运筹学-第4章--整数规划习题
运筹学:整数规划习题与答案

一、单选题1、下列说法正确的是()。
A.分枝定界法在处理整数规划问题时,借用线性规划单纯形法的基本思想,在求相应的线性模型解的同时,逐步加入对各变量的整数要求限制,从而把原整数规划问题通过分枝迭代求出最优解B.用割平面法求解整数规划问题,构造的割平面有可能切去一些不属于最优解的整数解C.用分枝定界法求解一个极大化的整数规划时,当得到多于一个可行解时,通常可任取其中一个作为下界,再进行比较剪枝D.整数规划问题最优值优于其相应的线性规划问题的最优值正确答案:A2、整数规划的最优解中,决策变量满足()。
A.决策变量不是整数B.没有要求C.决策变量至少有一个是整数D.决策变量必须都是整数正确答案:D3、下列()可以求解指派问题。
A.梯度法B.牛顿法C.单纯形法D.匈牙利法4、整数规划中,通过增加线性约束条件将原规划可行域进行切割,切割后的可行域的整数解正好是原规划的最优解的方法是()。
A.隐枚举法B.0-1规划法C.分支定界法D.割平面法正确答案:D5、标准指派问题(m人,m件事)的规划模型中,有()个决策变量。
A.都不对B. m*mC. mD.2m正确答案:B二、判断题1、匈牙利法可以直接求解极大化的指派问题。
()正确答案:×2、整数规划的可行解集合是离散型集合。
()正确答案:√3、用分支定界法求一个极大化的整数规划时,任何一个可行解的目标函数值是该问题的目标函数值的下界。
()4、用分支定界法求一个极大化的整数规划时,当得到多于一个可行解时,通常可以任取一个作为下界值,在进行比较和剪枝。
()正确答案:×5、用割平面求纯整数规划时,要求包括松弛变量在内的全部变量都取整数。
()正确答案:√。
运筹第四章整数规划与分配问题

