第七章资产组合理论
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ 假定多种证券之间的收益是相关的,在得知一证 券与其它各证券的相关系数,可以选择得最低风 险的证券组合
第七章资产组合理论
现代投资理论的框架
第七章资产组合理论
•7.2.1无差异曲线
➢无差异曲线的含义
•
表示一个投资者对风险和收益的偏好的曲线。
➢无差异曲线的性质
一条给定的无差异曲线上的所有组合为投资 者提供的满意程度相同,无差异曲线不能相交;
➢ 而对同动程度而言,当ρ越接近+1两资产的同 动程度则越强。当ρ越接近-1时,两资产的同 动程度则越弱。
第七章资产组合理论
•不同相关系数
第七章资产组合理论
协方差与相关系数
➢ 协方差(Covariance)是用来衡量两种资产的收益 率同动程度的指标。如果两种资产的收益率趋向 于同增或同减,那么它们间的协方差便为正值。 反之便为负值。
投资组合理论的基本假设
➢ 假设证券市场是有效的,投资者能得知证券市场 上多种证券收益与风险的变动及其原因。
➢ 假设投资者都是风险厌恶者; ➢ 风险以预期收益率的方差或标准差表示;
➢ 假定投资者根据证券的收益率和标准差选择证券 组合,则在风险一定的情况下,他们感预期利益 率最高,或在预期收益率一定的情况下,风险最 小。
§ 1976年,Stephen Ross提出了替代CAPM的套利定价模型 (Arbitrage pricing theory,APT)。
§ 上述的几个理论均假设市场是有效的。人们对市场能够 地按照定价理论的问题也发生了兴趣,1965年,Eugene Fama在其博士论文中提出了有效市场假说(Efficient market hypothesis,EMH)
➢ 如果持有多种资产,即持有证券组合时,组合的 风险不仅是各单个资产方差的函数,同时还是各 资产间同动程度的函数。如果证券组合中两资产 同动程度越弱,那么组合的风险也就越小。
➢ 证券组合的方差越大,其风险也就越大,投资者 对组合的要求的风险报酬也就越高。
第七章资产组合理论
7.2.3 组合的可行集和有效集
第七章资产组合理论
•组合的收益率
• 证券组合预期收益率等于组合内各资产期望收益 率的加权平均。公式如下:
• 每一证券对组合的预期回报率的贡献依赖于它 的预期收益率,以及它在组合初始价值中所占份额, 而与其他一切无关。
第七章资产组合理论
•组合的风险
➢组合的风险一般用标准差或方差表示。公式如下: • 由两种证券构成的证券组合的方差 :
• 由n个证券组成的证券组合的方差为: • • • 投资组合的标准差依赖与各基本证券的标准差、投 资比例以及同其他基本证券间的协方差。
第七章资产组合理论
•当证券的种类越来越多时,证券组合回报 率的方差的大小越来越依赖于证券之间的协 方差而不是证券的方差。
第七章资产组合理论
风险小结
➢ 如果仅持有一种资产,那么单个资产自身的方差 便是风险的衡量指标,且方差越大,风险越大, 投资者所要求的风险报酬也就越高。
•
位于坐标西北方向的无差异曲线上的组合比位
于 坐标东南方向的无差异曲线上的组合更满意;
•
若投资者风险厌恶者(risk averse),则无
差别曲线有正的斜率并且是凸的。
第七章资产组合理论
无差异曲线(效用理论)
第七章资产组合理论
理性投资者对风险偏好程度的描述——无差异曲线
•同一条无差异曲线, 给投资者所提供的效用(即满足程度) 是无差异的,无差异曲线向右上方倾斜, 高风险被其具有的 高收益所弥补。对于每一个投资者,无差异曲线位置越高,该 曲线上对应证券组合给投资者提供的满意程度越高。
§ 可行集与有效集
Ø 可行集:资产组合的机会集合(Portfolio opportunity set),即资产可构造出的所有组合 的期望收益和方差。
•双证券组合
第七章资产组合理论
同动程度与相关性
➢ 衡量组合风险大小就不再是组合中单个证券的 方差,而是证券的方差的函数,而且还是单个 资产与组合中其他资产同动程度的函数。
➢ 同动程度和相关性是有区别的,虽然均可用相 关系数ρ来衡量。当相关系数ρ的绝对值|ρ|越 接近1时,那么,两资产的相关性就越强;当 |ρ|越接近0时,两资产相互独立。
第七章资产组合理论
•不同风险厌恶水平的无差异曲线
•I •I2
1
•I3
•I •I2
1
•I3
•I
1
•I2
•I3
第七章资产组合理论
不同理性投资者具有不同风险厌恶程度
第七章资产百度文库合理论
•7.2.2投资组合的均值与方差
➢ 均 值 (Mean)本 身 是 期 望 值 的 一 阶 矩 差 , 方 差 (variance)是围绕均值的二阶矩差。方差在描 述风险有一定局限性,如果两个组合的均值和 方差都相同,但收益率的概率分布不同时。
➢ 一阶矩差代表收益水平;二阶矩差表示收益的 不确定性程度。
第七章资产组合理论
单个证券的收益
例:序号(i) 1 2 3 4
预期收益率
收益率(R) 5%
概率(Pi) 0.2
7%
0.3
13%
0.3
15%
0.2
=10%
第七章资产组合理论
• 单个证券的风险
第七章资产组合理论
•计算方差、标准差?
