二次函数回顾与思考_教案
二次函数教案(优秀5篇)
二次函数教案(优秀5篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教学心得体会、工作心得体会、学生心得体会、综合心得体会、党员心得体会、培训心得体会、军警心得体会、观后感、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as teaching experience, work experience, student experience, comprehensive experience, party member experience, training experience, military and police experience, observation and feedback, essay collection, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!二次函数教案(优秀5篇)课件是根据教学大纲的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,而加以制作的课程软件。
北师大版九年级数学《二次函数》回顾与思考教案
【教学目标】1.复习和巩固二次函数的基本概念和性质;2.通过回顾,检查学生对二次函数的理解程度,并帮助学生弄清关键概念和解题思路;3.培养学生的分析、解决问题的能力,培养学生的逻辑思维和抽象思维。
【教学重点】1.梳理二次函数的基本概念和性质;2.提供典型例题,帮助学生掌握解题思路;3.引导学生探究二次函数的应用领域。
【教学难点】1.通过合理的引导和问题导向,帮助学生运用所学知识解决实际问题;2.让学生了解二次函数在自然界和社会生活中的应用。
【教学过程】【导入】引入二次函数的概念:放映一段优秀的科普视频,引起学生对二次函数的兴趣,并回顾二次函数的定义和性质。
【讲授】1.复习与总结回顾并总结二次函数的定义、一般式、顶点式、轴对称式等表示方法,并归纳总结二次函数的性质。
2.典型例题讲解提供一些典型的二次函数问题,帮助学生巩固概念,并引导学生掌握解题思路和方法,例如:例题1:已知函数f(x) = ax^2 + bx + c的顶点是(1, -2),且经过点(-1, 4),求a、b、c的值。
例题2:若抛物线y = ax^2 + 2ax - 3与x轴交于点A、B,交点A在点(-1, 0)的左边,且AO是x轴的中线,求a的取值范围。
3.实际应用通过介绍二次函数在自然界和社会生活中的应用,引导学生了解二次函数在实际问题中的作用。
例如:抛物线的运动轨迹、桥梁的设计、物体自由落体的运动等。
【练习】对所学知识进行巩固与运用,提供一些练习题,检查学生对二次函数的理解和应用能力。
【拓展】引导学生进一步探索,拓宽知识面,例如引导学生理解二次函数图象的平移、伸缩等变化。
【归纳总结】通过本节课的学习,学生总结本节课的重点内容和解题方法,归纳反思学习中出现的问题和不足之处。
【课堂小结】对本节课的学习内容进行总结,引导学生思考并提问,对学生的学习情况进行梳理和分析。
【作业布置】布置一些练习题作为课后作业,巩固所学知识,并提醒学生及时复习课堂内容。
二次函数教案 (第一课时)
二次函数教案 (第一课时)二次函数的教学设计一、教学内容二次函数(新人教版九年级下册第26.1.1节)二、教学目标1.知识技能通过对多个实际问题的分析,让学生感受二次函数作为刻画现实世界有效模型的意义;通过观察和分析,学生归纳出二次函数的概念并能够根据函数特征识别二次函数。
2.教学思考学生能对具体情境中的数学息做出合理的解释,能用二次函数来描述和刻画现实事物间的函数关系。
3.解决问题体验数学与日常生活密切相关,让学生认识到许多问题可以用数学方法解决,体验实际问题“数学化”的过程。
4.情感态度通过观察、归纳、猜想、验证等教学活动,给学生创造成功机会,使他们爱学、乐学、学会,同时培养学生勇于探索,积极合作精神以及公平竞争的意识。