i=1,2
则问题可以表示为
4 用以表示含固定费用的函数 总费用
K j + c j x j ( x j > 0) Cj(xj ) = ( x j = 0) 0
则上述条件可以表示成
r n ∑ aij x j ≤ ∑ b; y + ... + y = 1 m 2 1
3、 两组条件中满足其中的一组 、
若 x1 ≤ 4, 则 x2 ≥ 1
若 x1 > 4, 则 x2 ≤ 3
定义
1 第i组条件不起作用 yi = 0 第i 组 条件 起作 用
0 0 X = 1 0 0 0 1 1 0 0 0 0 0 0 1 0
用矩阵形式表示为: 用矩阵形式表示为: 解矩阵
一般分配问题 设有n项任务 需有n个人去完成 项任务, 个人去完成, 设有 项任务,需有 个人去完成,每个人只能完成一 项任务,每项任务只能由一个人去完成,设第i人完成 项任务,每项任务只能由一个人去完成,设第 人完成 项任务需要的时间是a 第j 项任务需要的时间是 ij , 问如何分配才能使完成任 务的总时间最少? 务的总时间最少? 设
2. 整数规划问题的特征与性质
特征—变 特征 变量整数性要求 来源 问题本身的要求 引入的逻辑变量的需要 性质—可 性质—可行域是离散集合
3. 整数规划的分类
纯整数规划 要求全部决策变量的取值都为整数, 要求全部决策变量的取值都为整数 则称为纯整数规划 (All IP); ; 混合整数规划 仅要求部分决策变量的取值为整数,则称为混合整数规 仅要求部分决策变量的取值为整数, 划(Mixed IP); ; 0-1整数规划 整数规划 要求决策变量只能取0或 值 则称为0-1规划 规划(0-1 要求决策变量只能取 或1值,则称为 规划 Programming)。 。
[运筹学整数规划例题]整数规划建模例题
![[运筹学整数规划例题]整数规划建模例题](https://img.taocdn.com/s3/m/e8e6ceeee109581b6bd97f19227916888486b9f7.png)
[运筹学整数规划例题]整数规划建模例题.......练习4.9连续投资问题某公司现有资金10万元,拟在今后五年考虑用于下列项目的投资:项目A:从第一年到第四年每年年初需要投资,并于次年收回本利115%,但要求第一年投资最低金额为4万元,第二.三.四年不限.项目B:第三年初需要投资,到第五年末能收回本利128%,但规定最低投资金额为3万元,最高金额为5万元.项目C:第二年初需要投资,到第五年末能收回本利140%,但规定其投资金额或为2万元,或为4万元,或为6万元,或为8万元.项目D:五年每年年初都可购买公债,于当年末归还,并获利6%,此项目投资金额不限.试问该公司应图和确定这些项目的每年投资金额,使到第五年末拥有最大的资金收益.(1)为项目各年月初投入向量。
(2)为i种项目j年的月初的投入。
(3)向量c中的元素为i年末j种项目收回本例的百分比。
(4)矩阵A中元素为约束条件中每个变量的系数。
(5)Z为第5年末能拥有的资金本利最大总额。
因此目标函数为束条件应是每年年初的投资额应等于该投资者年初所拥有的资金.第1年年初该投资者拥有10万元资金,故有.第2年年初该投资者手中拥有资金只有,故有.第3年年初该投资者拥有资金为从项目收回的本金:,及从项目中第1年投资收回的本金:,故有同理第4年、第5年有约束为,ma某=1.15某某4a+1.28某某3b+1.4某某2c+1.06某某5d;某1a+某1d=100000;-1.06某某1d+某2a+某2c+某2d=0;-1.15某某1a-1.06某某2d+某3a+某3b+某3d=0;-1.15某某2a-1.06某某3d+某4a+某4d=0;-1.15某某3a-1.06某某4d+某5d=0;某2c=40000;某2c=60000;某2c=80000;某2c=20000;某3b>=30000;某3b<=50000;某1a>=0;某2a>=0;某3a>=0;某4a>=0;某5a>=0;某1b>=0;某2b>=0;某3b>=0;某4b>=0;某5b>=0;某1c>=0;某2c>=0;某3c>=0;某4c>=0;某5c>=0;某1d>=0;某2d>=0;某3d>=0;某4d>=0;某5d>=0;VariableValueReducedCot某4A22900.000.000000某3B50000.000.000000某2C40000.000.000000某5D0.0000000.000000某1A62264.150.000000某1D37735.850.000000某2A0.0000000.000000某2D0.0000000.3036000E-01某3A0.0000000.000000某3D21603.770.000000某4D0.0000000.2640000E-01某5A0.0000000.000000某1B0.0000000.000000某2B0.0000000.000000某4B0.0000000.000000某5B0.0000000.000000某1C0.0000000.000000某3C0.0000000.000000某4C0.0000000.000000某5C0.0000000.000000RowSlackorSurpluDualPrice180000.001.00000020.0000001.40185030.0000001.32250040.0000001.21900050.0000001.15000060.0000001.06000070.000000-0.8388608E+188-20000.00-0.1280000E+109-40000.00-0.1280000E+1010-20000.000.1280000E+10 1120000.000.000000 120.0000000.6100000E-01 1362264.150.000000140.0000000.000000150.0000000.0000001622900.000.000000170.0000000.000000180.0000000.000000190.0000000.0000002050000.000.000000210.0000000.000000220.0000000.000000230.0000000.0000002440000.000.000000250.0000000.000000260.0000000.000000270.0000000.0000002837735.850.000000290.0000000.0000003021603.770.000000310.0000000.000000320.0000000.0000004.10练习4.10某城市的消防站总部将全市划分为11个防火区,现有四的。
运筹学整数规划例题