第七章资产组合理论
第七章资产组合理论
7.2 资产组合理论
§ 基本假设 (1)投资者仅仅以期望收益率和方差(标 准差)来评价资产组合(Portfolio) (2)投资者是不知足的和风险厌恶的,即 投资者是理性的。 (3)投资者的投资为单一投资期,多期投 资是单期投资的不断重复。 (4)投资者希望持有有效资产组合。
第七章资产组合理论
第七章资产组合理论
2020/12/6
第七章资产组合理论
7.1 概述
§ 现代投资理论的产生以1952年3月Harry.M.Markowitz发 表的《投资组合选择》为标志
§ 1962年,Willian Sharpe对资产组合模型进行简化,提出 了资本资产定价模型(Capital asset pricing model, CAPM)
➢ 协方差不能直接用来比较两变量间相关性的强弱, 但是,相关系数则可以解决上述因难。相关系数 记为ρ,协方差除以(σAσB ),实际上是对A、B两 种证券各自平均数的离差,分别用各自的标准差 进行标准化。其计算公式为:
第七章资产组合理论
•计算协方差、相关系数?
第七章资产组合理论
•不同相关系数下的风险
第七章资产组合理论
现代投资理论的框架
第七章资产组合理论
•7.2.1无差异曲线
➢无差异曲线的含义
•
表示一个投资者对风险和收益的偏好的曲线。
➢无差异曲线的性质
一条给定的无差异曲线上的所有组合为投资 者提供的满意程度相同,无差异曲线不能相交;
➢ 而对同动程度而言,当ρ越接近+1两资产的同 动程度则越强。当ρ越接近-1时,两资产的同 动程度则越弱。
第七章资产组合理论
•不同相关系数
第七章资产组合理论
协方差与相关系数
➢ 协方差(Covariance)是用来衡量两种资产的收益 率同动程度的指标。如果两种资产的收益率趋向 于同增或同减,那么它们间的协方差便为正值。 反之便为负值。
投资组合理论的基本假设
➢ 假设证券市场是有效的,投资者能得知证券市场 上多种证券收益与风险的变动及其原因。
➢ 假设投资者都是风险厌恶者; ➢ 风险以预期收益率的方差或标准差表示;
➢ 假定投资者根据证券的收益率和标准差选择证券 组合,则在风险一定的情况下,他们感预期利益 率最高,或在预期收益率一定的情况下,风险最 小。
§ 1976年,Stephen Ross提出了替代CAPM的套利定价模型 (Arbitrage pricing theory,APT)。
§ 上述的几个理论均假设市场是有效的。人们对市场能够 地按照定价理论的问题也发生了兴趣,1965年,Eugene Fama在其博士论文中提出了有效市场假说(Efficient market hypothesis,EMH)
➢ 如果持有多种资产,即持有证券组合时,组合的 风险不仅是各单个资产方差的函数,同时还是各 资产间同动程度的函数。如果证券组合中两资产 同动程度越弱,那么组合的风险也就越小。
➢ 证券组合的方差越大,其风险也就越大,投资者 对组合的要求的风险报酬也就越高。
第七章资产组合理论
7.2.3 组合的可行集和有效集
第七章资产组合理论
•组合的收益率
• 证券组合预期收益率等于组合内各资产期望收益 率的加权平均。公式如下:
• 每一证券对组合的预期回报率的贡献依赖于它 的预期收益率,以及它在组合初始价值中所占份额, 而与其他一切无关。
第七章资产组合理论
•组合的风险
➢组合的风险一般用标准差或方差表示。公式如下: • 由两种证券构成的证券组合的方差 :
• 由n个证券组成的证券组合的方差为: • • • 投资组合的标准差依赖与各基本证券的标准差、投 资比例以及同其他基本证券间的协方差。
