45 奈氏判据回顾46 稳定裕量

45 奈氏判据回顾46 稳定裕量
45 奈氏判据回顾46 稳定裕量

信号完整性研发测试攻略2.0

信号完整性测试指导书 ——Ver 2.0 编写:黄如俭(sam Huang) 钱媛(Tracy Qian) 宋明全(Ivan Song) 康钦山(Scott Kang)

目录 1. CLK Test (3) 1.1 Differential Signal Test (3) 1.2 Single Signal Test (5) 2. LPC Test (7) 2.1 EC Side Test (7) 2.2 Control Sidse Test (8) 3. USB Test (11) 3.1 High Speed Test (11) 3.2 Low Speed Test (12) 3.3 Full Speed Test (12) 3.4 Drop/Droop Test (12) 4. VGA Test (14) 4.1 R、G、B Signal Test (14) 4.2 RGB Channel to Channel Skew Test (14) 4.3 VSYNC and HSYNC Test (15) 4.4 DDC_DA TA and DDC_CKL Test (15) 5. LVDS Test (17) 5.1 Differential data signals swing Test (17) 5.2 Checking Skew at receiver Test (18) 5.3 Checking the offset voltage Test (19) 5.4 Differential Input Voltage Test (20) 5.5 Common Mode Voltage Test (20) 5.6 Slew Rate Test (21) 5.7 Data to Clock Timing Test (23) 6. FSB Test (26) 7. Serial Data(SA TA/ESA TA, PCIE, DMI,FDI)Test (29) 8. HD Audio Test (30) 8.1 Measurement at The Controller (30) 8.2Measurement at The Codec (31) 9. DDR2 Test (34) 9.1 Clock (34) 9.2 Write (35) 9.3 Read (37) 10.Ethernet Test (39) 11.SMbus Signal Test (40) 12. HDMI Test (42) 13. DisplayPort Test (43)