三、教学重点与难点1.教学重点认识二次函数,经历探索函数关系、归纳二次函数概念的过程。
2.教学困难根据函数解析式的结构特征,归纳出二次函数的概念。
第四,教学过程的安排教学活动流程活动1:温故知新,揭示课题活动内容和目的由回顾所学过的函数入手,引入函数大家庭中还会认识哪函数呢?然后从打篮球的例子引入二次函数。
学生能独立运用函数知识解决变量之间的关系。
2.活动:合作探究,获取新知识,制作探究环节,与学生互动,自主探索新知识,从而通过观察和归纳。
得到二次函数的解析式,获取新知。
本组题目是新知识的直接应用,目的是让学生能够区分。
活动3:小试身手,循序渐进认二次函数,循序渐进这一环节主要帮助学生处理解决问题,加深对二次函数的理解。
总结内容、应用、数学思维方法、获取知识的途径等。
活动四:回顾课堂,总结巩固方面,既总结知识,又提炼方法,让研究研究知识和运用知识都有很大的提升,方法就是学生讲收获。
活动5:课堂检测,测评反馈以测试的形式检测本节课的内容,检查学生的掌握程度,同时加深学生对知识的理解。
第五,教学过程的设计问题与情景【活动1】1.知识回顾:以问答式引起学生对知识的回忆。
2.揭示课题:以篮球为例。
二次函数复习教案-【通用,经典教学资料】
二次函数复习教案一、教材分析二次函数时描述现实世界变量之间的重要数学模型,也是某些单变量最优化问题的数学模型,还是一种非常基本的初等函数,对二次函数的研究学习和复习,将为学生进一步学习函数,利用函数性质解决实际应用问题奠定基础积累经验。
在前面学习中,学生已经通过大量丰富有趣的现实背景,运用由简入繁从特殊到一般的研究方法从多方面探索研究了二次函数的概念、性质以及实际应用。
因为二次函数考查的知识点比较多,因此,在复习中,应注重学生对基本概念性质的掌握情况,通过大量不同实际问题,促使学生分析问题、解决问题意识和能力的的提高以及函数模型的进一步加深巩固。
二、学生情况分析初三的学生,已经具备一定的生活经验和有效学习方法,思维比较开阔,能独立思考和探索中形成自己的观点,他们能迅速利用周围的小组合作,共同探讨解决学习中的问题。
在复习课中,学生需要掌握二次函数的基本概念、性质以及有条理的思考和语言表达能力。
三、教学目标1、能根据具体问题,选取表格、表达式、图像这三种方式中适当的方法表示变量之间的二次函数关系2、会作二次函数的图象,并能根据图像对二次函数的基本性质进行分析表达。
3、能根据二次函数的表达式确定二次函数的开口方向、对称轴和定点坐标。
4、能利用二次函数解决实际问题,并能对变量的变化趋势进行预测。
四、教学理念和方式创设一种师生交往的互动、互惠的教学关系,师生之间彼此平等、互教互学,形成一个真正的“学习共同体”。
在这个过程中,教师与学生分享彼此的思考、经验和知识,交流彼此的情感、体验与观念,丰富教学内容,求的新的发展,从而达到共识、共享、共进实现教学相长和共同发展。
教师在教学中是组织者、引导者、合作者;建立和谐的、民主的、平等的的师生关系。
整个过程学生是学习的主人,他们在教师的指导下进行主动的、富有个性的学习;教师应充分利用现实情景与先进教学技术,增加教学过程的趣味性,充分调动学生的积极性。
五、教学媒体选用为使教学活动有序高效进行,本节课通过多媒体辅助教学,将一些重难点进行分化演示,加深学生的理解掌握。
二次函数小结与思考(1)教学设计
二次函数小结与思考(1)教学设计
课型:复习课
一、教学目标:1、掌握二次函数的概念
2、理解并能熟练运用二次函数的图像及性质
3、会根据条件灵活求解二次函数的表达式
4、通过相互合作与探讨,培养学生应知应会、举一反三的思辨能力
二、教学重点:1、二次函数的图像及性质
2、求解二次函数的表达式
三、教学难点:1、二次函数表达式求解方法选用
四、教学方法:讨论法,讲授法
五、教学过程
给出例1、根据已知信息填表学生自行思考,完成表格,
此题可集体回答
自变量x的取值范围.
