专题含参不等式(好)3课件

---新野一高数学组:王学峰

?>0)

()(x g x f ?≥0)()(x g x f ??2.分式不等式:3.含绝对值不等式:|f(x)|g(x) |f(x)|>|g(x)| 数轴标根法

0)()(>?x g x f 0)()(≥?x g x f 2

2)()(x g x f >)

()(x g x f <)

()(x g x f -

>知识再现:

1.高次不等式:)()(x g x f >或)

()(x g x f -

)(≠x g 且

?>)(log )(log x g x f a a ?<)()(x g x f ?>)()(x g x f 4.指数对数不等式:a f(x)>a g(x)5.无理不等式:?<)()(x g x f 0

)(≥x f )()(22x g x f

>0

)(≥x

g 0

)(≥x f 0

)(≥x g )

()(22x g x f <0

)(≥x f )()(2

x g x f <0

)(≥x

g ?).

()(,01x g x f a <>>若)

()(,1x g x f a >>若)

()(0,01x g x f a <<>>0

)()(,1>>>x g x f a 0)(≥x f 0

)(

g 或

专题:含有参数不等式问题

一、含有参数不等式问题主要有四种类型:

1、解含有参数不等式.

2、已知含有参数不等式成立的条件,求参数的范围.

3、已知含有参数不等式在某个条件下恒成立、能成立、恰成立,求参数的范围.

4、综合问题中的含有参数不等式的问题.

类型1:解含有参数不等式

1a >203

a <<或例1.(1)若,则的取值范围是__________2log 13a

-x x (2)解关于x 的不等式>a+1(2)分式不等式求解的通法是“移项---通分---因式分解---分类讨论.”

【分析】若a >0, 有(a+1)/a >1,原不等式解为1<x <(a+1)/a.

若a=0, 有-(x-1)<0,原不等式解为x >1。

若a <0,有(a+1)/a <1,原不等式解为x <(a+1)/a 或x >1。含参不等式的解法:求解的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”注意解完之后要写上:“综上,原不等式的解集是…”。注意:按参数讨论,最后应按参数取值分别说明其解集;但若按未知数讨论,最后应求并集.

【小结

[]0

)1()1(<-+-x a ax ax-(a+1)x-1原不等式化为<0二、典例体验:

g(x )=lg[(x -a -1)(2a -x )] (a <1) 的定义域为B . ?1

32++-x x 例2.记函数f (x )= 的定义域为A ,(Ⅰ) 求A ;(Ⅱ) 若B A

求实数a 的取值范围.(Ⅰ)A=(-∞,-1)∪[1,+∞)

【分析】(Ⅱ) 条件B ?A 表明,集合B 是集合A 成立的充分条件,

首先要求出集合B .

类型2:已知不等式成立的条件,求参数的范围

-1

1x ∵B ?A ∴2a≥1或a+1≤-1.

∴1/2≤a <1或a≤-2.若B?A 时, 实数a 的取值范围是(-∞,-2)∪[1/2,1).

由(x-a-1)(2a-x)>0 得(x-a-1)(x-2a)<0∵a <1∴a+1>2a ∴B=(2a,a+1)【小结】弄清所给条件与含参不等式的解集间的相互关系;通常借助数轴研究;注意端点值的取舍。

类型3:不等式的恒成立,能成立,恰成立等问题

1.恒成立问题

若不等式f(x)>A 在区间D 上恒成立,则等价于函数f(x)在区间D 上的若不等式f(x)<B 在区间D 上恒成立,则等价于函数f(x)在区间D 上的2.能成立问题

若在区间D 上存在实数X 使不等式f(x)>A 成立,即f(x)>A 在区间D 上能成立, 则等价于函数f(x)在区间D 上的若在区间D 上存在实数X 使不等式f(x)<B 成立,即f(x)<B 在区间D 上能成立,则等价于函数f(x)在区间D 上的3.恰成立问题

若不等式f(x)>A 在区间D 上恰成立, 则等价于若不等式f(x)<B 在区间D 上恰成立, 则等价于如何解不等式的恒成立、能成立、恰成立问题呢?

它的操作程序如下:

最小值大于A,

最大值小于B.

最大值大于A,

最小值小于B.

不等式f(x)>A 的解集为D.不等式f(x)<B 的解集为D.

例3 .若关于x 的不等式x 2-ax-a >0的解集为(-∞,+∞),则实数a 的取值范围是;若关于x 的不等式x 2-ax-a≤-3的解集不是空集,则实数a 的取值范围是.

或者: ?=(-a)2-4(-a)=a 2+4a <0求得结果亦可

.-4<a <0a≤-6或a≥2【分析】第一个填空是不等式恒成立的问题,设f(x)=x 2-ax-a,

则关于x 的不等式x 2-ax-a >0的解集为(-∞,+∞)

f(x)>0在(-∞,+∞)上恒成立f min (x)>0

()0442

m in >+-=a a x f 即第二个填空是不等式能成立问题.设f(x)= x 2-ax-a ,关于x 的不等式x 2-ax-a ≤-3的解集不是空集

f(x)≤-3在(-∞,+∞)上能成立

f min (x)≤ -3

第(Ⅰ)问是一个恒成立问题对任意x ∈[1,+∞)恒成立φ(x)=x 2

+2x+a≥0 , x ∈[1,+∞) 恒成立, 则φmin (x) =φ(1)=a+3 ≥0, 即a≥-3 .0

22≥++a x x 第(Ⅱ) 问是一个恰成立问题,例4 .(Ⅰ)已知对任意x ∈[1,+∞) , f(x) ≥0 恒成立,试求实数a 的取值范围;(Ⅱ)已知当x ∈[1,+∞),f(x)的值域是[0,+∞),试求实数a 的值.()x a x x x f ++=22()x a x x x f ++=22()02≥++=x a x x f 的解集x ∈[1,+∞)≥3与值域[0,+∞)相矛盾()2++=x

a x x f 【分析】当a≥0时,由x≥1知当a <0时,f (x)在[1,+ ∞)上为增函数,故f min (x) =f(1)= 0,即1+a +2=0,所以a=-3.