伯格丁信号完整性-学习笔记

写在前言:作为一个还在layout门口徘徊的小虾米,贸然记录自己的学习想法是可笑的。但每个人并不是出生 就会成为大神。只不过有的人天分好,机遇也把握得当,在相对短的时间内,成为万众瞩目的高手。很可惜本 人天生愚钝,机遇又很差,在毕业后的三年里浑浑噩噩的憧憬自己的人生,做着自己不喜欢的工程,每天跟着 工程队奔波在广阔的祖国大地。不经意在工作的最后阶段接触到PCB设计。对于没有耐心和毅力的我,突然感 觉这才是我的人生方向,因为突然发现在绘制板图的时候,我可以很有耐心的拉扯每一条线,呵呵难道这一条 条显示屏上的线便是我的命运之线么?如饥似渴的读完买回来的书,又囫囵吞枣的大致看了两遍。感觉到一个 人的学习是空虚乏味的,于是想在咱们论坛与各位同我一样,还趴在门缝里仰慕者殿堂中的大神的新手们共同 体会我的学习体会。本人至今自学,没有老师带路,言语中的偏差错误,望各位高手给予我醍醐灌顶的指正。 在此感谢Eric Bogatin 感谢国内的翻译者李玉山、李丽平等,是他们让我趴在SI的门缝,让我有机会一窥我的 成神目标。让论坛记录成神的历程吧!哈哈有些夸口,目标定的太高,大家勿笑。 我的第一本SI教材:Signal integrity:simplified(信号完整性讲义)也是我目前唯一学习过的教材。废话不多说, 直接上酸菜! 信号完整性问题十个基本准则:前三个为设计理念,后八个为设计思路。 影响研发进度并造成产品产品交货推迟,就是企业付出的最昂贵代价。 体会:在论坛中常常争论,是质量重要还是工期重要!我认为都重要,所有的工程都是一个平衡过程,而不是 单单一种。质量固然重要,但最重要的是适应性,因为整个工业流程中并不仅仅只是画线路板,最终交到消费 者手里才是完整的工艺流程。如果仅仅是为了吹毛求疵而耽误了工期,那么整个工业流程都会耽误。导致产品 上市时间推迟,损失不可计量。但为了赶工期,而设计出不合格的产品,那么只能说设计者能力不够。或者这 家公司没有这个实力在行业内生存。所以我个人认为:一个优秀的设计者最重要的能力是能够把握质量与工期 的平衡关系,在合适的工期内完成满足产品质量。至于大神我估计是在要求的工期内,使产品的质量得到飞跃。 1 b* N* h1 T3 _: k6 X5 U 二:提高高速产品设计效率的关键是:充分利用分析工具来实现准确的性能预测;使用测量手段来验证设计过程、降低风险、提高设计工具的可信度。 体会:还没用过仿真,认为仿真等的作用是提高可信度,降低风险。如果板级设计所留预量足够,可以简单的 用公式计算和经验来代替仿真。 三:将问题实质与表面现象剥离开的唯一可行的途径就是采用经验法则、解析近似、数值仿真或者测量工具来 获得数据。这是工程实践的本质。! B( Y8 p. B ] 体会:没做过仿真,不知道仿真所需时间。依我来看,以上所说应相对应工程的要求,如果所作产品要求不严格,或者裕量很大,最快的方法是采用经验法则。对于裕量在20~5%的可以采用解析近似。此书上大部分公式 及近似值都在10%-5%左右。对于要求更严格的裕量便可采用仿真。裕量大概在2-3%左右。比如DDR等。对于要求更严格的,建模无法满足精度的情况下,即需要直接用测量工具来测量。耗时应该说是逐层递加。 四:信号由信号路径和返回路径构成。一个信号在沿着传输线流动过程中每一时刻都会感受到特性阻抗。如果 瞬态阻抗为常数,则其信号质量将会获得奇迹般的改善。 体会:忘掉覆铜地的概念,在设计初期考虑信号线走向时,就要优先考虑地平面或其他信号返回路径。防止电 路板在绘制完信号线后,突然发现返回的地平面出现“濠”,导致高速信号线需要重新规划。单根传输线最优的 工作方式是点对点,源阻抗=传输线特性阻抗=负载阻抗。在特性阻抗恒定的情况下,Tr保持不变,变的仅仅是 信号的幅值。 不明:在线路规划时,一个芯片N个I/O口,而相对的地引脚很少。按照高速信号线返回路径为靠近信号线理论。岂不是在信号的接收端,N条信号线同时走在同一个GND引脚,便会造成信号返回线之间的串扰了么?这样做假设N条信号线同时工作,便会造成很严重的地弹么?芯片的设计原理是什么?- e. f, k7 @) F# { 五:把接地这一术语忘掉,因为它所造成的问题比用它来解决的问题还多。每一路信号都有返回路径。 体会:个人感觉同上。把接地等同于信号线设计,估计返工的情况大减。不要轻易相信覆铜的威力,覆铜不是 铺设地的万金油。并且不合理的覆铜还会引入其他问题,6 s% x) r; M9 K% z+ M3 r5 c 六:当电压变化时,电容上就有电流流过。对于信号的陡峭边,即使电路的PCB板边缘和悬空导线之间的空气 形成的边缘线电容也可能有很低的阻抗。 体会:电容的原理嘛,两个平行板之间只要有电压差就有电容的存在。电容的作用:隔直通交。会使陡峭的信 号进入别的导线中。Tr小导致两个问题:1.串扰的发生。2:特性阻抗的变化。两个问题都导致信号受干扰。电 容本质上属于一个电压源。. J( e) O2 U. i1 [ 七:电感与通过的电流所产生的磁力线匝数有本质关系。只要电流或者磁力线匝数发生改变,在导线的两端就 会产生电压。这一电压导致了反射噪声、串扰、开关噪声、地弹、轨道塌陷以及EMI。- r' E5 P% G, [: W" }, l 体会:电感并不是电感,而是磁场效应。改变磁场,便会产生阻碍磁场变化的电流。本质上属于一个电流源。 反射噪声原因:特性阻抗发生变化;串扰原因:切割磁力线,产生电流;开关噪声:概念不懂,明天查查。 八:当流经接地回路电感上的电流变化时,在接地回路导线上产生的电压称之为地弹。它是造成开关噪声和 EMI的内部机理。! a! ~1 L4 Q0 Y9 l3 g 体会:所谓“地弹”,是指芯片内部“地”电平相对于电路板“地”电平的变化现象。以电路板“地”为参考,就像是芯

各芯片组时序、条件 总结 (2)

南桥待机条件H5X系列 ?系统状态: G3:整个系统的电源均关闭S5:关机状态S4:休眠状态S3:睡眠状态S0:开机状态?信号解释 ?南卡待机条件 VCCRTC:南桥RTC电路的供电,3V,给南桥内部的CMOS芯片(RAM)供电 RTCRST#:南桥RTC电路的复位信号,3V,ICH9以后增加了一个RTC复位信号,名字是SRTCRST# 32.768KHz:南桥得到了VCCRTC和RTCRST#后,给晶振供电,晶振起震,晶振两脚电压0.1V-0.5V之间 V5REF_SUS:5V待机电压 VCCSUS3_3:3.3V待机电压 VCCSUS1_05:南桥内部产生给自己供电的1.05V,不用管 RSMRST#:通知南桥3.3V待机电压正常,电压3.3V。受控于外部电路 SUSCLK:南桥收到RSMRST#后发出32L时钟,大多数老机器不采用,可以忽略,新机器发给EC PWRBTN#:POWER BUTTON,电源按钮,3.3V-0-3.3V脉冲信号,下降沿触发 SLP_S5#:3.3V。南桥退出关机状态的控制信号 SLP_S4#:3.3V.南桥退出休眠状态的控制信号,(一般S5#和S4#只采用一个,用来控制产生内存供电一个空着 SLP_S3#:3.3V,南桥退出睡眠状态的控制信号,(一般用来控制桥供电,总线供电、独显供电、CPU供电等VDIMM:内存供电