教学反思:本节课是基于学习完二次函数这一章的基础上进行的第一节复习课,针对二次函数的概念,图像的性质及二次函数表达式的求解方法展开教学。
在授课过程中,有部分学生缺乏结合二次函数图形来分析问题的技巧,本人也为强调二次函数的增减性问题,毕竟在实际问题中要结合自变量的取值范围进行思考,整堂课节奏相对紧凑,教学内容也基本完成,需要在后续的复习课中进一步培养学生数形结合的能力。
二次函数小结与复习教案
二次函数小结与复习教案一、教学目标1. 知识与技能:(1)理解二次函数的定义、性质和图像;(2)掌握二次函数的求解方法,包括配方法、公式法、图像法;(3)能够运用二次函数解决实际问题。
2. 过程与方法:(2)培养学生运用二次函数解决实际问题的能力;(3)培养学生合作学习、讨论交流的能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣,培养其自信心;(2)培养学生勇于探究、积极思考的精神;(3)培养学生团队协作、分享的品质。
二、教学内容1. 复习二次函数的定义:函数式y = ax^2 + bx + c(a ≠0);2. 复习二次函数的性质:开口方向、对称轴、顶点、单调性等;3. 复习二次函数的图像:开口向上/向下的抛物线,顶点式、对称轴式等;4. 复习二次函数的求解方法:配方法、公式法、图像法;5. 运用二次函数解决实际问题:长度、面积、最大值、最小值等问题。
三、教学重点与难点1. 教学重点:(1)二次函数的定义、性质和图像;(2)二次函数的求解方法;(3)运用二次函数解决实际问题。
2. 教学难点:(1)二次函数的图像分析;(2)运用二次函数解决实际问题。
四、教学过程1. 导入:通过提问方式引导学生回顾二次函数的相关知识,激发学生的学习兴趣;2. 讲解:根据教材,系统讲解二次函数的定义、性质、图像和求解方法,让学生清晰地理解二次函数的基本概念;3. 案例分析:分析实际问题,引导学生运用二次函数解决问题,培养学生运用知识的能力;4. 练习:布置课堂练习题,让学生巩固所学知识,并及时给予解答和指导;五、课后作业1. 复习二次函数的定义、性质、图像和求解方法;2. 完成课后练习题,巩固所学知识;3. 选择一个实际问题,运用二次函数解决,并将解题过程和答案写在作业本上。
六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态;2. 课后作业:检查学生完成的课后作业,评估其对二次函数知识的掌握程度;3. 练习题:分析学生完成的练习题,了解其在二次函数求解方法和实际问题解决方面的能力;4. 小组讨论:评估学生在小组讨论中的表现,了解其合作学习、交流分享的能力。
北师大版九年级下册数学:第二章二次函数回顾与思考课件(共15张PPT)
二次函数y=ax²与y=a(x-h)²和y=a(xh)²+k与的关系
平移关系
当h>0时,向右平移
y=ax2
y=a(x-h)2
当k>0时,向上平移
y=a(x-h)2+k
当h<0时,向左平移
当k<0时,向下平移
二次函数解析式的三种表示方式
1、已知抛物线上的三点,通常设解析式为 __y_=_a__x_2+__b_x_+_c____ (a≠0)
a-b+c > 0, a+b+c = 0
点击中考:逆推思想
3.函数y=ax+b和y=ax2+bx+c在同一直角坐标 系内的图象大致是( C )
.