练习4.9 连续投资问题某公司现有资金10万元,拟在今后五年考虑用于下列项目的投资:项目A:从第一年到第四年每年年初需要投资,并于次年收回本利115%,但要求第一年投资最低金额为4万元,第二.三.四年不限.项目B:第三年初需要投资,到第五年末能收回本利128%,但规定最低投资金额为3万元,最高金额为5万元.项目C:第二年初需要投资,到第五年末能收回本利140%,但规定其投资金额或为2万元,或为4万元,或为6万元,或为8万元.项目D:五年每年年初都可购买公债,于当年末归还,并获利6%,此项目投资金额不限. 试问该公司应图和确定这些项目的每年投资金额,使到第五年末拥有最大的资金收益.(1) x 为项目各年月初投入向量。
(2) ij x 为 i 种项目j 年的月初的投入。
(3) 向量c 中的元素ijc 为i 年末j 种项目收回本例的百分比。
(4) 矩阵A 中元素ija 为约束条件中每个变量ijx 的系数。
(5) Z 为第5年末能拥有的资金本利最大总额。
因此目标函数为4325max 1.15 1.28 1.40 1.06A B C D Z x x x x =+++束条件应是每年年初的投资额应等于该投资者年初所拥有的资金.第1年年初该投资者拥有10万元资金,故有11100000A D x x +=.第2年年初该投资者手中拥有资金只有()116%D x +,故有22211.06A C D D x x x x ++=.第3年年初该投资者拥有资金为从D 项目收回的本金: 21.06D x ,及从项目A 中第1年投资收回的本金: 11.15A x ,故有333121.15 1.06A B D A D x x x x x ++=+同理第4年、第5年有约束为44231.15 1.06A D A D x x x x +=+, 5341.15 1.06DA Dx x x =+max=1.15*x4a+1.28*x3b+1.4*x2c+1.06*x5d;x1a+x1d=100000;-1.06*x1d+x2a+x2c+x2d=0;-1.15*x1a-1.06*x2d+x3a+x3b+x3d=0;-1.15*x2a-1.06*x3d+x4a+x4d=0;-1.15*x3a-1.06*x4d+x5d=0;x2c=40000 ;x2c=60000;x2c=80000;x2c=20000;x3b>=30000;x3b<=50000;x1a>=0;x2a>=0;x3a>=0;x4a>=0;x5a>=0;x1b>=0;x2b>=0;x3b>=0;x4b>=0;x5b>=0;x1c>=0;x2c>=0;x3c>=0;x4c>=0;x5c>=0;x1d>=0;x2d>=0;x3d>=0;x4d>=0;x5d>=0;Variable Value Reduced CostX4A 22900.00 0.000000X3B 50000.00 0.000000X2C 40000.00 0.000000X5D 0.000000 0.000000X1A 62264.15 0.000000X1D 37735.85 0.000000X2A 0.000000 0.000000X2D 0.000000 0.3036000E-01 X3A 0.000000 0.000000X3D 21603.77 0.000000X4D 0.000000 0.2640000E-01 X5A 0.000000 0.000000X1B 0.000000 0.000000X2B 0.000000 0.000000X4B 0.000000 0.000000X5B 0.000000 0.000000X1C 0.000000 0.000000X3C 0.000000 0.000000X4C 0.000000 0.000000X5C 0.000000 0.000000Row Slack or Surplus Dual Price1 80000.00 1.0000002 0.000000 1.4018503 0.000000 1.3225004 0.000000 1.2190005 0.000000 1.1500006 0.000000 1.0600007 0.000000 -0.8388608E+188 -20000.00 -0.1280000E+109 -40000.00 -0.1280000E+1010 -20000.00 0.1280000E+1011 20000.00 0.00000012 0.000000 0.6100000E-0113 62264.15 0.00000014 0.000000 0.00000015 0.000000 0.00000016 22900.00 0.00000017 0.000000 0.00000018 0.000000 0.00000019 0.000000 0.00000020 50000.00 0.00000021 0.000000 0.00000022 0.000000 0.00000023 0.000000 0.00000024 40000.00 0.00000025 0.000000 0.00000026 0.000000 0.00000027 0.000000 0.00000028 37735.85 0.00000029 0.000000 0.00000030 21603.77 0.00000031 0.000000 0.00000032 0.000000 0.0000004.10某城市的消防总站将全市划分为11个防火区,现有4个消防站,图4-11给出的是该城市各防火区域和防火站的示意图,其中1,2,3,4,表示消防站1,2,…11表示防火区域,根据历史资料证实,各消防站可在事先规定允许的时间对所负责的区域的火灾予以扑灭,图中没有虚线连接的就表示不负责,现在总部提出:能否减少消防站的数目,仍能保证负责各地区的防火任务?如果可以的话,应该关闭哪个?练习4.10某城市的消防站总部将全市划分为11个防火区,现有四的。
运筹学基础及应用第4章-整数规划与分配问题