南桥待机条件H6X系列 ?VCCRTC:从主板送给PCH桥的3V供电,给桥的RTC电路供电,以保存CMOS参数 ?INTRVMEN:桥的内部的浅睡眠待机电压1.05V-VCCSUS1_05 稳压器的开启信号,由VCCRTC上来?DSWVRMEN:桥的内部的深度睡眠待机电压1.05V—稳压器的开启信号,由VCCRTC上拉 ?RTCRST#/SRTCRST#:从主板送给桥的3V高电平,RTC电路的复位信号,从ICH9开启,有2个复位 ?32.768KHz:桥方便的32.768KHZ晶振,桥给晶振供电,晶振提供频率给桥 ?VCCSW3_3:主板给桥提供的深度睡眠唤醒电源(Deep Sleep Well),3.3V.不支持深度睡眠时,此电压与VCCSUS3_#连一起 DPWROK:主板给桥的3.3V高电平,表示VCCDSW3_3的电源好,3.3V,不支持睡眠时,此信号与RSMRST#连一起 ?SLP_SUS#:深度睡眠状态指示信号,可用于开启S5状态的电压,比如VCCSUS3_3,不支持深度睡眠时,SLP_SUS#悬空 ?VCCSUS3_3#主板给桥的待机供电,3.3V 浅睡眠待机电压 ?BATLOW#:低电平时表示电池电量低,会导致不开机,一般由VCCSUS3_3上拉为高 ?RSMRST#:主板给桥的3.3V高电平的ACPI复位信号,意思是通知桥,此时待机电压已经OK ?SUSCLK:桥发出的32.768KHZ的时钟,但不一定被主板采用

机械工程控制基础简答题答案(1)

