
解:(2)原式=-4× +4× -1
4
4
=-1+9-1
=7.
返回目录
数学 七年级上册 BS版
1
4
2
(3)-1 +|2-(-3) |+ ÷
1
1
1
1
1
1
计算:
+
+
+
+…+
+
.
1×3
3×5
5×7
7×9
2021×2023
2023×2025
1
解:原式= ×
2
人教版(2024)数学七年级上册1.2 有理数及其大小比较 第1课时《有理数的概念》PPT教学课件

-91,125,-183,0.1, -5.32,2.333,-297
整数
分数
1. 你能对有理数进行分类吗?分类的标准是什么?
能,根据整数、分数分,根据正负分 2.游戏:请10名同学每人扮演一个不同的有理数,各自寻找
自己的朋友.
小组展示
越展越优秀
我提问 我回答 我补充 我质疑
提疑惑:你有什么疑惑?
15
,
2 15
,
0.1
,
123
,
2.333,200%
-91,-5,-183, -5.32,-80,-297 Nhomakorabea正数
负数
2.把下列有理数分别填入所属的圆圈内:
15,-91,-5,
2 15
,
-183,0.1,-5.32,-80,123,
2.333,0,-297 ,200%.
15,-5,-80, 123,0,200%
人教版(2024)数学七年级上册
有理数的概念
1.2 有理数及其大小比较第1课时
汇报人:XXX 时间:2024.09
《目录》
1 新课导入 2 新知讲解
3 课堂练习 4 拓展延伸
《01》
新课导入
重点
难点
1. 通过阅读课本理解有理数的概念,理解并 掌握有理数的两种分类方法,了解0在有 理数分类中的作用,能把给出的有理数按 要求分类,初步感受分类讨论的数学思 想.
1.整数:正整数、0、负整数统称为整数. 2.分数:正分数、负分数统称为分数. 3.有理数:可以写成分数形式的数称为有理数.
注意:(1)任何有理数都可以写成
n m
(m,n是整数,其中
m≠0)的形式.
(2)所有的分数都可以化为有限小数或无限循环小数,反
人教版七年级数学上册第一章 有理数概念 教学课件(共61张PPT)

1用科学计数法表示数只是改变数的形式并没有改变数的大小2负数用科学计数法表示时和正数一样区别就是前面多一个号3当把一个用科学计数法表示的数还原为原数时只需将小数点向右移动n位不足的数位用0补齐并把10的n次幂去掉551确定n时要根据科学计数法的规定使它为只含有一位整数的数2确定n的方法有两种1利用整数的位数来求nn等于原数的整数位数1ex
有理数的混合运算
知识拓展:
1、将带分数化为假分数,小数化为分数,再 进行乘方、乘除等运算;另外,有些运算可以
同时进行,以简化运算
2、分为三级:(1)第一级:加和减 (2)第二级:乘和除 (3)第三级:乘方
近似数
科学计数法:
1、用科学计数法表示数只是改变数的形式, 并没有改变数的大小
2、负数用科学计数法表示时和正数一样,区 别就是前面多一个“-”号 3、当把一个用科学计数法表示的数还原为原 数时,只需将小数点向右移动n位(不足的数 位用0补齐),并把10的n次幂去掉
乘方
有理数乘方运算的符号法则: (1)正数的任何次幂都是正数 (2)负数的奇次幂是负数
偶次幂是正数 (3)0的任何正整数次幂都是0
乘方
有理数乘方的运算方法: (1)一是根据底数与指数确定幂的符号
二是把绝对值乘方 (2)根据乘方的意义,先把乘方转化为乘法, 再利用乘法的运算法则进行计算
乘方
知识拓展:
加号的几个正数或负数的和的形式 ex:(-9)-(+12)+(-3)-(-7)=-9-12-3+7
减法法则
提示: (1)只有把加减法统一成加法之后,才能写
成省略加号和括号的和的形式 (2)省略加号和括号的和的形式有两种读法:
a、按加法的结果来读:应读作“负9、负12、 负3、正7的和
有理数的混合运算
知识拓展:
1、将带分数化为假分数,小数化为分数,再 进行乘方、乘除等运算;另外,有些运算可以
同时进行,以简化运算
2、分为三级:(1)第一级:加和减 (2)第二级:乘和除 (3)第三级:乘方
近似数
科学计数法:
1、用科学计数法表示数只是改变数的形式, 并没有改变数的大小
2、负数用科学计数法表示时和正数一样,区 别就是前面多一个“-”号 3、当把一个用科学计数法表示的数还原为原 数时,只需将小数点向右移动n位(不足的数 位用0补齐),并把10的n次幂去掉
乘方
有理数乘方运算的符号法则: (1)正数的任何次幂都是正数 (2)负数的奇次幂是负数
偶次幂是正数 (3)0的任何正整数次幂都是0
乘方
有理数乘方的运算方法: (1)一是根据底数与指数确定幂的符号
二是把绝对值乘方 (2)根据乘方的意义,先把乘方转化为乘法, 再利用乘法的运算法则进行计算
乘方
知识拓展:
加号的几个正数或负数的和的形式 ex:(-9)-(+12)+(-3)-(-7)=-9-12-3+7
减法法则
提示: (1)只有把加减法统一成加法之后,才能写
成省略加号和括号的和的形式 (2)省略加号和括号的和的形式有两种读法:
a、按加法的结果来读:应读作“负9、负12、 负3、正7的和
七年级数学1.2.1有理数课件人教新课标七年级上ppt