整数规划的特点及应用
解:对每个投资项目都有被选择和不被选择两种可能,因此 分别用0和1表示,令xj表示第j个项目的决策选择,记为:
j投 资 1 对 项 目 xj ( j 1,2,..., n) j不 投 资 0 对 项 目
投资问题可以表示为:
max z
c
j 1
n
j
xj
n a j x j B j 1 x2 x1 s .t x 3 x4 1 x5 x6 x7 2 ) x j 0或者1 (j 1, 2, L n
B1 B2 B3 B4 年生产能力
A1
A2 A3 A4 年需求量
2
8 7 4 350
9
3 6 5 400
3
5 1 2 300
4
7 2 5 150
400
600 200 200
工厂A3或A4开工后,每年的生产费用估计分别为1200万或1500万元。 现要决定应该建设工厂A3还是A4,才能使今后每年的总费用最少。
0-1型整数线性规划:决策变量只能取值0或1的整数线性 规划。
整数规划的特点及应用
整数规划的典型例子
例4.1 工厂A1和A2生产某种物资。由于该种物资供不应求,故需要 再建一家工厂。相应的建厂方案有A3和A4两个。这种物资的需求地 有B1,B2,B3,B4四个。各工厂年生产能力、各地年需求量、各厂至各 需求地的单位物资运费cij,见下表:
例4.3 设整数规划问题如下
max Z x1 x 2 14x1 9 x 2 51 6 x1 3 x 2 1 x , x 0且 为 整 数 1 2
首先不考虑整数约束,得到线性规划问题(一般称为松弛问 题)。
运筹学教材习题答案详解

B1:2.0
3
需要量(套)
200
150
问怎样下料使得(1)用料最少;(2)余料最少.
【解】第一步:求下料方案,见下表。
方案
一
二
三
四
五
六
七
八
九
十
十一
十二
十三
十四
需要量
B1:2.7m
2
1
1
1
0
0
0
0
0
0
0
0
0
0
300
B2:2m
0
1
0
0
3
2
2
1
1
1
0
0
0
0
450
A1:1.7m
0
0
1
0
0
1
0
2
1
0
3
2
1
0
(2)
【解】最优解X=(3/4,7/2);最优值Z=-45/4
(3)
【解】最优解X=(4,1);最优值Z=-10
(4)
【解】最优解X=(3/2,1/4);最优值Z=7/4
(5) 【解】最优解X=(3,0);最优值Z=3
(6)
【解】无界解。
(7)
【解】无可行解。
(8)
【解】最优解X=(2,4);最优值Z=13
【解】设x1、x2、x3分别为产品A、B、C的产量,则数学模型为
1.3建筑公司需要用6m长的塑钢材料制作A、B两种型号的窗架.两种窗架所需材料规格及数量如表1-23所示:
表1-23窗架所需材料规格及数量
型号A
型号B
每套窗架需要材料
长度(m)
运筹学基础及应用_(第四章_整数规划与分配问题)

(d) 8
(e)1号、
4号、6号、9号开采时不能超过两个,试表示上
述约束条件。
Next
基础教研室
(a)当x8=1 当x8=0 ∴ x8 x6
x6=1,x6≠0 x6=1,x6=0
(b)当x5 =1 当x5 =0 ∴ x5 + x3 1
x3=0, x3 ≠1 x3=0, x3 =1
基础教研室
【例1】求下述整数规划的最优解
Max z= 3x1 + 2x2 st . 2x1 + 3x2 14 x1 + 0.5x2 4.5 x10,x20,且为整数
基础教研室
x2 x1+0.5x2=4.5
4
(3.25, 2.5) 2 2x1+3x2=14
2
4
6
x1
3x1+2x2=6
二、整数规划的求解方法
1 -选择电网供应 设 y1 0 -不选择电网供应
10 d j x j f (1 y1 ) M j 1 10 0.3d j x j p (1 y2 ) M j 1 y1 y2 1 y1 , y2 0或1
基础教研室
【例3】投资决策问题 某公司准备1000万元资金在10个地点中选择若干个建立 工厂(工厂名称用地点名来命名),有关数据如下:
由于各个工厂之间有配套和协作关系,因此必须满足条件: 1、 建工厂1就必须同时建工厂2; 2、 若建工厂2就不允许建工厂3; 3、 工厂4和工厂5至少建一个; 4、 工厂6,7,8恰好建2个; 5、 工厂8,9,10最多建2个; 6、 建工厂4或者建工厂6,就不能建工厂8,反过来也一样; 7、 条件2,3,5最多满足2个。 问选择哪几个地点建厂最有利? Next
运筹学 第4章 整数规划与分配问题