1.何谓控制系统,开环系统与闭环系统有哪些区别? 答:控制系统是指系统的输出,能按照要求的参考输入或控制输入进行调节的。开环系统构造简单,不存在不稳定问题、输出量不用测量;闭环系统有反馈、控制精度高、结构复杂、设计时需要校核稳定性。 2.什么叫相位裕量?什么叫幅值裕量? 答:相位裕量是指在乃奎斯特图上,从原点到乃奎斯特图与单位圆的交点连一直线,该直线与负实轴的夹角。幅值裕量是指在乃奎斯特图上,乃奎斯特图与负实轴交点处幅值的倒数。 3.试写出PID控制器的传递函数? 答:G C(s)=K P+K Ds+K I/s 4,什么叫校正(或补偿)? 答:所谓校正(或称补偿),就是指在系统中增加新的环节或改变某些参数,以改善系统性能的方法。 5.请简述顺馈校正的特点 答:顺馈校正的特点是在干扰引起误差之前就对它进行近似补偿,以便及时消除干扰的影响。6.传函的主要特点有哪些? 答:(1)传递函数反映系统本身的动态特性,只与本身参数和结构有关,与外界输入无关;(2)对于物理可实现系统,传递函数分母中s的阶数必不少于分子中s的阶数;(3)传递函数不说明系统的物理结构,不同的物理结构系统,只要他们的动态特性相同,其传递函数相同。 7.设系统的特征方程式为4s4+6s3+5s2+3s+6=0,试判断系统系统的稳定性。 答:各项系数为正,且不为零,满足稳定的必要条件。列出劳斯数列: s4 4 s3 6 3 s2 3 6 s1 -25/3 s0 6 所以第一列有符号变化,该系统不稳定。 8.机械控制工程主要研究并解决的问题是什 么? 答:(1)当系统已定,并且输入知道时,求出系统的输出(响应),并通过输出来研究系统本身的有关问题,即系统分析。(2)当系统已定,且系统的输出也已给定,要确定系统的输入应使输出尽可能符合给定的最佳要求,即系统的最佳控制。(3)当输入已知,且输出也是给定时,确定系统应使得输出金肯符合给定的最佳要求,此即最优设计。(4)当系统的输入与输出均已知时,求出系统的结构与参数,即建立系统的数学模型,此即系统识别或系统辨识。(5)当系统已定,输出已知时,以识别输入或输入中得有关信息,此即滤液与预测。 9,在系统校正中,常用的性能指标有哪些?答:(1)在系统校正中,常用的性能指标按其类型可分为:(1)时域性能指标,它包括瞬态性能指标(即上升时间、峰值时间、最大超调量、调整时间等)和稳态性能指标(即稳态误差)。(2)频域性能指标,它包括相位裕量、幅值裕量、频宽等。 10.求拉氏反变换的方法有哪些? 答:(1)查表法;(2)有理函数法;(3)部分分式法。 11.简述二阶欠阻尼系数a,w n与性能指标M p(超调量)、t s(调整时间)的关系。 答:二阶欠阻尼系统若a不变,增大或减小w(n),则超调量t(p)不变,调整时间t(s)减小(或增大);若t(n)不变,增大(或减小)a,则超调量M(p)减小(或增大),调整时间t(s)减小(增大) 12.简述串联超前校正环节的作用。 答:串联超前校正环节的作用是:串联超前校正环节增大了相位裕量,加大了宽带,这就意味着提高了系统的相对稳定性,加快了系统的响应速度,使过度过程得到显著改善。但由于系统的增益和型次都未变化,所以稳态精度变化不大。13.传递函数的典型环节主要有哪几种? 答:(1)比例环节K;(2)积分环节1/s(3)微分环节s(4)惯性环节1/(Ts+1)(5)一阶微分环节Ts+1(6)震荡环节1/(T2s2+2aTs+1)(7)二阶微分环节T2s2+2aTs+1(8)延时环节e-ts 14.终值定理的应用条件是什么? 答:若函数f(t)及其一阶导数都是可拉氏变换的,并且除在原点处唯一的极点外,sF(s)在包括含jw轴的右半s平面内是解析的,这就意味着 当t趋近与无穷时f(t)趋于一个确定的值,则 函数f(t)的终值为limf(t)=limF(s)。 15.什么叫系统分析? 答:当系统已定,并且输入知道时,求出系统的 输出(响应),并且通过输出来研究系统本身的有 关问题,即系统分析。 16.对数坐标图的主要优点有哪些? 答:(1)可以将幅值相乘转化为幅值相加,便于 绘制多个环节串联组成的系统的对数频率特性 图。(2)可采用渐近线近似的作用方法绘制对数 幅频图,简单方便,尤其是在控制系统设计、校 正及系统辨识等方面,优点更为突出。(3)对数 分度有效地扩展了频率范围,尤其是低频段的扩 展,对工程系统设计具有重要意义。 17.简述拉氏反变换中部分分式法的步骤。 答:部分分式法是通过代数运算,先将一个复杂 的象限函数化为数个简单的部分分式之和,再分 别求出各个分式的原函数,总的原函数即可求得。 18.请写出超前校正装置的传递函数,如果将它 用于串联校正,可以改善系统什么性能? 答:G c(s)=1/a乘aTs+1/(Ts+1),a>1可增加相位 裕量,调整频带宽度。 19.影响系统稳态误差的因素有哪些? 答:影响系统稳态误差的因素有系统的类型、开 环增益和输入信号。 20.已知系统的调节器为 G c(s)=(T1s+1)(T2s+1)/s,其中T1、T2>0,问是否 可以称其为PID调节器,请说明理由。 答:可以称其为PID调节器。 G c(s)=(T1+T2)+T1T2S+1/S .G c(s)由比例部分 (T1+T2) 、微分部分T1T2s及积分部分1/s相加而 成。 21.什么叫机械系统的动柔度和动刚度? 答:若机械系统的输入为力,输出为位移(变形), 则机械系统的频率特性就是机械系统的动柔度; 机械系统的频率特性的倒数就是机械系统的动刚 度。 22.什么叫机械系统的基本要求? 