【小结】弄清参数与最值之间的关系

(Ⅰ)设,讨论的单调性;

()11ax x f x e

x

-+=-0a >()y f x =类型4:综合问题中涉及到含有参数不等式的问题

(Ⅱ)若对任意恒有,求a 的取值范围.

()0,1x ∈()1f x >(ⅰ)当a=2时,f ’(x)在(-∞,0),(0,1)和(1,+∞)均大于0,

所以f(x)在(-∞,1), (1,+∞) 为增函数.

【分析】(Ⅰ)f(x)的定义域为(-∞,1)∪(1,+∞).

对f(x)求导数得()()

ax e x a ax x f ---+=22'12()x f '的正负由a ax -+22决定

下按△=-4a(2-a)大于,等于,小于零分类讨论

(ⅱ)当00, f(x)在(-∞,1), (1,+∞)为增函数.

例5.已知函数

增增

减增f(x)++-+f ’(x)

???? ??--∞-a a 2,???? ??---a a a a 2,2()+∞,1???? ??-1,2a a x

(ⅲ)当a>2时,令f ’(x)=0,120<-

a x a a x 2,221-=--=解:当x 变化时,f ’(x)和f(x)的变化情况如下表:综上可知:当a=2时, f(x)在(-∞,1), (1,+∞) 为增函数;

当0

当a>2时,f(x)在, , 为增函数;f(x)在为减函数

???

? ??--∞-a a 2,()+∞,1???? ??-1,2a a ???? ??---a a a a 2,2

(ⅰ)当0

函数,对任意x∈(0,1)恒有f(x)>f(0)=1.

综上,当且仅当a∈(-∞,2]时,对任意x∈(0,1)恒有f(x)>1.

(ⅱ)当a>2时,取x 0=∈(0,1),则由(Ⅰ)知f(x 0)

a a 221

-111>-+x

x (ⅲ)当a≤0时,对任意x∈(0,1),恒有且e -ax ≥1,得()11111>-+≥-+=-x

x e x x x f ax (Ⅱ)【点评】不等式问题近年来常与函数、导数相结合,成为高考的热点题型。它主要涉及到利用函数的单调性与其导数值在相应区间的符号规律转化为一个二次不等式在指定区间恒成立问题,再结合二次方程判别式与二次函数零点的分布对应关系转化为含参数的不等式,最后通过解不等式求出参数的取值范围。

1、已知a >0,函数f (x)=在上单调递增,则实数a 的最大值为()A.0 B.1

C.2

D.3ax x -3

) ,[∞+1D 2、若不等式对于任意正整数恒成立,

则实数的取值范围是_____n a n n 1)1(2)1(+-+<-n a 3[2,)2

-答案:三、练习反馈:

3、已知-9≤a≤1解关于x 的不等式ax 2-5x+4<0

4、已知函数,,.若,且存在单调递减区间,求a 的取值范围.

()x x f ln =()bx ax x g +=22

10≠a 2=b ()()()x g x f x h -=

3、已知-9≤a≤1解关于x 的不等式ax 2-5x+4<0

【分析】由于给出了参数的范围,我们可以把已知不等式改写为

0452<+-x a x

以a 为主变量的不等式由于g(x)是关于的一次函数,它的图象是一条线段,因此,只要它的两个端点的函数值小于零,则整条线段在x 轴的下方,于是, 关于x 的不等式的解等价于

()()???<+--=-<+-=.04599,045122x x g x x g 解得??

???>-<<<94

1,41x x x 或.于是,不等式的解为4

1<

如果给出参数的范围,则可以把参数看作主变量,进行研究.

令[]

1,9.45)(2-∈+-=a x a x a g 【详解】

第四题答案:

则因为函数h (x )存在单调递减区间,所以<0有解.

由题设可知,的定义域是,

因此,有解等价于在区间能成立,

即,成立,进而等价于成立,其中.由得,于是,

由题设,所以a 的取值范围是.

x ax x x h b 221ln )(,22--==时.1221)(2x

x ax ax x x h -+-=--=')(x h '()x h ()+∞,0()0<'x h ()+∞,0x x a 212->()+∞∈,0x ()x u a m in >()x x x u 212-=()x x

x u 212-=1112-??? ??-=x ()1m in -=x u 1->a 0≠a ()()+∞-,00,1 ()0<'x h

四、专题小结:

1、解含参不等式的关键:充分利用不等式的性质进行等

价转化.

2、解含参不等式的通法:“定义域为前提,函数增减性

为基础,分类讨论是关键.”

3、对于恒成立、能成立、恰成立问题,除了运用“分类

讨论”的方法外,还可采用“分离参数”的方法.

4、本节课的思想方法:等价转化、分类讨论、函数方程、

数形结合.