数的分类
问题1:观察下面9个数,并给它们进行分 类.5、5.6、-6、-3.7、0、3、-2、3/2、-1/2
正整数:5、3…… 零:0。 负整数:-6、-2
正分数:5.6、3/2…..
负分数:-3.7、-1/2…..
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
课堂小结
到现在为止我们学过的数都是 有理数(圆周率除外),有理数 可以按不同的标准进行分类,标 准不同,分类的结果也不同。
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
拓展
1、 0是整数吗?自然数一定是整数 吗?0一定是正整数吗?整数一定是自然 数吗? 2、图中两个圆圈分别表示正整数集合和整 数集合,请写并填入两个圆圈的重叠部分.你 能说出这个重叠部分表示什么数的集合吗?
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
知识回顾
引入负数后,数的范围扩大了。现在请同学们 在草稿纸上任意写出3个不同种类的数 。
小组讨论
观察小组成员所写的数,并给它们进行分类. 你是按照什么划分的?
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
首页 上页 下页
• 正整数、0、负整数统称整数, • 正分数和负分数统称分数. • 整数和分数统称有理数
有理数
正整数
整数
零
负整数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
议一议
生活中你见过带有“-”的数吗?
2020/12/10
3
像5,1,2 . 12 1 ,, 这样的数叫做(正 po数 sitivneumb)e,它 r 们都比 0大.
在正数前面加” 上号 “的数叫做(n负eg数ativneumb)e,如 r 10,-3,
0既不是正数,也 负不 数是 . 为了突出数的符号 以, 在可 正数前面加“ 号+ ,” 如,+5 +1 2 . ,+ 2 1 ,
2020/12/10
9
回味 无穷
我的收获是 … … 我感受到了… … 我的问题存在于… …
2020/12/10
10
课堂练习
课本 P9 A组题及B组题
课后作业
作业本2和同步
2020/12/10
11
PPT教学课件
谢谢观看
Thank You For Watching
12
2020/12/10
1
我们经常会听到天气预报:
今天最高气温 北京 -10℃, 海口20℃, 杭州 10℃ , 青岛 0℃
上面出现了比0低的数,我们可以用带有“-”号 (读作:负)的数来表示.如-10.
对于比0高的数,可以用带有“+”号(读作:正)的数来 表示.如+10, , 5
0,
33, 4
2.75,
0.01,
67,
4, 7
20000 ,
22, 2
7
1.正数集合
;
2.负数集合
;
3.分数集合
;
4.负分数集合
;
5.整数集合
;
6.整数集合
;
7.非负数集合
;
8.有理数集合
.
同学们,你能既快又准地填入括号吗?
2020/12/10
8
零是整数吗?自然数一定 是整数吗?一定是正整数 吗?整数一定是自然数吗?
解: (1)扣20分记作-20分;
(2)沿顺时针方向转12圈记作-12圈;
(3)-0.03克表示乒乓球的质量低于标准质量0.03克.
2020/12/10
5
填空:
1.规定盈利为正,某公司去年亏损了2.5万元,记作 ___-2_._5___万元,今年盈利3.2万元,记作_+_3_.2____万元;
2.规定海平面以上的海拔高度为正.新疆乌鲁木齐 市高于海平面918米,记作海拔_9_1_8米________;
正整数:如,13, ,2,
整数 (inet ge)r零:0
有理数 分数 (fracti)o负 负 正 n 整 分 分数 数 数: : :5 1 如 2 1 如 如 , , - - 3 1 - 31 .5, , ,, 5 2 .- - 6 5- , , 3 2,
2020/12/10
7
例2 把下列各数填入所属集的合内:
3.乌鲁木齐盘地最低点低于海平面155米,记作海 拔__-1_5_5_米___________.
正整数、零、和负整数统称整数(integer); 正分数、负分数统称分数(fraction)
2020/12/10
6
整数与分数统称为有理数(rational number) 请同学们试一试将学过的数进行分类.
我们常常用正数和负
数表示一些具有相反
意义的量.
2020/12/10
4
例1(1)在知识竞赛中,如果+10分表示加10分,那么扣 20分怎样表示?
(2)某人转动转盘,如果用+5表示沿逆时针方向转 了5圈,那么沿顺时针方向转了12圈怎样表示?
(3)在某次乒乓球质量检测中,一只乒乓球超出标 准质量0.02克记作+0.02,那么-0.03克表示什么?