答:对控制系统的基本要求有系统的稳定性、响 应的快速性和响应的准确性等,其中系统的稳定 性是控制系统工作的首要条件。在参数已知的情 况下分析和评定系统的稳定性、快速性和准确性。 23.设开环传递函数Gs=100/s+10s+50,试说明开 环系统频率特性极坐标图的起点和终点。 答:G(s)=0.2/(0.1s+1)(0.02s+1) G(jw)=0.2/(j0.1w+1)(j0.02w+1) G(jw)极坐标图起点:(0.2.j0) G(jw)极坐标图终点(0,j0) 29.什么是数学模型? 答:数学模型是系统动态特性的数学表达式。建 立数学模型是分析、研究一个动态特性的前提。 一个合理的数学模型应以最简化的形式,准确地 描述系统的动态特性。 30.线性系统的主要特征是什么? 答:若系统的数学模型表达式是线性的,则这种 系统就是线性系统。线性系统最重要的特征是可 以运用叠加原理。所谓叠加原理,就是系统在几 个外加作用下所产生的响应,等于各个外加作用 单独作用的响应之和。 31.简述系统时间响应的概念。 答:机械工程系统在外加作用激励下,其输出量 随时间变化的函数关系称之为系统的时间响应, 通过时间响应的分析可以揭示系统本事的动态特 性。 32.在频率特性的图形表示方法中,常用的方法 有哪几种? 答:(1)对数坐标图或称伯德图(2)极坐标图或 称乃奎斯特图(3)对数幅-相图。 33.判断定常系统是否稳定的方法有哪几种? 答:劳斯判据;胡尔维茨判据;乃奎斯特稳定性 判据;根轨迹法。 34.反馈校正与串联校正相比,所具有的优点是 哪些? 答:反馈校正比串联校正更有其突出的优点:利 用反馈能有效地改变被包围环节的动态结构参 数,甚至在一定条件下能用反馈校正完全取代包 围环节,从而大大减弱这部分环节由于特性参数 变化及各种干扰给系统带来的不利影响。 35.什么是反馈(包括正反馈和负反馈)? 答:所谓信息的反馈,就是把一个系统的输出信 号不断直接地或经过中间变换后全部或部分地返 回,再输入到系统中去。如果反馈回去的讯号(或 作用)与原系统的输入讯号(或作用)的方向相 反(或相位相差180度)则称之为“负反馈”;如 果方向或相位相同,则称之为“正反馈”。 36.劳斯-胡尔维茨稳定性判据的根据是什么? 答:利用特征方程式的根与系统的代数关系,由 特征方程中的已知系数间接判断出方程的根是否 具有负实部,从而判断系统是否稳定。 37.采用何种方式可以同时减少或消除控制输入 和干扰作用下的稳态误差? 答:在干扰作用点至系统输入口的前通道中,提 高增益和设置积分环节。 38.简述拉氏变换的线性性质。 答:拉氏变换是一个线性变换,若有常数KK,函 数f(t1),f(t2),则 L[K1f1(t)+K2f2(t)]=K1L[f1(t)]+K2L[f2(t)]=K1F1(s )+K2F2(s) 39.系统的频域性能指标有哪些? 答:相位裕量、幅值裕量、截止裕量及频宽、谐 振频率及谐振峰值。 40.频率特性和传递函数的关系是什么? 答:若系统的传递函数为G(s),则相应系统的 频率特性为G(jw),即将传递函数中得s用jw 代替 40.请写出滞后校正装置的传递函数,如果将它 用于串联校正,可以改善系统什么性能? 答:G(s)=Ts+1/9aTs+1),提高系统的稳态精度。 41.什么是系统频率特性的截止频率? 答:是指系统闭环频率特性的幅值下降到其零频 率幅值以下3dB时的频率。 42.典型二阶系统(当0或=1时)在 单位阶跃输入信号作用下的输出响应的特性是 什么? 答:00或=1时,为非 周期过程。 43.系统时间响应的瞬态响应反映哪方面的性 能?而稳态响应反映哪方面的性能? 答:瞬态响应反映了系统的稳定性和响应的快速 性等方面的性能,而稳态响应反映了系统响应的 准确性。 44.当系统的阻尼比满足什么条件时,二阶系统 特征方程的根为两个不相等的负实根? 答:二阶系统的特征方程为: s2+2aw n s+w n2=0特征根为s=-aw+-√a2+1,要使根具 为两个不相等的负实根,必须满足-aw n<0;A2-1>0; a>1 45.请简述拉氏变换的卷积定理。 答:若Fs=Lft,Gs=Lgt则有L∫ft-b 46.已知零初始条件下某系统的单位脉冲响应, 能否求出该系统的闭环传递函数?若可以,如何 求? 答:可以。将零初始条件下单位脉冲响应求拉氏 变换即为该系统的闭环传递函数。 47.控制系统稳定性的定义是什么? 答:稳定性的定义为:系统在受到外界扰动作用 时,其被控制量将偏离平衡位置,当这个扰动作 用去除后,若系统在足够长的时间内能恢复到其 原来的平衡状态或者趋于一个给定的新的平衡状 态,则该系统是稳定的。 48.判定系统是否稳定? 答:相位裕量和幅值裕量大于零,则系统是稳定 的,若相位裕量和幅值裕量为零,则系统为临界 稳定,其他为系统不稳定。 49.试从控制的观点分析反馈校正的特点。 答:反馈校正能有效地改变被包围环节的动态结 构参数,甚至在一定条件下能用反馈校正完全取 代包围环节,从而大大减弱这部分环节由于特性 参数变化及各种干扰给系统带来的不利影响。 50.实现校正的方式有哪几种? 答:串联校正、并联校正和PID校正。 51.什么是主导极点? 答:主导极点是指系统所有闭环极点中距离虚轴 最近,且周围没有其他闭环零点的那些闭环极点。 主导极点对系统的响应起主导作用。 52.最小相位系统与非最小相位系统的对数频率 特性有何异同? 答:最小相位与非最小相位系统的对数幅频特性 相同,两者对数相频特性不同,非最小相位系统 的相角变化绝对值比最小相位系统相角变化绝对 值大。