五、布置作业:

作二轮页子:导数与不等式

(完整版)初一不等式难题-经典题训练(附答案)

初一不等式难题,经典题训练(附答案) 1. 已知不等式3x-a ≤0的正整数解恰好是1,2,3,则a 的取值范围是_______ 2. 已知关于x 的不等式组0 521 x a x ->?? -≥-?无解,则a 的取值范围是_________ 3. 若关于x 的不等式(a-1)x-2 a +2>0的解集为x<2,则a 的值为( ) A 0 B 2 C 0或2 D -1 4. 若不等式组2 20 x a b x ->?? ->?的解集为11x -<<,则2006()a b +=_________ 5. 已知关于x 的不等式组的解集41320 x x x a +?>+? ??+- 7. 不等式组951 1 x x x m +<+?? >+?的解集是2x >,则m 的取值范围是( ) A. 2m ≤ B. 2m ≥ C. 1m ≤ D. 1m f 8.不等式()()20x x x +-<的解集是_________ 9.当a>3时,不等式ax+2<3x+b 的解集是,则b=______ 10.已知a,b 为常数,若ax+b>0的解集是1 3 x <,则的0bx a -<解集是( ) A. 3x >- B 3x <- C. 3x > D. 3x < 11.如果关于x 的不等式组的整70 60x m x n -≥?? -? p 数解仅为1,2,3,那么适合不等式组的整数(m,n)对共 有( )对 A 49 B 42 C 36 D 13 12.已知非负数x,y,z 满足123 234 x y z ---==,设345x y z ω=++,求的ω最大值与最小值

含参不等式(有解、无解问题)(人教版)含答案

含参不等式(有解、无解问题)(人教版)一、单选题(共10道,每道10分) 1.若不等式组的解集为,则m的取值范围是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:含参不等式(组) 2.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:含参不等式(组) 3.若不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 4.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:含参不等式(组) 5.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:含参不等式(组)

6.关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 7.若关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:含参不等式(组) 8.已知关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:含参不等式(组)

9.若关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 10.若关于x的不等式组无解,则m的取值范围是( ) A. B. C. D. 答案:B 解题思路:

含参不等式的专题练习教学设计 .doc

例2 解不等式135 x <-< 课后练习: 一.选择题(共2小题) 1.(2015春?石城县月考)已知m为整数,则解集可以为﹣1<x<1的不等式组是() A .B . C . D . 2.(2002?徐州)已知实数x、y同时满足三个条件:①3x﹣2y=4﹣p,②4x﹣3y=2+p,③x>y,那么实数p 的取值范围是() A .p>﹣1 B . p<1 C . p<﹣1 D . p>1 二.填空题(共7小题) 3.(2012?谷城县校级模拟)若不等式组恰有两个整数解.则实数a的取值范围 是. 4.(2010?江津区)我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1 <<3,则x+y的值是. 5.若不等式组的解集是﹣1<x<1,则(a+b)2009=. 6.关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是. 7.不等式组的解是0<x<2,那么a+b的值等于. 8.已知不等式组的解集1≤x<2,则a=. 9.若关于x的不等式的解集为x<2,则k的取值范围是. 三.解答题(共4小题)

10.(1)解方程组: (2)求不等式组的整数解. 11.(2013?乐山)已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值. 12.(2011?铜仁地区)为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元. (1)篮球和排球的单价分别是多少元? (2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案? 13.(2011?邵阳)为庆祝建党90周年,某学校欲按如下规则组建一个学生合唱团参加我市的唱红歌比赛.规则一:合唱队的总人数不得少于50人,且不得超过55人. 规则二:合唱队的队员中,九年级学生占合唱团总人数的,八年级学生占合唱团总人数的,余下的为七年 级学生. 请求出该合唱团中七年级学生的人数.

解不等式的方法归纳

解不等式的方法归纳 (总5页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

解不等式的方法归纳 一、知识导学 1. 一元一次不等式ax>b (1)当a>0时,解为a b x >; (2)当a <0时,解为a b x <; (3)当a =0,b ≥0时无解;当a =0,b <0时,解为R . 2. 一元二次不等式:(如下表)其中a >0,x 1,x 2是一元二次方程ax 2+bx+c=0 的两实根,且x 1<x 2(若a <0,则先把它化正,之后跟a >0的解法一样) 3.简单的一元高次不等式:可用区间法(或称根轴法)求解,其步骤是: ①将f(x)的最高次项的系数化为正数; ②将f(x)分解为若干个一次因式的积; ③将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线; ④根据曲线显示出的f(x)值的符号变化规律,写出不等式的解集. 4.分式不等式:先整理成 )()(x g x f >0或)()(x g x f ≥0的形式,转化为整式不等式求解,即: ) ()(x g x f >0?f(x)·g(x)>0 ) ()(x g x f ≥0?0)x (g )x (f 0)x (g 0)x (f >或????≠= 然后用“根轴法”或化为不等式组求解. 类型 解集 ax 2+bx+c >0 ax 2+bx+c ≥0 ax 2+bx+c <0 ax 2+bx+c ≤0 Δ>0 {x |x <x 1或x > x 2} {x |x ≤x 1或x ≥x 2} {x |x 1<x <x 2} {x |x 1≤x ≤x 2} Δ=0 {x |x ≠-a b 2,x ∈R} R Ф {x |x=-a b 2} Δ<0 R R Φ Φ

含参不等式恒成立问题学考压轴题(函数专题)

个性化教案 学生姓名 年级 科目 数学 授课教师 日期 时间段 课时 2 授课类型 新课/复习课/作业讲解课 教学目标 教学内容 函数专题:含参不等式恒成立问题 个性化学习问题解决 “含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,知识点多,综合性强,解法灵活等。在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用 恒成立问题的基本类型: 类型1:若所求问题可转化为二次不等式,则可考虑应用判别式法解题。一般地,对于二次函数 ),0()(2R x a c bx ax x f ∈≠++=,有 1)0)(>x f 对R x ∈恒成立?? ??00a ; 2)0)(对x ∈R 恒成立,求实数a 的取值范围。 例2:若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的范围。 类型2:设)0()(2 ≠++=a c bx ax x f (1)当0>a 时,],[0)(βα∈>x x f 在上恒成立?????>>-?????<- ?0 )(2020)(2βββαααf a b a b f a b 或或, ],[0)(βα∈x x f 在上恒成立? ??>>?0)(0 )(βαf f ],[0)(βα∈-?????对[]1,2x ∈恒成立,求实数a 的取值范围。