知识点4:选择恰当的方法求函数解析式
二次函数y=ax2+bx+c的最大值是2,图象顶 点在直线y=x+1上,并且图象经过点(3,-6), 求a、b、c。
a-b+c 0, a+b+c 0 知识点3:图象与系数的关系
对称轴 当 时 y=a(x-h)2+k
x
x
b
b 2a
2 a 知识点3:图象与系数的关系
思考:二次函数y=ax2+bx+c (a ≠0)的图象与系数a,b,c的关系
增减性 抛物线y=2(x-3)2-2的顶点坐标是?
y随x的增大而增大 y=a(x-h)2+k (a≠0)
y=a(x-h)2+k (a≠0)
当
时
2、能利用数形结合,逆推等思想解决二次函数图象与性质问题.
y=a(x-x1)(x-x2) (a≠0)
以及图象与系数a,b,C的关系
二次函数教案(全)
二次函数教案(一)教学目标:1. 理解二次函数的定义和基本性质。
2. 学会如何列写二次函数的一般形式。
3. 掌握二次函数的图像特点。
教学重点:1. 二次函数的定义和一般形式。
2. 二次函数的图像特点。
教学难点:1. 理解二次函数的图像特点。
2. 掌握如何求解二次函数的零点。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引入二次函数的概念,让学生回顾一次函数的知识。
2. 提问:一次函数的图像是一条直线,二次函数的图像会是什么样子呢?二、新课讲解(15分钟)1. 讲解二次函数的定义:一般形式为y=ax^2+bx+c(a≠0)。
2. 解释二次函数的各个参数的含义:a是二次项系数,b是一次项系数,c是常数项。
3. 举例说明如何列写二次函数的一般形式。
4. 讲解二次函数的图像特点:开口方向、顶点、对称轴等。
三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。
2. 讲解练习题的答案,解析解题思路。
四、课堂小结(5分钟)2. 强调二次函数的图像特点。
教学反思:本节课通过讲解和练习,让学生掌握了二次函数的定义和一般形式,以及图像特点。
在教学中,可以通过举例和互动提问的方式,激发学生的兴趣和思考。
在课堂练习环节,要注意关注学生的解题过程,培养学生的思维能力。
二次函数教案(二)教学目标:1. 学会如何求解二次方程。
2. 理解二次函数的零点与二次方程的关系。
3. 掌握二次函数的图像与x轴的交点。
教学重点:1. 求解二次方程的方法。
2. 二次函数的零点与图像的关系。
教学难点:1. 理解二次方程的解法。
2. 掌握二次函数的图像与x轴的交点。
1. 教学课件或黑板。
2. 练习题。
教学过程:一、复习导入(5分钟)1. 复习二次函数的定义和一般形式。
2. 提问:二次函数的图像与x轴的交点有什么关系?二、新课讲解(15分钟)1. 讲解如何求解二次方程:公式法、因式分解法等。
2. 解释二次函数的零点与二次方程的关系:零点是二次方程的解。
二次函数的复习教案
二次函数的复习教案教案标题:二次函数的复习教案教案目标:1. 复习学生对二次函数的基本概念和性质的理解。
2. 强化学生对二次函数图像、顶点、轴对称性和零点的掌握。
3. 提高学生解决与二次函数相关的实际问题的能力。
教学时长:2个课时教学步骤:第一课时:1. 导入(5分钟)- 通过提问引起学生对二次函数的兴趣,例如:你知道什么是二次函数吗?它有哪些特点?2. 复习基本概念(15分钟)- 提醒学生二次函数的一般形式为f(x) = ax^2 + bx + c,并解释a、b、c的含义。
- 回顾二次函数的图像特点,如开口方向、顶点位置等。
- 强调二次函数的轴对称性和零点的概念。
3. 图像练习(20分钟)- 展示几个不同形态的二次函数图像,要求学生根据图像特点判断函数的开口方向、顶点和轴对称性。
- 给学生一些简单的二次函数,要求他们画出对应的图像,并标出顶点和轴对称线。
4. 零点练习(15分钟)- 提供一些二次函数的方程,要求学生解方程求出零点。
- 引导学生思考零点与图像的关系,例如:零点在图像上对应什么位置?第二课时:1. 复习顶点和轴对称线(10分钟)- 提醒学生顶点是二次函数图像的最高点或最低点,轴对称线通过顶点并将图像分为两部分。
