【教案】 完全平方公式(4)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

完全平方公式

【知识与技能】

1.完全平方公式的推导及其应用.

2.完全平方公式的几何解释.

【过程与方法】

经历探索完全平方公式的过程,进一步发展符号感和推理能力.

【情感态度】

在灵活应用公式的过程中激发学生学习数学的兴趣,培养探究精神.

【教学重点】

完全平方公式的应用.

【教学难点】

完全平方公式的结构特征及几何解释.

一、情境导入,初步认识

问题一位老人非常喜欢孩子,每当有孩子到他家做客时,老人都要拿出糖果招待他们,来一个孩子,就给一块糖;来两个孩子,就给每个孩子两块糖,……

(1)第1天有a个男孩子去了老人家,老人一共给了这些孩子多少块糖?

(2)第2天有b个女孩子去了老人家,老人一共给了这些孩子多少块糖?

(3)第3天这()个孩子一起去看老人,老人一共给了孩子们多少块糖?

(4)这些孩子第3天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?

【教学说明】(4)的结果需要化简,应用乘法法则可求出()2.引导学生结合教材认识从几何角度解释()2的结果.教师讲课前,先让学生完成“名师导学”.

【归纳总结】公式的表达式:()22+22,()22-22.

公式的特征:公式的左边是一个二项式的平方,右边是一个二次三项式;左边是两数和的形式时,右边就是这两数的平方和加上这两数积的2倍(和对应加);左边是两数差的形式时,右边就是这两数的平方和减去这两数积的2倍(差对应减);两公式结构相同,仅一个符号不同.

二、思考探究,获取新知

例1计算下列各题.

【分析】(1)、(2)可直接应用公式.计算时,如遇小数,应将其化成分数,这样可方便计算.(3)、(4)应注意符号,或可直接应用公式()22-22.

例2计算:(1)1032;(2)2992.

【分析】通过观察可发现103=100+3,299=300-

1,这样可应用完全平方公式.

【教学说明】引导学生在实际练习中重点体验完全平方公式的结构特征,正确套用公式,同时注意把完全平方公式展开后每一项的符号不能出错.

例3运用乘法公式计算.

(1)()();

(2)(21)(1+2x);

(3)()2.

【分析】1.为了应用公式计算,先必须对式中各项添上括号,其法则是:如果括号前是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都改变符号.

2.(1)中可以将两因式变成a与的和与差;(2)中两因式可以变成2x与1的和与差,运用平方差公式计算;(3)的底数可变形为两式的和或差.

【教学说明】(1)只有符号不同的两个三项式相乘,通过添括号都可以将算式变形为完全平方式或平方差;(2)两因式中绝对值相同的各项若符号全部相同或完全相反,则为完全平方式;若一部分符号相同,则为平方差.

三、运用新知,深化理解

计算:

[(2y)(2y)]2-[(2y)2-(2y)2]2.

【教学说明】上述计算是在平方差公式、完全平方公式的基本应用上的延伸,可要求学生尝试动手练习,教师再予以指导.

【归纳总结】①对于比较复杂的整式乘法,先不要急于运算,应首先分析其特点,尽可能用公式进行运算,而且运算过程中尽可能地合并同类项.②必要的时候灵活运用运算公式,采用其逆运算,可以使运算过程简便.

四、师生互动,课堂小结

由学生谈谈本节课所学知识的认识,集体评点.

布置作业:从教材习题中选取部分题.

本课时教学重点是引导学生观察分析完全平方公式的结构特征,教师可组织学生独立观察,再在小组内交流,最后由教师归纳评点,以便学生认识与完全平方公式相关的所有变式.

相关文档
最新文档