高中数学 不等式专题训练

1、(02京皖春1)不等式组???<-<-0 30 122x x x 的解集是( ) A .{x |-1<x <1} B .{x |0<x <3} C .{x |0<x <1} D .{x |-1<x <3} 2、(01河南广东1)不等式 3 1 --x x >0的解集为( ) A .{x |x <1} B .{x |x >3} C .{x |x <1或x >3} D .{x |1+->|22|330x x x x x 的解集是( ) A .{x |0<x <2} B .{x |0<x <2.5} C .{x |0<x <6} D .{x |0<x <3} 5、(95全国理16)不等式( 3 1)8 2 -x >3-2x 的解集是_____。 6、(02全国文5理4)在(0,2π)内,使sin x >cos x 成立的x 取值范围为( ) A .( 4π,2π)∪(π,45π) B .( 4π ,π) C .(4π,4 5π) D .(4π,π)∪(45π,2 3π) 7、解不等式1|55|2<+-x x 8、不等式022>++bx ax 的解集为}3 1 21|{<<- x x ,求a , b 9、解不等式∣∣x +4∣-8∣>2 解:由原不式式得∣x +4∣-8>2或∣x +4∣-8<-2 ∴∣x +4∣>10或∣x +4∣<6 ∴x >6或x <-14或-106或x <-14或-102x 11、解不等式:∣x +3∣+∣2x -4∣>2 12、解不等式2931831>?+-+x x 13、解关于x 的不等式0)1(2>---a a x x 14、a 为何值时,不等式2)1()23(22+-++-x a x a a >0的解为一切实数? 15、(06重庆文15)设0,1a a >≠,函数2 ()log (23)a f x x x =-+有最小值,则不等式log (1)0a x ->的 解集为 。 16、(06重庆理15)设0,1a a >≠,函数2lg(23) ()x x f x a -+=有最大值,则不等式() 2log 570a x x -+>的 解集为 。 17、已知不等式230{|1,}x x t x x m x R -+<<<∈的解集为 (1)求t ,m 的值; (2)若函数4)(2++-=ax x x f 在区间(],1-∞上递增,解关于x 的不等式2 log (32)0a mx x t -++-<.

初中解不等式组范文

1.(2008年义乌市)不等式组 83x 41 x ≤2, 0的解集在数轴上表示为 答案 A 3(x 2) ≥ x 4, 20. (2008 年宁波市 )解不等式组 x 1 1. 答案: C ,本题主要考查了求不等式组的解以及不等式组的解集的数轴表示,解第一个不等 式可得 x ≥— 2,解第二个不等式得 以下是江苏董耀波的分类 ( 2008 恩施自治州)如果a<b< 答案: C 2x 5 x, 2008 黄冈市)解不等式组 5x 4 3x 2. 答案:解:由( 1)得 x < 5, 由( 2)得 x ≥ 3. ∴不等式组的解集为: 3≤x < 5. ( 2008 襄樊市)“六一”儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋 友喜欢奥运福娃,就特意购买了一些送给这个小学的小朋友作为节日礼物.如果每班分 10 套,那么余 5 套;如果前面的班级每个班分 13 套,那么最后一个班级虽然分有福娃,但不 足 4 套.问:该小学有多少个班级?奥运福娃共有多少套? 1 A . 0 1 2 B . 1 2 D . 答案:解:解不等式( 1),得 x ≥ 1.解不等式( 2),得 x 3 . 原不等式组的解是 1≤ x 3 . 08 凉山州)不等式组 x ≤ 2 的解集在数轴上表示正确的是( x21 2 0 3 A . 2 0 3 B . 2 0 3 C . 20 D . x < 3,所以原不等式组的解集为— 2≤x < 3,因而选 0, 下列不等式中错误..的是 A. ab > 0 B. a+b< 0 a C. < 1 D. b a-b< 0

答案:解:设该小学有 x 个班,则奥运福娃共有 (10x 5)套. 10x 5 13(x 1) 4, 10x 5 13(x 1). 14 解之,得 x 6 . 3 x 只能取整数, x 5 ,此时 10x 5 55. 答:该小学有 5 个班级,共有奥运福娃 55 套. 提 示:抓住“如果前面的班级每个班分 13 套,那么最后一个班级虽然分有福娃,但不足 4 套”建立不等式组 (2008苏州) 6月 1日起,某超市开始有.偿.提供可重复使用的三种环保购物袋, 每只售价分 别为 1 元、2元和 3 元,这三种环保购物袋每只最多分别能装大米 3 公斤、5公斤和 8公斤.6 月 7 日,小星和爸爸在该超市选购了 3 只环保购物袋用来装刚买的 20 公斤散装大米,他们 选购的 3 只环保购物袋至少..应付给超市 元. 答案: 8 解析:本题分类讨论,可选 2个 3元的,1个 2元的,费用最少为 8元 ( 2008 无锡)不等式 1 x 1 的解集是( ) 2 1 A. x B. x 2 C. x 2 1 D. x 2 2 答案: C 解析: 本题考查不等式解法, 两边同时乘以 -2,得 x 2 ,要注意不等式两边同时乘以一个 负数,不等号要改变方向 . 方法技巧:解不等式的一般步骤是 去分母 ,去括号,移项,合并同类项,系数化为 1 . 解不 等式时要注意: ( 1)去分母时不要漏乘没有分母的项; (2)去括号时不要漏乘; (3)移项要变号; (4)系数化为 1 时如果两边同除以的是负数,要改变不等号的方向。 解析: 本题考查不等式组的解法, 解不等式的一般步骤是先对两个不等式进行编号, 再分别 解不等式,最后根据规则确定不等式组的解集 . 方法技巧:解不等式组的一般步骤是先分别解不等式,再确定两个解集的公共部分。 确定不等式组解集有两种方法: ( 1)数轴表示,在用数轴表示不等式组的解集时要注 意:有等号时用实心圆圈,无等号时用空心圆圈; ( 2)用口诀: 大大取大;小小取小;大 由题意,得 2008 苏州)解不等式组: x 3 0, 2(x 1) 3≥ 3x. 并判断 x 3 是否满足该不等式组. 2 答案:原不等式组的解集是: 3 x ≤1, x 3 满足该不等式组.