2. 实际问题解决(20分钟)- 提供一些与实际问题相关的二次函数,要求学生解决问题。
- 引导学生将问题转化为二次函数的方程,并解方程求出答案。
3. 总结(10分钟)- 回顾本节课所学内容,强调二次函数的重要性和应用。
- 鼓励学生通过做更多的练习来巩固所学知识。
教学方法和教学资源:1. 教学方法:- 提问法:通过提问引导学生思考和回忆所学知识。
- 演示法:展示二次函数图像和实际问题,帮助学生理解和解决问题。
2. 教学资源:- PowerPoint幻灯片或白板,用于展示图像和问题。
- 二次函数练习题,包括图像练习和实际问题练习。
评估方法:1. 课堂表现评估:- 观察学生在课堂上的参与度和回答问题的准确性。
北师大版九年级数学下册:2《二次函数——回顾与思考》教学设计
北师大版九年级数学下册:2《二次函数——回顾与思考》教学设计一. 教材分析《二次函数——回顾与思考》这一节主要是让学生回顾已学的二次函数知识,通过对已学知识的梳理,加深对二次函数的理解,并为后续的学习打下基础。
教材中包含了二次函数的图像、性质、以及解决实际问题等方面的内容。
本节课的内容与学生的生活实际紧密相连,有利于激发学生的学习兴趣。
二. 学情分析九年级的学生已经学习了一定程度的数学知识,对二次函数有一定的了解。
但是,部分学生可能对二次函数的图像和性质理解不深,解决实际问题的能力较弱。
因此,在教学过程中,教师需要关注这部分学生的学习需求,通过合理的教学设计,帮助他们巩固已学的知识,提高解决问题的能力。
三. 教学目标1.让学生回顾和巩固二次函数的基本知识,理解二次函数的图像和性质。
2.培养学生解决实际问题的能力,提高学生运用数学知识分析问题和解决问题的能力。
3.激发学生学习数学的兴趣,培养学生的数学思维。
四. 教学重难点1.重点:二次函数的图像和性质,解决实际问题。
2.难点:对二次函数图像和性质的理解,以及运用二次函数解决实际问题的方法。
五. 教学方法1.讲授法:教师通过讲解,引导学生回顾和巩固二次函数的基本知识。
2.案例分析法:教师通过分析实际问题,引导学生运用二次函数解决实际问题。
3.小组讨论法:学生分组讨论,共同解决问题,培养学生的合作能力。
六. 教学准备1.教学课件:教师准备与本节课内容相关的课件,以便引导学生回顾和巩固二次函数的基本知识。
2.实际问题:教师准备一些与生活实际相关的数学问题,引导学生运用二次函数解决实际问题。
七. 教学过程1.导入(5分钟)教师通过提问的方式,引导学生回顾已学的二次函数知识,如二次函数的定义、图像、性质等。
同时,教师也可以让学生举例说明二次函数在实际生活中的应用,激发学生的学习兴趣。
2.呈现(10分钟)教师通过课件展示二次函数的图像和性质,让学生直观地感受二次函数的特点。
《二次函数》教案8篇(二次函数应用教案设计)
《二次函数》教案8篇(二次函数应用教案设计)下面是整理的《二次函数》教案8篇(二次函数应用教案设计),欢迎参阅。
《二次函数》教案1教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。
重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。
教学过程:一、情境创设一次函数y=x+2的图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。
活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)(2)当x=时,函数值y=0。
(3)求方程x2-x-6=0的解。
(4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。
(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。
三、例题分析例1.不画图象,判断下列函数与x轴交点情况。
(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-1(1)当m为何值时,图象与x轴有两个交点(2)当m为何值时,图象与x轴有一个交点?(3)当m为何值时,图象与x轴无交点?四、拓展练习1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。