第七章资产组合理论
•当证券的种类越来越多时,证券组合回报 率的方差的大小越来越依赖于证券之间的协 方差而不是证券的方差。
第七章资产组合理论
风险小结
➢ 如果仅持有一种资产,那么单个资产自身的方差 便是风险的衡量指标,且方差越大,风险越大, 投资者所要求的风险报酬也就越高。
•
位于坐标西北方向的无差异曲线上的组合比位
于 坐标东南方向的无差异曲线上的组合更满意;
•
若投资者风险厌恶者(risk averse),则无
差别曲线有正的斜率并且是凸的。
第七章资产组合理论
无差异曲线(效用理论)
第七章资产组合理论
理性投资者对风险偏好程度的描述——无差异曲线
•同一条无差异曲线, 给投资者所提供的效用(即满足程度) 是无差异的,无差异曲线向右上方倾斜, 高风险被其具有的 高收益所弥补。对于每一个投资者,无差异曲线位置越高,该 曲线上对应证券组合给投资者提供的满意程度越高。
§ 可行集与有效集
Ø 可行集:资产组合的机会集合(Portfolio opportunity set),即资产可构造出的所有组合 的期望收益和方差。
•双证券组合
第七章资产组合理论
同动程度与相关性
➢ 衡量组合风险大小就不再是组合中单个证券的 方差,而是证券的方差的函数,而且还是单个 资产与组合中其他资产同动程度的函数。
➢ 同动程度和相关性是有区别的,虽然均可用相 关系数ρ来衡量。当相关系数ρ的绝对值|ρ|越 接近1时,那么,两资产的相关性就越强;当 |ρ|越接近0时,两资产相互独立。
第七章资产组合理论
•不同风险厌恶水平的无差异曲线
•I •I2
1
•I3
•I •I2
1
•I3
•I
1
•I2
•I3
第七章资产组合理论
不同理性投资者具有不同风险厌恶程度
第七章资产百度文库合理论
•7.2.2投资组合的均值与方差
➢ 均 值 (Mean)本 身 是 期 望 值 的 一 阶 矩 差 , 方 差 (variance)是围绕均值的二阶矩差。方差在描 述风险有一定局限性,如果两个组合的均值和 方差都相同,但收益率的概率分布不同时。
➢ 一阶矩差代表收益水平;二阶矩差表示收益的 不确定性程度。
第七章资产组合理论
单个证券的收益
例:序号(i) 1 2 3 4
预期收益率
收益率(R) 5%
概率(Pi) 0.2
7%
0.3
13%
0.3
15%
0.2
=10%
第七章资产组合理论
• 单个证券的风险
第七章资产组合理论
•计算方差、标准差?
第七章资产组合理论
第七章资产组合理论
7.2 资产组合理论
§ 基本假设 (1)投资者仅仅以期望收益率和方差(标 准差)来评价资产组合(Portfolio) (2)投资者是不知足的和风险厌恶的,即 投资者是理性的。 (3)投资者的投资为单一投资期,多期投 资是单期投资的不断重复。 (4)投资者希望持有有效资产组合。
第七章资产组合理论
第七章资产组合理论
2020/12/6
第七章资产组合理论
7.1 概述
§ 现代投资理论的产生以1952年3月Harry.M.Markowitz发 表的《投资组合选择》为标志
§ 1962年,Willian Sharpe对资产组合模型进行简化,提出 了资本资产定价模型(Capital asset pricing model, CAPM)
➢ 协方差不能直接用来比较两变量间相关性的强弱, 但是,相关系数则可以解决上述因难。相关系数 记为ρ,协方差除以(σAσB ),实际上是对A、B两 种证券各自平均数的离差,分别用各自的标准差 进行标准化。其计算公式为:
第七章资产组合理论
•计算协方差、相关系数?
第七章资产组合理论
•不同相关系数下的风险