匈牙利法思路:若能在 [Cij] 中找出 n 个位于
不同行不同列的0元素(称为独立0元素),则
令解矩阵[xij]中对应这n个独立0元素的元素
取值为 1 ,其他元素取值为 0 ,则它对应目
标函数zb=0是最小的。这就是以[Cij]为系数
矩阵分配问题的最优解,也得原问题的最
优解。
定理1 若从分配问题效率矩阵[cij]的每一行元素中分别减去 (或加上)一个常数ui(称为该行的位势),从每一列分别减去 (或加上)一个常数vj(称为该列的位势),得到一个新效率矩阵 [bij],若其中bij=cij-ui-vj,则[bij]的最优解等价于[cij]的最优解
第1步:找出效率矩阵每行的最小元素,并分别从每行
中减去。
第2步:再找出矩阵每列的最小元素,并分别从各列中 减去。
2 10 9 7 2 15 4 14 8 4 13 14 16 11 11 4 15 13 9 4
0 8 7 5 11 0 10 4 0 3 5 0 0 11 9 5
表明m个约束条件中有(m-k)个的右端项为( bi+M ),不起约 束作用,因而,只有k个约束条件起作用。 ② 约束条件的右端项可能是r个值b1 , b2 ,, br 中的某一个 即: 定义:
n
aij x j b1 或b2或或br
j 1
1 假定约束右端项为 bi yi 否则 0
现用下例来说明: max z=40x1+90x2 9x1+7x2≤56 7x1+20x2≤70 x1,x2≥0 x1,x2整数 ① ② ③ ④ ⑤
解:先不考虑条件⑤,即解相应的线性规划B,①~④(见图5-2), 得最优解x1=4.81,x2=1.82,z0=356
运筹学习题解答(chap4 整数规划与分配问题)

第四章 整数规划与分配问题一、建立下列问题的数学模型1、P143, 4.1 利用0-1变量对下列各题分别表示成一般线性约束条件 (a) 221≤+x x 或53221≥+x x ; (b) x 取值0,3,5,7中的一个; (c) 变量x 或等于0,或50≥; (d) 若21≤x ,则12≥x ,否则42≤x ; (e) 以下四个约束条件中至少满足两个:6225433121≥+≥≤≤+x x x x x x ,,,。
解:(a) 设⎩⎨⎧=否则。
,个条件起作用;第1i ,0y i (i=1,2),M 为任意大正数。
则有 ⎪⎩⎪⎨⎧=+≥++≤+1y y My -5x 3x 2My 2x x 21221121(b) 设⎩⎨⎧=≠=ix i x y i ,1,0,7,5,3,0=i ,则原条件可表示为⎩⎨⎧=++++++=1753075307530y y y y y y y y x(c) 设⎩⎨⎧≥==50,10,0x x y ,则原条件可表示为⎪⎩⎪⎨⎧≥--≥≤0)1(50x M y x yM x(d)⎩⎨⎧=否则。
,组条件起作用;第1i ,0y i (i=1,2),M 为任意大正数。
则有⎪⎪⎪⎩⎪⎪⎪⎨⎧=++≤->-≥+≤.1,4,2,1,22122211211y y My x My x My x My x (e)设⎩⎨⎧=个条件不成立第个条件成立第i ,1i ,0y i ,4,3,2,1i =,则原条件可表示为:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤+++-≥+-≥+≤+≤+2y y y y My 6x x My 2x M y 2x M y 5x x 43214433321121 2、P143, 4.2 某钻井队要从以下10个可供选择的井位确定5个钻井探油,目的是使得总的钻探费用最小。
若10个井位代号为101S ,...,S ,相应的钻探费用为101C ,...,C ,并且井位的选择要满足下列条件:(1)或选择1S 和7S ,或选择8S ;(2)选择了3S 或4S 就不能选择5S ,反过来也一样; (3)在10962S ,S ,S ,S 中最多只能选两个。
运筹学 第四章 整数规划与分配问题

第四章 整数规划与分配问题
冯大光制作
(4)
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
第二节 分配问题与匈牙利法
在实际中经常会遇到这样的问题,有n 项不同 的任务,需要n 个人分别完成其中的一项,但由 于任务的性质和各人的专长不同,因此各人去 完成不同的任务的效率(或花费的时间或费用) 也就不同。于是产生了一个问题,应指派哪个 人去完成哪项任务,使完成 n 项任务的总效率 最高(或所需时间最少),这类问题称为指派 问题或分配问题。
种下料方式可以得到各种零件的毛坯数以及每种
零件的需要量,如表所示。问怎样安排下料方式, 使得即满足需要,所用的原材料又最少?
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
设:xj 表示用Bj (j=1.2…n) 种方式下料根数模型:
x1 … xn
零件 方 个数 式 零件
A1 b1 Am am1 amn bm
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
逻辑变量的应用
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
(3)两组条件满足其中一组
若 x1 4,则 x2 1 ;否则(即 x1 4 时) 2 3 x
列的零元素,则只要令这些零元素位置的 xij 1 ,其 n n 余的 xij 0 ,则 z aij xij 就是问题的最优解.
i 1 j 1
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
如效率 矩阵为
管理运筹学第四章整数规划与指派问题