控制工程第三次实验

机械控制工程基础实验报告 学院工学、职业技术教育学院 班级机械113 姓名陈浩浩 学号11550307

一、实验目的和要求 1.掌握用MATLAB 语句绘制各种频域曲线。 2.掌握控制系统的频域分析方法。 二、实验内容 频域分析法是应用频域特性研究控制系统的一种经典方法。它是通过研究系统对正弦信号下的稳态和动态响应特性来分析系统的。采用这种方法可直观的表达出系统的频率特性,分析方法比较简单,物理概念明确。 1.频率曲线主要包括三种:Nyquist 图和Bode 图。 1)Nyquist 图的绘制与分析 MATLAB 中绘制系统Nyquist 图的函数调用格式为: nyquist(num,den) 频率响应w 的范围由软件自动设定 nyquist(num,den,w) 频率响应w 的范围由人工设定 [Re,Im]= nyquist(num,den) 返回奈氏曲线的实部和虚部向量,不作图 例1:已知系统的开环传递函数为2526 2)(2 3++++=s s s s s G ,试绘制Nyquist 图,并判断系统的稳定性。 num=[2 6]; den=[1 2 5 2]; [z,p,k]=tf2zp(num,den) nyquist(num,den) 极点的显示结果及绘制的Nyquist 图如图1所示。由于系统的开环右根数P=0,系统的Nyquist 曲线没有逆时针包围(-1,j0)点,所以闭环系统稳定。 p = -0.7666 + 1.9227i -0.7666 - 1.9227i -0.4668 若上例要求绘制)10,10(11-∈ω间的Nyquist 图,则对应的MATLAB 语句为: 图1 开环极点的显示结果及Nyquist 图

DDR3内存的PCB仿真与设计说明

本文主要使用时域分析工具对DDR3设计进行量化分析,介绍了影响信号完整性的主要因素对DDR3进行时序分析,通过分析结果进行改进及优化设计。 1 概述 当今计算机系统DDR3存储器技术已得到广泛应用,数据传输率一再被提升,现已高达1866Mbps。在这种高速总线条件下,要保证数据传输质量的可靠性和满足并行总线的时序要求,对设计实现提出了极大的挑战。 本文主要使用了Cadence公司的时域分析工具对DDR3设计进行量化分析,介绍了影响信号完整性的主要因素对DDR3进行时序分析,通过分析结果进行改进及优化设计,提升信号质量使其可靠性和安全性大大提高。 2 DDR3介绍 DDR3存与DDR2存相似包含控制器和存储器2个部分,都采用源同步时序,即选通信号(时钟)不是独立的时钟源发送,而是由驱动芯片发送。它比DR2有更高的数据传输率,最高可达1866Mbps;DDR3还采用8位预取技术,明显提高了存储带宽;其工作电压为1.5V,保证相同频率下功耗更低。 DDR3接口设计实现比较困难,它采取了特有的Fly-by拓扑结构,用“Write leveling”技术来控制器件部偏移时序等有效措施。虽然在保证设计实现和信号的完整性起到一定作用,但要实现高频率高带宽的存储系统还不全面,需要进行仿真分析才能保证设计实现和信号质量的完整性。 3 仿真分析 对DDR3进行仿真分析是以结合项目进行具体说明:选用PowerPC 64位双核CPU模块,该模块采用Micron公司的MT41J256M16HA—125IT为存储器。Freescale公司P5020为处理器进行分析,模块配置存总线数据传输率为 1333MT/s,仿真频率为666MHz。 3.1仿真前准备 在分析前需根据DDR3的阻抗与印制板厂商沟通确认其PCB的叠层结构。在高速传输中确保传输线性能良好的关键是特性阻抗连续,确定高速PCB信号线的阻抗控制在一定的围,使印制板成为“可控阻抗板”,这是仿真分析的基础。DDR3总线单线阻抗为50Ω,差分线阻抗为100Ω。 设置分析网络终端的电压值;对分析的器件包括无源器件分配模型;确定器件类属性;确保器件引脚属性(输入\输出、电源\地等)……