含参不等式

含参不等式知识互联网 题型一:不等式(组)的基本解法

x ( x ( b ( 无解(大大小小无解了) 典题精练 【例1】 ⑴解不等式 31 423 x x x +--+≤. ⑵解不等式组12(1)532122 x x x --?? ?-<+??≤,并在数轴上表示出解集 ⑶求不等式组2(2)43 251x x x x --??--? ≤<的整数解 ⑷解不等式组32215x x -<-<

⑸解不等式组253473 x x -?? (2012年朝阳一模) 题型二:含参数的不等式(组) 思路导航 对于含参不等式,未知数的系数含有字母需要分类讨论:如不等式ax b <, 例题精讲 【引例】⑴关于x 的一次不等式组x a x b >???? ⑵13kx +> ⑶132kx x +>- ⑷36mx nx +<--

⑸() 212m x +< ⑹()25n x --< 【例3】 ⑴不等式 ()1 23 x m m ->-的解集与2x >的解集相同,则m 的值是 . ⑵关于x 的不等式2x a -≤-1的解集如图所示,则a 的值为 . ⑶ 关于x 的不等式5ax >的解集为5 2 x <-,则参数a 的值 . ⑷ ①若不等式组3 x x a >??>? 的解集是x a >,则a 的取值范围是 . ②若不等式组3 x x a >??? ≥的解集是x a ≥,则a 的取值范围是 . A .3a ≤ B .3a = C .3a > D .3a ≥ (北京二中期中考试) ⑸已知关于x 的不等式组2 32x a x a +??-?≥≤无解,则a 的取值范围是 . ⑹已知关于x 的不等式组>0 53x a x -??-? ≥无解,则a 的取值范围是 . 【例4】 ⑴ 已知关于x 的不等式组0 521≥x a x -??->? 只有四个整数解,则实数a 的取值范围是 . ⑵ 如果关于x 的不等式50x m -≤的正整数解只有4个,那么m 的取值范围是( ) A .2025m <≤ B .2025m <≤ C .25m < D .20m ≥ (北京五中期中考试)

含参不等式题型知识讲解

含参不等式题型 一、给出不等式解的情况,求参数取值范围: 总结:给出不等式组解集的情况,只能确定参数的取值范围。记住:“大小小大有解;大大小小无解。”注:端点值格外考虑。 1:已知关于x 的不等式组3x x a >-???????+>-??的解集是x>2a,则a 的取值范围是 。 4、已知关于x 的不等式组2113x x m -?>???>?的解集为2x >,则( ) .2.2.2.2A m B m C m D m ><=≤

5、关于x 的一元一次不等式组x a x b >?? >?的解集是x>a,则a 与b 的关系为( ) ...0.0A a b B a b C a b D a b ≥≤≥>≤< 6、若关于x 的不等式组841x x x m +-??? p f 的解集是x >3,则m 的取值范围是 7、若关于x 的不等式组8x x m ?,有解,则m 的取值范围是__ ___。 8、若关于x 的不等式组?? ?->+<121m x m x 无解,则m 的取值范围是 。 二、给出不等式解集,求参数的值 总结:给出不等式组确切的解集,可以求出参数的值。方法:先解出含参的不等式组中每个不等式的解集,再利用已知解集与所求解集之间的对应关系,建立方程。 1:若关于x 的不等式组2123x a x b -? 的解集为11x -<<,求()()11a b +-的值。 2:已知关于x 的不等式组()324213 x x a x x --≤???+>-??的解集是13x ≤<,求a 的值。 3、若关于x 的不等式组 的解集为 ,求a,b 的值 {a b x b a x 22>+<+3 3<<-x

一元一次不等式培优专题训练一

一元一次不等式培优专题训练一 例1 1、 用“>”或“<”填空,并在题后括号内注明理由: (1)∵a >b,∴a -m ________b -m (2)∵a >2b,∴2 a ________ b (3)∵4a >5a,∴a ________0 (4)∵2x -1<9,∴x ________5 2、不等号填空:(1)、x 为任意有理数,x -3____x -4.(2)若a <0,b <0,则a ·b ____ab 2. 变式训练:(七中实验)若b a <,则2ac 2bc ;若22bc ac <,则a b (填不等号) ; 例2、不等式(组)的解法:1、不等式1y ,试求出m 的取值范围. x -y=5m -1, ② 3、(09优等生数学)已知关于x ,Y 的方程组???-=+-=-1 331k y x k y x 的解满足x+y >3k+2,求k 的取值范围

含参不等式的解法

含参数的一元二次不等式的解法 含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。 一. 二次项系数为常数 例1、解关于x 的不等式:0)1(2 >--+m x m x 解:原不等式可化为:(x-1)(x+m )>0 (两根是1和-m ,谁大?) (1)当1<-m 即m<-1时,解得:x<1或x>-m (2)当1=-m 即m=-1时,不等式化为:0122 >+-x x ∴x ≠1 (3)当1>-m 即m>-1时,解得:x<-m 或x>1 综上,不等式的解集为: (){}m x x x m -><-<或时当1|,11 (){}1|,12≠-=x x m 时当 (){}1-|,13><->x m x x m 或时当 例2:解关于x 的不等式:.0)2(2 >+-+a x a x (不能因式分解) 解:()a a 422 --=? (方程有没有根,取决于谁?) ()()R a a a 时,解集为即当32432404212 +<<-<--=? ()()3 2432404222 +=-==--=? a a a a 或时当