货物运输路线选择案例
案例描述
某物流公司需要为其客户提供从起点到终点的货物运 输服务。在运输过程中,有多种可能的路线可以选择 ,每条路线都有不同的运输成本和时间。此外,客户 对货物的运输时间和成本也有一定的要求。
整数规划应用
该案例可以通过整数规划来解决。首先,将每条路线的 选择定义为整数决策变量,1表示选择该路线,0表示 不选择。然后,根据每条路线的运输成本和时间,构建 目标函数,即最小化总运输成本和时间。接下来,根据 客户的要求和路线的特点,构建约束条件,如运输时间 限制、成本限制和路线连通性等。最后,使用整数规划 求解算法,找到满足所有约束条件的最优路线组合,即 最小化总运输成本和时间的路线选择方案。
展望
未来,整数规划与指派问题将在更多领域得到应用和推广 ,为实际问题的解决提供更加有效的方法和工具。同时, 随着相关技术的不断发展,整数规划与指派问题的求解方 法将更加高效和精确,为相关领域的发展提供更加有力的 支持。
THANKS
感谢观看
要点一
Xpress
Xpress是一款功能强大的数学优化求 解器,适用于线性规划、整数规划等 多种问题。它提供了丰富的算法和工 具,支持大规模问题的求解和分析。
要点二
LINGO
LINGO是一款易于使用的数学优化建 模工具,具有直观的语法和丰富的函 数库。它可以帮助用户快速构建和求 解线性规划、整数规划等问题,并提 供详细的解决方案和报告。
原理
通过添加割平面约束条件,逐 步缩小问题的可行域,从而找 到整数最优解。
添加割平面
根据松弛问题的最优解,构造 一个割平面约束条件,添加到 原问题中。
迭代
重复添加割平面和求解新问题 的步骤,直到找到整数最优解 或确定无整数最优解为止。
管理运筹学4 整数规划

甲
乙
丙 丁
39
34 24
38
27 42
26
28 36
20
40 23
33
32 45
x ij 0或1 ,i、j 1,2,3,4
整数规划的特点及应用
整数规划问题的求解方法: 分支定界法和割平面法
Page 19
匈牙利法(指派问题)
分配问题与匈牙利法
指派问题的数学模型的标准形式:
Page 20
设n 个人被分配去做n 件工作,规定每个人只做一件工作, 每件工作只有一个人去做。已知第i个人去做第j 件工作的效率 ( 时间或费用)为Cij(i=1.2…n;j=1.2…n)并假设Cij ≥0。问应 如何分配才能使总效率( 时间或费用)最高? 设决策变量
每项工作只能安排一人,约束条件为:
x11 x 21 x 31 x 41 x12 x 22 x 32 x 42 x13 x 23 x 33 x 43 x14 x 24 x 34 x 44 1 1 1 1
Page 18
变量约束:
0-1型整数线性规划:决策变量只能取值0或1的整数线性 规划。
整数规划的特点及应用
如
Page 5
1. 变量是人数、机器设备台数或产品件数等都要求是整数 2. 对某一个项目要不要投资的决策问题,可选用一个逻辑变 量 x,当x=1表示投资,x=0表示不投资; 3. 人员的合理安排问题,当变量xij=1表示安排第i人去做j工作,
整数规划的特点及应用
min z c ij x ij [1200y1 1500y 2 ]
i 1 j 1 4 4
运筹学