主板上电时序自己总结

主板上电时序自己总结 在这里以ASUS的915主板来描述一下INTEL主板的上电及工作时序: 1、当ATX Power送出±12V, +3.3V, ±5V数组Main Power电压后,其它工作电压如+VTT_CPU,+1.5V, +2.5V_DAC,+ 5V_Dual,+3V_Dual,+1.8V_Dual也将随后全部送出. 2、当+VTT_CPU送给CPU后,CPU会送出VTT_PWRGD信号[High]给CPU;ICS;VRM; CPU用VTT_PWRGD信号确认VTT_CPU稳定在Spec之内,OK后CPU会发出VID[0:5]. VRM收到VTT_PWRGD后会根据VID组合送出Vcore. 3、在VCORE正常发出后,Processor Voltage Regulator即送出VRMPWRGD信号给南桥ICH6,以通知南桥此时VCORE已经正常发出. 在VTT_PWRGD正常发出后, 此信号还通知给Clock Generator(ICS);以通知Clock Generator 在可以正常发出所有Clock. 4、当提供给的南桥工作电压及Clock都OK后,由南桥发出PLTRST#及PCIRST#给各个Device. The ICH6 drives PLTRST# inactive a minimum of 1 ms after both PWROK and VRMPWRGD are driven high. 翻译:ICH6驱动PLTRST# 为无效的至少1毫秒,在PWROK和VRMPWRGD 被置为高电平以后。 这里我的理解为在PWROK和VRMPWGRD 发出后,至少1MS,ICH6才会发出PLTRST# 给北桥和SIO复位。 PLTRST# 与PCIRST#区别如下: PLTRST# : Platform (翻译:平台指的是北桥+CPU)Reset PCIRST#: PCI Reset PLTRST# connected to all component that previously need PCIRST#,except PCI slots and devices. PCIRST# is connected to PCI Devices and slots without resetting system. PLTRST# is higher than PCIRST#. 在北桥NB接收到南桥送出的PLTRST#大约1ms后,北桥送出CPURST#给CPU,以通知CPU可以开始执行第一个指令动作.(不过要北桥送出CPURST#的前提是在北桥的各个工作电压&Clock都OK的情况下); 下面是一个时序图,按照顺序,对应上述文字。对里面的英文描述不明白的,请在后面跟帖。 注:本时序不能涵盖所有INTEL板,可以作为参考,此时序基本相同,只是产生的方式不同,如MSI里面,很多信号是由MS的专用芯片发出。如MS-5,嘿嘿,这个就要问老杨了。。还要感谢ASUS老莫提供参考资料。希望大家静下心来,好好阅读,你会发现,会有很多收获!

信号完整性测试规范和工作流程V091

信号完整性测试规范和工作流程(Ver0.9x) 历史记录: 1.2003-4-22:初稿、起草。 2.2003-5-23: 一.主要目的: 信号完整性测试的思想是信号源输出,经过传输线到达信号末端(负载),信号本身的相对变化情况。主要目的是验证PCB设计是否保证了信号在传输过程中能否保证其完整性,以信号的相对测试为主旨,信号本身8的绝对测试为辅。信号比较的内容主要是信号的本征特性参数。同时也部分验证电路原理设计的合理性。也检验产品的性能符合国家有关标准的要求,比如3C、EMC、ESD等。从定性参数的角度保证PCB设计达到了电路设计的要求,同时也保证产品的可靠性、一致性。 信号完整性测试一般是在线测试,因此很多测试参数在不同的工作模式下会有较大的差别。一般情况下需要测试静态工作模式,但一些参数需要测试满负荷工作模式。另外测试点的选择,特别是接地点的位置会对测试结果有很大的影响。 二.基本要求: 要求测试准确、可靠、完善。并要求有完整的测试报告。这里的要求是一般通用性的要求,针对具体的产品、产品的不同阶段,可以提出不同的参数要求和具体的测试内容。由于测试是在PCB板上(或称“在线”)的测试,因此一些测试条件和测试参数的定义条件可能会出现不一致的情况,因此规定:测试的基本状态在没有任何说明的情况下,认为是静态工作模式或额定正常工作模式。如果在测试方法中有规定或说明的,以测试说明的条件为准。在类型和参数中列出了比较详细全面的参数,但在测试中可能没有要求,因此,具体产品如果需要测试请加以特别说明。一般规定:主要参数是必须测试的项目参数。 + 三.类型和参数: 3.1电源部分: 3.1.1电源类型分为LDO电源、DC/DC电源。 3.1.2主要参数有:幅度、纹波、噪声。 3.1.3状态分为:额定负载、空载、轻载、重载、超载。 3.1.4保护能力:输出电流保护、输出电压保护、输入电压保护、热保护。 3.1.5其它参数:输入电压适应性、静态电流、关机电流(漏电流)。 3.2时钟信号: 3.2.1时钟源分类:晶体时钟(正弦波时钟)、晶振时钟(方波时钟、钟振时钟)。 3.2.2时钟类型:系统时钟(源时钟)、(数据)同步时钟。 3.2.3主要参数:频率、占空比、过冲、上升沿、下降沿。 3.2.4其它参数:相位抖动、频率漂移、波形畸变。 3.3总线类信号: 3.3.1分类:数据类总线、地址类总线、混合类总线。 3.3.2主要参数:幅度、过冲。 3.3.3其它参数:抖动、上升沿、下降沿。 3.4端口信号: 3.4.1分类:数据信号、基带(调制)信号、二次调制信号、 3.4.2主要参数:幅度、过冲、上升沿、下降沿。 3.4.3其它参数:抖动、频谱、功率(谱)密度。 3.4.4使用到的几种埠:串口、网口、USB口、IF、RF。 3.5其它信号、器件、电路: 3.5.1主要的几个:复位信号、JTAG、无线、功耗、温度、音频振荡器。 3.5.2参数:

ictesttiming测试时序

测试周期 测试周期(test cycle或test period)是基于器件测试过程中的工 作频率而定义的每单元测试向量所持续的时间,其公式为:T=1/F, T 为测试周期,F为工作频率。 每个周期的起始点称为time zero或TO,为功能测试建立时序的第一步总是定义测试周期的时序关系。 输入数据 输入数据由以下因素的组合构成: 测试向量数据(给到DUT的指令或激励) 输入信号时序(信号传输点) 输入信号格式(信号波形) 输入信号电平(VIH/VIL)时序设置选择(如果程序中有不止一套时序) 最简单的输入信号是以测试向量数据形式存储的一个逻辑0 或逻辑1电平,而代表逻辑0或逻辑1的电平则由测试头中的VIH/VIL 参考电平产生。 大部分的输入信号要求设置为包含唯一格式(波形)和时序(时沿设定)的更为复杂的数据形式,主程序中会包含这些信息并通