(i )13324-≠ -=x a 时,解得:当 (ii )13-324-≠+=x a 时,解得: 当 ()()时 或即当32432404232 +>-<>--=? a a a a 两根为()2 42)2(2 1 a a a x --+ -= ,()2 42)2(2 2 a a a x --- -= . ()()2 42)2(2 42)2(2 2 a a a x a a a x --+ -> --- -< 或此时解得: 综上,不等式的解集为: (1)当3 2 4324+<<-a 时,解 R ; (2)当324-=a 时,解集为(13,-∞-)?( +∞ -,13); (3)当324+=a 时,解集为(13,--∞-)?(+∞ -- ,13); (4)当3 24-a 时, 解集为(2 48)2(, 2 +---∞-a a a )?( +∞ +-+ -,2 4 8)2(2 a a a ); 二.二次项系数含参数 例3、解关于x 的不等式:.01)1(2 <++-x a ax 解:若0 =a ,原不等式.101>?<+-?x x 若0--?或.1>x 若0 >a ,原不等式.0)1)(1(<-- ? x a x )(* 其解的情况应由a 1与1的大小关系决定,故 (1)当1=a 时,式)(*的解集为φ ; (2)当1>a 时,式)(*11<

基本不等式练习题(带答案)

《基本不等式》同步测试 一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若 a ∈R ,下列不等式恒成立的是 ( ) A .21a a +> B .2 111 a <+ C .296a a +> D .2 lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( ) A. 1 2 B.22a b + C.2ab D.a 3. 设x >0,则1 33y x x =-- 的最大值为 ( ) A.3 B.332- C.3-23 D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( ) A. 10 B. 63 C. 46 D. 183 5. 若x , y 是正数,且 14 1x y +=,则xy 有 ( ) A.最大值16 B.最小值 116 C.最小值16 D.最大值116 6. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( ) A .2222a b c ++≥ B .2 ()3a b c ++≥ C . 11123a b c + + ≥ D .3a b c ++≤ 7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( ) A . 114x y ≤+ B .111x y +≥ C .2xy ≥ D .1 1xy ≥ 8. a ,b 是正数,则 2,, 2 a b ab ab a b ++三个数的大小顺序是 ( ) A.22a b ab ab a b +≤≤+ B.22a b ab ab a b +≤≤ + C. 22ab a b ab a b +≤≤+ D.22 ab a b ab a b +≤≤ + 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2 p q x +≥ 10. 下列函数中,最小值为4的是 ( ) A.4y x x =+ B.4sin sin y x x =+ (0)x π<<

不等式计算专项练习及答案

不等式计算专项练习 一、解答题 1.解不等式组,并且把解集在数轴上表示出来. 2.求不等式组的整数解. 3.计算下列不等式(组): (1)x-<2-. (2)-2≤≤7 (3); (4) 4.已知:y1=x+3,y2=-x+2,求满足下列条件时x的取值范围:(1)y1<y2 (2)2y1-y2≤4 5.解不等式组: 6.求下列不等式组的解集 7.(1)计算:(-2)-2×|-3|-()0 (2)解不等式组: 8.解不等式组,并指出它的所有整数解. 9.解不等式组:,并写出该不等式组的整数解.

11.解不等式组并写出的所有整数解. 12.(1)解方程:. (2)求不等式组:. 13.求不等式组的整数解. 14.(1)解不等式组:并把解集在数轴上表示出来. (2)解不等式组: 15.求不等式组的非负整数解. 16.解不等式(组),并把它们的解集在数轴上表示出来 (1); (2) 17.(1)解不等式组 (2)在(1)的条件下化简:|x+1|+|x-4| 18.已知关于x,y的方程组的解为正数. (1)求a的取值范围; (2)化简|-4a+5|-|a+4|. 19.(1)解不等式2->+1,并把它的解集在数轴上表示出来; (2)求不等式组的整数解. 20.解不等式组:. 21.解不等式组 22.解不等式组,并把它们解集表示在数轴上,写出满足该不等式组的 所有整数解.

23.解不等式组:;在数轴上表示出不等式组的解集,并写出它的整数 解. 24.解不等式组:. 25.解不等式组 26.解不等式组 ) 27.当x 是不等式组 的正整数解时,求多项式(1﹣3x )(1+3x )+(1+3x ) 2 +(﹣x 2)3÷x 4的值. 28.解方程与不等式组: 解方程:;解不等式组: 29.解不等式组. 30.解不等式组,并写出不等式组的整数解. 31.(1)解不等式组: (2)解方程: 32.解不等式组: . 33.解不等式组,并在数轴上表示它的解集. 34.(1)解方程: ; (2)解不等式组: ,并把解集在数轴上表示出来.

解不等式的方法归纳

一、知识导学 1. 一元一次不等式 ax>b
(1)当 a>0 时,解为 x b ; a
解不等式的方法归纳
(2)当 a<0 时,解为 x b ; a
(3)当 a=0,b≥0 时无解;当 a=0,b<0 时,解为 R.
2. 一元二次不等式:(如下表)其中 a>0,x1,x2 是一元二次方程 ax2+bx+c=0 的两实根,且
x1<x2 (若 a<0,则先把它化正,之后跟 a>0 的解法一样)
类型 解集
ax2+bx+c>0
ax2+bx+c≥0
ax2+bx+c<0
ax2+bx+c≤0
Δ>0
{x|x<x1 或 x>x2}
{x|x≤x1 或 x≥ x2}
{x|x1<x<x2 }
{x|x1≤x≤x2}
{x|x≠- b ,
Δ=0
2a
R
x R}
Ф
b
{x|x=- }
2a
Δ<0
R
R
Φ
Φ
3.简单的一元高次不等式:可用区间法(或称根轴法)求解,其步骤是: ①将 f(x)的最高次项的系数化为正数; ②将 f(x)分解为若干个一次因式的积; ③将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线; ④根据曲线显示出的 f(x)值的符号变化规律,写出不等式的解集.
4.分式不等式:先整理成 f (x) >0 或 f (x) ≥0 的形式,转化为整式不等式求解,即:
g(x)
g(x)
f (x) >0 f(x)·g(x)>0 g(x)
f
(x)
≥0
f (x) 0 g(x) 0

f (x) g(x)>0
g(x)
然后用“根轴法”或化为不等式组求解. 二、疑难知识导析 1.不等式解法的基本思路 解不等式的过程,实质上是同解不等式逐步代换化简原不等式的过程,因而保持同解
精品