《二次函数》的复习教学设计
《二次函数》的复习教学设计数学《二次函数》优秀教案篇一一、教材分析本节课在讨论了二次函数y=a(x-h)2+k(a≠0)的图像的基础上对二次函数y=ax2+bx+c(a≠0)的图像和性质进行研究。
主要的研究方法是通过配方将y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)转化,体会知识之间在内的联系。
在具体探究过程中,从特殊的例子出发,分别研究a0和a0的情况,再从特殊到一般得出y=ax2+bx+c(a≠0)的图像和性质。
二、学情分析本节课前,学生已经探究过二次函数y=a(x-h)2+k(a≠0)的图像和性质,面对一般式向顶点式的转化,让学上体会化归思想,分析这两个式子的区别。
三、教学目标(一)知识与能力目标1、经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程;2、能通过配方把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,从而确定开口方向、顶点坐标和对称轴。
(二)过程与方法目标通过思考、探究、化归、尝试等过程,让学生从中体会探索新知的方式和方法。
(三)情感态度与价值观目标1、经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程,渗透配方和化归的思想方法;2、在运用二次函数的知识解决问题的过程中,亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣并获得成功的体验。
四、教学重难点1、重点通过配方求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标。
2、难点二次函数y=ax2+bx+c(a≠0)的图像的性质。
五、教学策略与设计说明本节课主要渗透类比、化归数学思想。
对比一般式和顶点式的区别和联系;体会式子的恒等变形的重要意义。
六、教学过程教学环节(注明每个环节预设的时间)(一)提出问题(约1分钟)教师活动:形如y=a(x-h)2+k(a≠0)的抛物线的对称轴、顶点坐标分别是什么?那么对于一般式y=ax2+bx+c(a≠0)顶点坐标和对称轴又怎样呢?图像又如何?学生活动:学生快速回答出第一个问题,第二个问题引起学生的思考。
二次函数教案人教版
二次函数教案人教版二次函数教案一、教学目标:1. 知识与技能:了解二次函数的定义及性质,掌握二次函数图像的画法、基本性质以及应用。
2. 过程与方法:通过问题导入、实例分析、归纳总结等方法,培养学生的归纳、分析和解决问题的能力。
3. 情感态度价值观:培养学生的创新意识、合作意识和实际应用能力,激发学生的学习兴趣。
二、教学内容及时间安排:第一课时:二次函数的定义和性质(20分钟)1. 导入新课:通过提问“什么是函数?”,引导学生复习函数的基本概念。
2. 导入二次函数的定义与性质:通过提问“什么是二次函数?”引导学生回顾函数的表达形式,并引入二次函数的定义。
3. 讲授二次函数的性质:培养学生发现问题、归纳总结的能力,总结二次函数的平移、翻折、对称和单调性等性质。
第二课时:二次函数的图像(20分钟)1. 导入新课:通过给出一个实际问题,引导学生思考如何用二次函数描述并解决问题。
2. 讲解二次函数图像的画法:通过学习二次函数的标准式和顶点式,掌握二次函数图像的画法。
3. 导入二次函数图像的性质:通过观察和分析二次函数图像的几个实例,引导学生归纳二次函数图像的基本性质。
第三课时:一元二次方程的求解(20分钟)1. 导入新课:通过给出一个实际问题,引导学生思考如何通过二次函数图像求解一元二次方程。
2. 讲解一元二次方程的求解方法:通过学习配方法和因式分解法,掌握一元二次方程的求解方法。
3. 练习一元二次方程的求解:通过多个实际问题的解答,培养学生运用二次函数的知识解决实际问题的能力。