过相应的代码实现控制和调用。 一些老的测试机是资源分享结构,这意味着测试硬件可同时提供的输入时序、格式、电平都是有限的,这增加了测试程序开发的难度;而拥有per pin结构的测试系统则使程序开发大大简化,因为每个管脚都可以拥有自己的时序、格式和电平。 输入信号格式 信号的格式很重要,使用得当可以保证规格书定义的所有AC参数均被测试。信号格式与向量数据、时沿设定及输入电平组合使用可以确定给到DUT的输入信号波形。图5-2给出了一些信号格式的简单描述,有心的朋友应该熟悉并记住他们。

Input Signal Creation 图5-2.信号格式 NRZ Non Return to Zero 不返回,代表存储于向量存 储器的实际数据,它不含有时沿信息,只在每个周期的起始(TO )发 生变化。 DNRZ Delayed Non Return to Zero 延迟不返回,顾名 思义,它和NRZ —样代表存储于向量存储器的数据,只是周期中数 据的转变点 i Louie 0 1 JtJ DNR2 "FriorT' Lajrt C VC I B 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 厂 1 t 1 t 1 I T O RO D^ta From 讥盟 tor L'lomnry Cnntrnl for FET Switch Qn PE Garri L □口 iu C OfltA Lncic 1 □ata Timing Markers TO

信号完整性分析与测试

信号完整性分析与测试 信号完整性问题涉及的知识面比较广,我通过这个短期的学习,对信号完整性有了一个初步的认识,本文只是简单介绍和总结了几种常见现象,并对一些常用的测试手段做了相应总结。本文还有很多不足,欢迎各位帮助补充,谢谢! 梁全贵 2011年9月16日

目录 第1章什么是信号完整性------------------------------------------------------------------------------ 3第2章轨道塌陷 ----------------------------------------------------------------------------------------- 5第3章信号上升时间与带宽 --------------------------------------------------------------------------- 6第4章地弹----------------------------------------------------------------------------------------------- 8第5章阻抗与特性阻抗--------------------------------------------------------------------------------- 9 5.1 阻抗 ------------------------------------------------------------------------------------------ 9 5.2 特性阻抗------------------------------------------------------------------------------------- 9第6章反射----------------------------------------------------------------------------------------------11 6.1 反射的定义 ---------------------------------------------------------------------------------11 6.2 反射的测试方法--------------------------------------------------------------------------- 12 6.3 TDR曲线映射着传输线的各点 --------------------------------------------------------- 12 6.4 TDR探头选择 ----------------------------------------------------------------------------- 13 第7章振铃--------------------------------------------------------------------------------------------- 14 第8章串扰--------------------------------------------------------------------------------------------- 16 8.1 串扰的定义 -------------------------------------------------------------------------------- 16 8.2 观测串扰 ----------------------------------------------------------------------------------- 16 第9章信号质量 --------------------------------------------------------------------------------------- 18 9.1 常见的信号质量问题 --------------------------------------------------------------------- 18 第10章信号完整性测试 ----------------------------------------------------------------------------- 21 10.1 波形测试---------------------------------------------------------------------------------- 21 10.2 眼图测试---------------------------------------------------------------------------------- 21 10.3 抖动测试---------------------------------------------------------------------------------- 23 10.3.1 抖动的定义 ------------------------------------------------------------------------ 23 10.3.2 抖动的成因 ------------------------------------------------------------------------ 23 10.3.3 抖动测试 --------------------------------------------------------------------------- 23 10.3.4 典型的抖动测试工具: ---------------------------------------------------------- 24 10.4 TDR测试 --------------------------------------------------------------------------------- 24 10.5 频谱测试---------------------------------------------------------------------------------- 25 10.6 频域阻抗测试 ---------------------------------------------------------------------------- 25 10.7 误码测试---------------------------------------------------------------------------------- 25 10.8 示波器选择与使用要求: -------------------------------------------------------------- 26 10.9 探头选择与使用要求-------------------------------------------------------------------- 26 10.10 测试点的选择--------------------------------------------------------------------------- 27 10.11 数据、地址信号质量测试 ------------------------------------------------------------- 27 10.11.1 简述 ------------------------------------------------------------------------------- 27 10.11.2 测试方法-------------------------------------------------------------------------- 27

相关文档
最新文档