勾股定理中的折叠问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C E
勾股定理中的折叠问题
姓名:
例1:如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,•长BC•为10cm .当小红折叠时,顶点D 落在BC 边上的点F:处(折痕为AE )(1)求BF 的长; (2)求EC 的长。
BC ,使点B 落在AD 边的F 处,已知:AB=3,BC=5,
例2:已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A 、6cm 2
B 、8cm 2
C 、10cm 2
D 、12cm 2
对应练习:1、如图2-2,把一张长方形纸片ABCD 折叠起来,使其对角顶点A 、C 重合,•若其长BC 为a ,宽AB 为b ,则折叠后不重合部分的面积是多少?
第11题图
A
E B
C
D
F
2、如图2-3,把矩形ABCD 沿直线BD 向上折叠,使点C 落在C ′的位置上,已知AB=•3,BC=7,求重合部分△EBD 的面积
例3:有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分 线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?
对应练习:1、如图,在△ABC 中,∠B= 90,AB=BC=6,把△ABC 进行折叠,使点A 与点D 重合,BD:DC=1:2,折痕为EF ,点E 在AB 上,点F 在AC 上,求EC 的长。
A
E
C
D
B A
D
B
C
E F
例4:如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。现将直角边AC 沿直线AD 折叠,
使它落在斜边AB 上,恰与AE 重合,求CD
对应练习:1、如图,四边形ABCD 是矩形,AB =3,BC =4,把矩形沿直线AC 折叠,点B 落在点F 处,连接DF ,CF 与AD 相交于点E ,求DE 的长和△ACE 的面积.
2、如图,折叠矩形纸片ABCD ,先折出折痕(对角线)BD ,再折叠,使AD 落在对角线BD 上,得折痕DG ,若AB = 2,BC = 1,求AG .
A
C
D B
E
G A B
C'
E
D
C
B A 总结:
一、 三角形中的折叠基本图形
二、矩形
F
E
D
C
B
A E
A(B)
图1
A
C
B
D
C ´
A
B
C
D E F
A ′
B ′