第四课时:二次函数的应用(20分钟)1. 导入新课:通过给出一个实际问题,引导学生思考如何应用二次函数解决实际问题。
2. 讲解二次函数的应用:通过学习最值问题、最优化问题和开口方向问题等,掌握二次函数的应用。
3. 练习二次函数的应用:通过多个实际问题的解答,培养学生应用二次函数解决实际问题的能力。
三、教学方法:问题导入法、讲解与示范相结合的方法、练习与讨论相结合的方法。
九年级数学下册第二章二次函数回顾与思考二教案北师大版
/ 4 回顾与思考(二) 教学目标 知识与技能 1.选取适当的方法表示变量之间的二次函数关系; 2能根据图象对二次函数的性质进行分析,并逐步积累研究一般函数性质的经验; 3.能根据二次函数的表达式,确定二次函数的开口方向、对称轴和顶点坐标。 过程与方法 使学生经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系。 教学过程 第一环节 最大值问题(20分钟) 教学内容: 通过:1、最大利润问题;2、最大高度问题;3、最大面积问题,说明如何利用二次函数知识解决实际问题。 (一)最大利润问题 例1:某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额? 自我检测 某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40元~70元之间.市场调查发现:若每箱发50元销售,平均每天可售出90箱,价格每降低1元,平均每天多销售3箱;价格每升高1元,平均每天少销售3箱. (1)写出售价x(元/箱)与每天所得利润w(元)之间的函数关系式; (2)每箱定价多少元时,才能使平均每天的利润最大?最大利润是多少?
-第二章《二次函数-回顾与思考(二)》教案-北师大版
/ 4 建立一元二次方程的求解问题与二次函数之间的联系,利用二次函数的图象求一元二次方程近似解; 第四环节 课堂小结(5分钟) 1.理解问题; 2.分析问题中的变量和常量,以及它们之间的关系; 3.用数学的方式表示出它们之间的关系; 4.做数学求解; 5.检验结果的合理性,拓展等. 第五环节 布置作业 课本复习题 A组 第5,6,7题; B组 第5,6题. 板书设计 教学反思 第二章 二次函数 回顾与思考(二) 最大值问题 二次函数与一元二次方程
二次函数 回顾与思考2
第四章《回顾与思考 (2)》导学案第四章 回顾与思考(2)课前导读——评价单班级 姓名 组别一、学习目标: 1、相似三角形的性质和判定的综合应用。
2、利用相似三角形的知识解决实际问题。
二、学习流程。
认真阅读课本P 127——P 160的内容,并完成下列问题。
1、本节知识梳理:2、 若△ABC 和C B A '''∆相似,∠A=60°,∠B=70°='∠A 60°,则='∠B 。
3、如图,在△ABC 中ED 交AB 于E ,交AC 于D ,53==ACAE ABAD,且△ABC 的周长与△ADE 的周长差是16,求△ABC 和△ADE 的周长。
4.请你在如图所示的正方形网格中作出两个相似三角形,让其面积之比为1:4,并说明理由。
ABCD E自我评价 小组评价第四章 回顾与思考(2)课外巩固——评价单班级 姓名 组别A .基础演练1.如图,∠1=∠2=∠3,则图中的相似三角形有 对,分别是 。
2.如图所示,在△ABC 中,P 是AB 边上的一点,连接CP 。
(1)要使△ACP ∽△ABC ,还需补充一个条件是 或 或 。
(2)若△ACP ∽△ABC ,且AP:PB=2,求BC:PC.3.如图是某公园“六.一”前新增设的一台滑梯,该滑梯高度AC=2m ,滑梯着地点B 与梯架之间的水平距离BC=4m ,∠B 与 ∠E 互余,求滑梯的斜梯EF 的长度。
B .能力提升1. 如图,已知P 是边长为4的正方形ABCD 内一点,且PB=2,BF ⊥BP ,垂足为B ,请在射线BF 上找一点M,使以点B 、M 、C 为顶点的三角形与△ABP 相似,求BM 的长。
AB C D EF AB C DE 321AB C PDAB CP教师评价。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。