中考必考之一次函数图像与应用题练习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学一次函数图像与应用题汇总
1为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题;(1)档用地阿亮是180千瓦时时,电费是 元;(2)第二档的用电量范围是 ;(3)“基本电价”是 元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?
1 2
2甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA 表示货车离甲地距离y (千米)与时间x (小时)之间的函数关系;折线BCD 表示轿车离甲地距离y (千米)与x (小时)之间的函数关系.请根据图象解答下列问题:
(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD 对应的函数解析式.(3)轿车到达乙地后,马上沿原路以CD 段速度返回,求轿车从甲地出发后多长时间再与货车相遇(结果精确到0.01).
3一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为
1y 千米,出租车离甲地的距离为2y 千米,两车行驶的时间为x 小时,1y 、2y 关于x 的函数图像如右图所示:
(1)根据图像,直接写出1y 、2y 关于x 的函数关系式; (2)若两车之间的距离为S 千米,请写出S 关于x 的函数关系式;(3)甲、乙两地间有
A 、
B 两个加油站,相距200千米,若客车进入
A 加油站时,出租车恰好进入
B 加油站,求A 加油站离甲地的距离.
3
3020150y (千克)
x (天)图甲 8
1020100y (千克)
x (天)
图乙
4某个体户购进一批时令水果,20天销售完毕.他将本次销售情况进行了跟踪记录,根据所记录的数据可绘制如图所示的函数图象,其中日销售量y (千克)与销售时间x (天)之间的函数关系如图甲所示,销售单价p (元/千克)与销售时间x (天)之间的函数关系如图乙所示. (1)直接写出y 与x 之间的函数关系式;(2)分别求出第10天和第15天的销售金额;
(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多
少元?
5张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.以下说法错误的是()
6设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y千米,y关于x 的函数关系如图所示,则甲车的速度是米/秒.
220
200
100x/(秒)
y/(米)
500
A
B C
D
第14题图
O
900
6 7
7如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直
到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那
么,从关闭进水管起分钟该容器内的水恰好放完.
8. A,B两地相距1100米,甲从A地出发,乙从B地出发,相向而行,甲比乙先出发2分钟,乙出发7分钟后与甲相遇.设甲、乙两人相
距y米,甲行进时间为t分钟,y与t之间的函数关系式如图所示.请你结合图象探究:(1)甲的行进速度为每分钟米,m= 分钟;(2)求直线PQ对应的函数表达式;(3)求乙的行进速度.
A.加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是y=﹣8t+25
B.途中加油21升
C.汽车加油后还可行驶4小时
D.汽车到达乙地时油箱中还余油6升
8
9.一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是 常数.容器内的水量y (单位:升)与时间x (单位:分)之间的关系如图10所示. 当容器内的水量大于5升时,求时间x 的取值范围.
10.甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y (米)与时间x (时)的函数图象为线段OA ,乙队铺设完的路面长y (米)与时间x (时)的函数图象为折线BC -CD -DE ,如图所示,从甲队开始工作时计时.(1)分别求线段BC 、DE 所在直线对应的函数关系式.(2)当甲队清理完路面时,求乙队铺设完的路面长.
10
11 11甲、乙两名大学生去距学校36千米的某乡镇进行社会调查.他们从学校出发,骑电动车行驶20分钟时发现忘带相机,甲下车前往,乙骑电动车按原路返回.乙取相机后(在学校取相机所用时间忽略不计),骑电动车追甲.在距乡镇13.5千米处追上甲后同车前往乡镇.乙电动车的速度始终不变.设甲方与学校相距甲y (千米),乙与学校相离乙y (千米),甲离开学校的时间为t (分钟). 甲y 、乙y 与x 之间的函数图象如图所示,结合图象解答下列问题:(1)电动车的速度为 千米/分钟;(2)甲步行所用的时间为 分;
(3)求乙返回到学校时,甲与学校相距多远?
12 甲、乙两地之间有一条笔直的公路L ,小明从甲地出发沿公路ι步行前往乙地,同时小亮从乙地出发沿公路L 骑自行车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地.设小明与甲地的距离为y 1米,小亮与甲地的距离为y 2米,小明与小亮之间的距离为s 米,小明行走的时间为x 分钟.y 1、y 2与x 之间的函数图象如图1,s 与x 之间的函数图象(部分)如图2.
(1)求小亮从乙地到甲地过程中y 1(米)与x (分钟)之间的函数关系式;(2)求小亮从甲地返回到与小明相遇的过程中s (米)与x (分钟)之间的函数关系式;(3)在图2中,补全整个过程中s (米)与x (分钟)之间的函数图象,并确定a 的值.
13.在一条笔直的公路上有A 、B 两地,甲骑自行车从A 地到B 地;乙骑自行车从B 地到A 地,到达A 地后立即按原路返回,如图是甲、乙两人离B 地的距离y (km )与行驶时x (h )之间的函数图象,根据图象解答以下问题:(1)写出A 、B 两地直接的距离;
y 千米
3618