第一章 习 题1、一个毛纺厂用羊毛和涤纶生产A 、B 、C 三种混纺毛料,生产1单位产品需要的原料如表1—1所列。
表1-13种产品的单位利润分别为4,1,5。
每月可购进的原料限额为羊毛8000单位,涤纶3000单位,问此毛纺厂应如何安排生产能获得最大利润? 请建立线性规划模型。
2、某饲料厂生产的一种动物饲料由6种配料混合配成。
每种配料中所含的营养成份A 、B 及单位配料购入价由表1—2给出。
?要求建立此问题的线性规划模型。
3、某工厂生产A 、B 、C 三种产品,在车间1、2连续加工,用一种每天购入数量最多为300单位的原料。
车间1、2每天可用工时分别为320,200。
放置产品的成品仓库面积也有限制,如只生产产品A ,可放置400单位,而每单位B 的放置面积2倍于A 。
每单住C 的放置面积为A 的1/3。
每单位A 在车间1要加工1h ,在车间2要加工1/2h ,需1单位原料,利润为l 元。
每单位B 在车间1要加工2h ,在车间2要加工l /3h ,需1/4单位原料,利润为2元。
每单位C 在车间1要加工1/4h ,在车间2要加工I /4h ,需1/8单位原料,利润为1.5元。
问如何安排生产使利润最大?要求建立此问题的线性规划模型。
4、某汽车运输公司有资金50万元可用于扩大车队,有4种车可供选择,每辆车的成本及每季收入如表l —3所列。
表l —3可驾驶新卡车的司机只有30人。
该公司新增的维修能力如只修卡车,可修50辆,1辆卡车的维修时间3倍于四轮有盖拖车或串联式拖车,4倍于无盖拖车。
又要求卡车辆数与拖车组数之比最少为4:3。
问该公司怎样使用资金使每季度收入最大?要求建立此问题的线性规划模型。
5、将下列线性规划问题模型化为标准型:1234123412341234123min3425422314.322,,0z x x x x x x x x x x x x s tx x x x x x x =-+-+-+-=-⎧⎪++-≤⎪⎨-+-+≥⎪⎪≥⎩6、用图解法解下列线性规划问题:(1)121121212max243530.5220,0z x x x x x x s tx x x x =+-+≤⎧⎪+≤⎪⎨+≤⎪⎪≥⎩ (2)12121212min3224.66,0z x x x x s t x x x x =++≥⎧⎪+≥⎨⎪≥⎩第二章 习 题1.用单纯形法解第一章习题中的以下各题:1,3,4,6之(2)。
运筹学-第4章--整数规划习题

第四章 整数规划4.1 某工厂生产甲、乙两种设备,已知生产这两种设备需要消耗材料A 、材料B,有关数据如下,问这两种设备各生产多少使工厂利润最大?(只建模不求解)解:设生产甲、乙这两种设备的数量分别为x 1、x 2,由于是设备台数,则其变量都要求为整数,建立模型如下:2123max x x z +=⎪⎪⎩⎪⎪⎨⎧≥≤+≤+为整数21212121,0,5.45.01432x x x x x x x x4.2 2197max x x z +=⎪⎩⎪⎨⎧≥≤+≤+-且为整数0,35763.212121x x x x x x t s 割平面法求解。
(下表为最优表)线性规划的最优解为:63max ,0,2/7,2/94321=====z x x x x由最终表中得:27221227432=++x x x ﻩ④ 将系数和常数项分解成整数和非负真分式之和,上式化为;2132********+=++x x x移项后得:①②③④①②③即:21221227212212274343-≤--→≥+x x x x 只要把增加的约束条件加到B 问题的最优单纯形表中。
表4-4由x1行得:7327171541=-+x x x 将系数和常数项分解成整数和非负真分数之和:74476715541+=+-+x x x x得到新的约束条件: 74767154-≤--x x747671654-=+--x x x 在的最优单纯形表中加上此约束,用对偶单纯形法求解:则最优解为3,421==x x ,最优目标函数值为z *=55。
4.3 m ax z =4x1+3x 2+2x 3⎪⎪⎩⎪⎪⎨⎧=≥+≥++≤+-10,,13344352.32132321321或x x x x x x x x x x x t s 隐枚举法解:(1)先用试探的方法找出一个初始可行解,如x 1=x2=0,x 3=1。
满足约束条件,选其作为初始可行解,目标函数z 0=2。
运筹学:目标规划、整数规划习题与答案

一、判断题1、正偏差变量大于等于零,负偏差变量小于等于零。
()正确答案:×2、系统约束中最多含有一个正或负的偏差变量。
()正确答案:×3、目标约束一定是等式约束。
()正确答案:√4、一对正负偏差变量至少一个大于零。
()正确答案:×5、一对正负偏差变量至少一个等于零。
()正确答案:√6、要求不超过目标值的目标函数是minZ= d+。
()正确答案:√7、超出目标的差值称为正偏差。
()正确答案:√8、未到达目标的差值称为负偏差。
()正确答案:√二、填空题1. 用分枝定界法求极大化的整数规划问题时,任何一个可行解的目标函数值是该问题目标函数值的()。
正确答案:下界2.在分枝定界法中,若选Xr=4/3进行分支,则构造的约束条件应为()。
正确答案:X1<=1,X1>=23. 已知整数规划问题P0,其相应的松驰问题记为P0’,若问题P0’无可行解,则问题P0()。
正确答案:无可行解4.在0 - 1整数规划中变量的取值可能是()。
正确答案:0或15. 对于一个有n项任务需要有n个人去完成的分配问题,其解中取值为1的变量数为()个。
正确答案:n三、选择题1. 整数规划问题中,变量的取值可能是()。
A.整数B.0或1C.大于零的非整数D.以上三种都可能正确答案:D2.在下列整数规划问题中,分枝定界法和割平面法都可以采用的是()。
A.纯整数规划B.混合整数规划C.0—1规划D.线性规划正确答案:A3.下列方法中用于求解分配问题的是()。
A.单纯形表B.分枝定界法C.表上作业法D.匈牙利法正确答案:D。
运筹学习题习题解答