不等式综合练习题集

不等式专题练习题 一、知识内容 不等式是高中数学的重要内容之一,不等式的性质是解证不等式的基础;两个正数的算术平均数不小于它们的几何平均数的定理(教材中称为基本不等式,通常称均值不等式)及其变形在不等式的证明和解决有关不等式的实际问题中发挥着重要的作用;线性规划是运筹学的一个重要分支,在实际生活中有着广泛的应用. 二、核心思想方法 解不等式是研究方程和函数的重要工具,不等式的概念、性质涉及到求函数最大(小)值,实数大小比较,求参数的取值范围等;不等式的综合题主要是不等式与集合、函数、数列、三角函数、解析几何、导数等知识的综合,综合性强,难度较大,是高考命题的热点,也是高考复习的难点;均值不等式的证明最终是利用了配方法,使用该不等式的核心方法则是整体思想方法,就是对哪两个正数使用定理,例如下面练习题的第5题是对2,a b使用不等式,而不是对,a b使用不等式;线性规划的核心方法是数形结合和转化的思想方法,在具体转化上涉及到面积、截距(目标函数为二元一次多项式)、距离(目标函数含二元二次多项式)、斜率(目标函数为分式)等几何意义,分别如下面练习题的第9、22、23、24题. 三、高考命题趋势 本专题的高考命题热点可从以下两个方面去把握: 1.以客观题形式命题:不等式的性质和解不等式问题多以一个选择题的形式出现,且多与集合、简易逻辑、函数知识相结合,难度较低;均值不等式是历年高考的重点考查内容,考查方式多变,在客观题中出现,一般只有一个选择或填空,考查直接,难度较低;线性规划问题是近几年高考的一个新热点,在考题中主要以选择、填空形式出现,且设问也是灵活多变,每年高考必有一题.四个注意问题:(1)命题者有时把线性规划问题和均值不等式结合在一起,提高了难度,例如下面练习题的第8、28题.(2)线性规划的约束条件中含有参数的,例如下面练习题的第7、9题.(3)均值不等式的凑定值技巧,一是关注消元,而是关注整体代入思想方法,分别如下面练习题的第17、18题.(4)克服思维定势,有些题目很象是利用基本不等式的,其实只是解出未知数代入化简的,

含参不等式练习题及解法

众所周知,不等式解法是不等式这一板块的高考备考重点,其中,含有参数的不等式的问题,是主考命题的热点,又是复习提高的难点。(1)解不等式,寻求新不等式的解集; (2)已知不等式的解集(或这一不等式的解集与相关不等式解集之间的联系),寻求新含参数的值或取值范围。 (3)注意到上述题型(2)的难度与复杂性,本专题对这一类含参不等式问题的解题策略作以探索与总结。 一、立足于“直面求解” 解不等式的过程是一系列等价转化的过程,对于有关不等式的“解”的问题,直面不等式求解,有时是问题解决的需要,有时是解决问题的基础或手段。所给问题需要在获得不等式的解集或最简形成后,方可延伸或突破时,则要果断地从求 解不等式切入。例1.设关于x的不等式 (1)解此不等式;(2)若不等式解集为(3,+∞),求m的取值范围; (3)若x=3属于不等式的解集,求m的取值范围 分析:着眼于不等式的等价变形,注意到这里m2>0,m2同乘以不等式两边,则不等式转化为ax>b型,于是可以x的系数a的取值为主线进行讨论。 解:(1)由题设,原不等式m(x+2)>m2+(x-3)(m R,m≠0) (m-1)x>m2-2m-3(1)∴当m>1时,由(1)解得 当m=1时,由(1)得x R;当m<1且m≠0时,由(1)解得 ∴当m>1时,原不等式的解集为当m=1时,原不等式的解集为R 当m<1且m≠0时,原不等式的解集为 (2)若不等式的解集为(3,+∞),则由(1)知应得 ∴此时m的取值范围为{5} (3)注意到x=3 为不等式的解,将x=3代入(1)得:3(m-1)>m2-2m-3m2-5m<0 00以及,m的取值或取值范围由此而产生。 例2.已知关于x的不等式组的整数解的集合为{-2},求实数R的取值范围。 分析:由题设知,这一不等式组的解集只含有一个整数-2,那么当x= -2属于这一成员不等式时,该不等式的解集是何种情形,这需要解出不等式后方可作出结论,故考虑以求解这一成员不等式切入并延伸。 解:不等式x2-x-2>0 (x+1)(x-2)>0x<-1或x>2 ∴不等式x2-x-2>0的解集A=(-∞,-1)∪(2,+ ∞),显然-2∈A 不等式2x2+(2R+5)x+5R<0 (x+R)(2x+5)<0① 设这一不等式的解集为B,则由-2B,得:(-2+R)(-4+5)<0R<2② 注意到(x+R)(2x+5)=0的根为x1= -R,, ∴(1)当时, 由①得,即此时-2 B (2)当时,由①得

