产品配套问题和工程问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
产品配套问题和工程问题
探究点一:产品配套问题
这类问题的关键是找对配套的两类物体的数量关系。
例1某车间有工人660名,生产一种由一个螺栓和两个螺母组成的配套产品,每人每天平均生产螺栓14个或螺母20个.如果你是这个车间的车间主任,你应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?
解析:本题找出等量关系为:生产的螺栓数:生产的螺母数=1:2,把相关的代数式代入即可列方程.解:设分配x人生产螺栓,(660-x)人生产螺母,
依题意得14x×2=(660-x)×20,
解得x=275,
∴660-x=385.
答:应分配385人生产螺母,275人生产螺栓.
方法总结:此题考查了一元一次方程的应用,得到螺栓和螺母数量的等量关系是解决本题的关键.1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?
2.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?
3.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件.
探究点二:比例分配问题
比例分配问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式。
常用等量关系:各部分之和=总量。
1:甲、乙、丙三个人每天生产机器零件数为甲、乙之比为4:3;乙、丙之比为6:5,又知甲与丙的和比乙的2倍多12件,求每个人每天生产多少件?
2:有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?
探究点三:劳力调配问题
这类问题要搞清人数的变化,常见题型有:
(1)既有调入又有调出;
(2)只有调入没有调出,调入部分变化,其余不变;
(3)只有调出没有调入,调出部分变化,其余不变。
1.某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间?
2.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。
3.有两个工程队,甲队有285人,乙队有183人,若要求乙队人数是甲队人数的,应从乙队调多少人到甲队?
4.有两个工程队,甲工程队有32人,乙工程队有28人,如果是甲工程队的人数是工程队人数的2倍,需从乙工程队抽调多少人到甲工程队?
5.甲、乙两个水池共蓄水50t,甲池用去5t,乙池又注入8t后,甲池的水比乙池的水少3t,问原来甲、乙两个水池各有多少吨水?
探究点四:工程问题
1.工程问题中的三个量及其关系为:
工作总量=工作效率×工作时间;工作效率=工作量÷工作时间;工作时间=工作量÷工作效率。
2.经常在题目中未给出工作总量时,设工作总量为单位1。即完成某项任务各工作量的和=总工作量=1.工程问题常用等量关系:先做的+后做的=完成量.
3.一项工程甲需要a天,乙需要b
4.个零件,现实际每天多生产b
例18小时才能完成,乙单独做要12小时才能完成,问:
①甲做1小时完成全部工作量的 .
②乙做1小时完成全部工作量的 .
③甲、乙合做1小时完成全部工作量的 .
④甲做x小时完成全部工作量的 .
⑤甲、乙合做x小时完成全部工作量的 .
⑥甲先做2小时完成全部工作量的 . 乙后做3小时完成全部工作量的 .甲、乙再合做x 小时完成全部工作量的 .三次共完成全部工作量的 . 结果完成了工作,则可列出方程:
例2 一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?
解析:首先设乙队还需x天才能完成,由题意可得等量关系:
甲队干三天的工作量+乙队干(x+3)天的工作量=1,根据等量关系列出方程,求解即可.
解:设乙队还需x天才能完成,由题意得
1
9×3+1
24(3+x)=1,
解得x=13.
答:乙队还需13天才能完成.
方法总结:找到等量关系是解决问题的关键.本题主要考查的等量关系为:工作效率×工作时间=工作总量,当题中没有一些必须的量时,为了简便,应设其为1.
1、一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?
2、某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?
3、甲、乙两个工程队合做一项工程,乙队单独做一天后,由甲、乙两队合做两天后就完成了全部工程.已知甲队单独做所需天数是乙队单独做所需天数的3
2,问甲、乙两队单独做,各需多少天?
4、食堂存煤若干吨,原来每天烧煤4吨,用去15吨后,改进设备,耗煤量改为原来的一半,结果多烧了10天,求原存煤量.
5、某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而 且还比原计划多生产了60件,问原计划生产多少零件?
6、一项工程300人共做, 需要40天,如果要求提前10天完成,问需要增多少人?
7、一水池,单开进水管3小时可将水池注满,单开出水管4小时可将满池水放完。现对空水池先打开进水管2小时,然后打开出水管,使进水管、出水管一起开放,问再过几小时可将水池注满?
8、一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?