第一章线性规划问题及单纯型解法习题解答:1、将下列线性规划问题变换成标准型,并列出初始单纯形表。
解:1)在约束条件(1)式两边同时乘以-1,得-4x1+x2-2x3+x4=2 (4)令x4=x'4-x"4,且x'4,x"4≥0。
在(4)式中加入人工变量x5,在(2)式中加入松弛变量x6,在(3)式中减去剩余变量x7同时加上人工变量x8;把目标函数变为max Z’=3x1-4x2+2x3-5(x'4-x"4)-M x5+0x6+0x7-M x8。
则线性规划问题的标准形为初始单纯形表为下表(其中M为充分大的正数):2)在上述问题2)的约束条件中加入人工变量x1,x2,…,x n得:初始单纯形表如下表所示:2、分别用单纯法中的大M法和两阶段法求解下述线性规划问题,并指出属哪一类解:解:(1)大M法在上述约束条件中分别减去剩余变量x4,x5,再分别加上人工变量x6,x7得:列出单纯形表如下表所示:由上表知:线性规划问题的最优解为,且标函数的值为7,且存在非基变量检验数σ3=0,故线性规划问题有无穷多最优解。
(2)两阶段法第一阶段数学模型为:第一阶段单纯形表间下表所示:上述线性规划问题最优解,且标函数的最优值为0。
第二阶段单纯形表为下表所示:由上表知:原线性规划问题的最优解为,且标函数的值为7,且存在非基变量检验数σ3=0,故线性规划问题有无穷多最优解。
3、下表是某求极大化线性规划问题计算得到单纯形表。
表中无人工变量,a1,a2,a3,d,c1,c2为待定常数。
试说明这些常数分别取何值时,以下结论成立:(1)表中解为唯一最优解;(2)表中解为最优解,但存在无穷多最优解;(3)该线性规划问题具有无界解;(4)表中解非最优,为对解进行改进,换入变量为x1,换出变量为x6。
解:(1)上表中解为唯一最优解时,必有d>0,c1<0,c2<0。
(2)上表中解为最优解,但存在无穷多最优解,必有d>0,c1<0,c2=0或d>0,c1=0,c2<0。
运筹学:第4章 整数规划与分配问题

2021/4/18
17
资源 金属板(吨) 劳动力(人月) 机器设备(台月)
小号容器 2 2 1
中号容器 4 3 2
大号容器 8 4 3
解:设 x1, x2, x3 分别为小号容器、中号容器和大号容 器的生产数量。
0, 不生产j型号容器 y j 1, 生产j型号容器
建立如下的数学模型:
2021/4/18
为:
C
j
(x
j
)
K 0,
j
c
j
x
j
,
xj 0 xj 0
其中 K j 是与产量无关 的生产准备费用
n
目标函数: min z C j (x j )
j 1
定义
0 y j 1
则原问题可表示为
xj 0
xj 0
n
min z (c j x j K j y j ) j 1
s.t
0 x j Myj
y
j
0或1
2021/4/18
10
§2.2 应用举例
例1 东方大学计算机实验室聘用4名大学生(代号
1,2,3,4)和2名研究生(代号5,6)值班。已知各学生从 周一至周五每天可安排的值班时间及每人每小时报酬见下 表所示。
学生 代号
1 2 3 4 5 6
酬金 (元/h) 10.0 10.0
9.9 9.8 10.8 11.3
2021/4/18
29
(0) 8
2
5
11 (0) 5
4
2
3 (0) 0
0
11
4
5
根据上图,k=2,
周一 6 0 4 5 3 0
每天可安排的值班时间(h) 周二 周三 周四
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。