不等式专题训练

不等式专题训练1 1.若a >0,b >0,a+b=2,则下列不等式不恒成立的是( ) A .ab ≤1 B .a 2+b 2≥2 C . + ≤ D .+≥2 2.已知变量x ,y 满足,则的取值范围为( ) A .[0,] B .[0,+∞) C .(﹣∞,] D .[﹣,0] 3.以下结论正确的是( ) A .若a <b 且c <d ,则ac <bd B .若ac2>bc2,则a >b C .若a >b ,c <d ,则a ﹣c <b ﹣d D .若0<a <b ,集合A={x|x=},B={x|x=},则A ?B 4.设x ,y 满足约束条件30,0,20,x y a x y x y --≤?? -≥??+≥? 若目标函数z x y =+的最大值为2,则实数a 的 值为( ) A .2 B .1 C .1- D .2- 5.已知集合()12 2|log 12,| 21x A x x B x x ??+?? =+≥-=≥????-?? ? ? ,则 A B =I ( ) A.()1,1- B.[)0,1 C.[]0,3 D.? 6.若实数x ,y 满足,则z=x ﹣2y 的最小值为( ) A .﹣7 B .﹣3 C .1 D .9 7.设a ,b ∈R + ,且a ≠b ,a+b=2,则必有 ( ) A .1≤ab ≤ B .<ab <1 C .ab <<1 D .1<ab < 8.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A .a 2 >ab >b 2 B .ac 2 <bc 2 C . D . 9.如果实数x 、y 满足,目标函数z=kx+y 的最大值为12,最小值3,那么实数k 的值为( ) A .2 B .﹣2 C . D .不存在 10.若点(2,﹣3)不在不等式组表示的平面区域内,则实数a 的取值范围是( ) A .(﹣∞,0) B .(﹣1,+∞) C .(0,+∞) D .(﹣∞,﹣1) 11.设变量x ,y 满足约束条件,则目标函数z=2x+5y 的最小值为( )

一元一次不等式组解题技巧

一元一次不等式组解题技巧 一、重点难点提示 重点:理解一元一次不等式组的概念及解集的概念。 难点:一元一次不等式组的解集含义的理解及一元一次不等式组的几个基本类型解集的确定。 二、学习指导: 1、几个一元一次不等式合在一起,就组成了一个一元一次不等式组。但这“几个一元一次不等式” 2、前面学习过的二元一次方程组是由二个一次方程联立而成,在解方程组时,两个方程不是独立存在的(代入法和加减法本是独立的,而且组成不等式组的不等式的个数可以是三个或多个。(课本上主要学习由两个一元一次不等式组成的不等式组)。 3、在不等式组中,几个一元一次不等式的解集的公共部分,叫做由它们组成的一元一次不等式组的解集。(注意借助于数轴 4、一元一次不等式组的基本类型(以两个不等式组成的不等式组为例) 类型(设a>b)不等式组的解集数轴表示 )(同大型,同大取大) 2)(同小型,同小取小) 3)(一大一小型,小大之间) 4)(比大的大,比小的小空集)无解 三、一元一次不等式组的解法

例1.解不等式组并将解集标在数轴上 分析:解不等式组的基本思路是求组成这个不等式组的各个不等式的解集的公共部分,在解的过程中各个不等式彼此之间无关“组”的角度去求“组”的解集,在此可借助于数轴用数形结合的思想去分析和解决问题。 步骤: 解:解不等式(1)得x> (1)分别解不等式组的每 解不等式(2)得x≤4 一个不等式 ∴(2)求组的解集 (借助数轴找公共部分) (利用数轴确定不等式组的解集) ∴原不等式组的解集为

例2.解不等式组 解:解不等式(1)得x>-1, 解不等式(2)得x≤1, 解不等式(3)得x<2, ∴∵在数轴上表示出各个解为: ∴原不等式组解集为-1-1, 解不等式(2), ∵≤5, ∴ -5≤x≤5, ∴ 将(3)(4)解在数轴上表示出来如图,

高中数学专题复习含参不等式与参变量的取值范围

含参不等式与参变量的取值范围 一、选择题 1. 已知方程1||+=ax x 有一负根且无正根,则实数a 的取值范围是 A. a >-1 B. a=1 C. a ≥1 D. a ≤1 2. 设)(1 x f -是函数1)((2 1)(>-= -a a a x f x x 的反函数,则使1)(1 >-x f 成立的x 的取值范围是 ) ,.[) ,21.() 21,.() ,21.(222+∞---∞+∞-a D a a a C a a B a a A 3. 在R 上定义运算○×:x ○×y=x(1–y),若不等式(x –a )○×(x + a)<1对任意实数x 成立 2 1 23.2 3 21.20.11.<<- <<- <<<<-a D a C a B a A 的取值范围是 恒成立,则时,不等式(当的取值范围是,则实数的解集为若不等式的取值范围是 都有意义,则对已知函数的取值范围是 值,则)上有最大 ,在(存在,且,若,其中已知的取值范围是 数有且仅有三个解,则实若设的取值范围是 有解,则实数若不等式可以是的取值范围的充分条件,则是若集合a x x x D C B A a R x a x a D C B A a x x x x f b D b C b B b A b x f x f b a x a x b x x b ax x f D C B A a x x f x x f x a x f m D m C m B m A m m x x b D b C b B b A b B A a a b x x B x x x A a a a x x log )1)2,1(.10)2,.(),2()2,.(]2,2.()2,2.(4)2(2)2(.9)21,161.()21,321.[]21,641.[)21,1281.[)2 1 ,0()log (log )(.81 0.1.12 1 .1.11)()(lim 0,0)1,0(] 0,1()(.7] 1,.(),1.[)2,.(]2,1.[)()0)(1() 0(3)(.62 .2 .1 .1 .|3||5|.521.13.20.02."""1"},|||{},01 1 |{.422220<-∈-∞+∞--∞--<-+-∈+-=≤<≥≤<>->>??? ??∈---∈+=-∞+∞-∞=? ??>-≤-=≥>≥><-+-<≤--<<-≤<<≤-≠=<-=<+-=→- φ

相关文档
最新文档