最新数学中常用不等式及其应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录

数学中常用不等式及其应用 (2)

1.前言 (2)

2.研究背景及研究意义 (3)

2.1 不等式研究背景 (3)

2.2 研究意义 (4)

3.高等数学常用不等式举例介绍 (5)

3.1柯西不等式 (5)

3.2拉格朗日中值定理 (5)

3.3均值不等式 (8)

4.数学中不等式的中的应用 (9)

4.1 构造条件不等式对命题进行证明 (9)

4.2 利用微分中值定理进行不等式命题的证明 (12)

5.总结 (15)

参考文献 (17)

数学中常用不等式及其应用

1.前言

正所谓“问渠那得清如许。为有源头活水来”。回顾我国建国近70年的发展历程,我国坚持把国民教育在经济和社会发展中优先发展的战略地位,并制定了优先发展教育和“科教兴国”的重大战略决策,促进教育的改革和发展。我国教育改革始终坚持党对教育的领导和政府对教育的统筹,切实保证“科教兴国”战略和教育优先发展地位的落实。在教育改革中义务教育是提高国民素质和发展教育事业的基础,是社会主义现代化建设的奠基工程,涉及广大人民群众的根本利益。没有一个好的底子,就不能决定以后的参天大树枝叶是否会繁密。中央确定把基础教育作为整个教育工作的重点,把“两基”作为当代教育发展的“重中之重”,这是我国教育发展的一个重要指导思想,是贯彻科教兴国战略的重大措施。自2008年秋季起国家在全国范围实施了义务教育,使许多贫困家庭的孩子都能够享受接受教育的权利。

回顾历史我们可以看到,从提出“两基”,到逐步明确“两基”目标和具体规划,是党和国家根据社会主义经济、政治和社会发展的客观需要,多年酝酿,逐步成熟,并适时做出的慎重决策。作为大学生的我们有责任也有义务为国家教育事业的发展做出自己的贡献,将我们学习到的知识应用到教育中去,而中学教育就是一个很好的切入点。随着知识经济时代的到来,教育迎来了新的挑战,国家开始注重创新教育,指出教育要把传授基础知识和逐步培养学生的创新意识和创造性思维结合起来,创造良好的教学环境,有意识的培养学生的创新意识,激发学生的创造动机,发展学生的创新能力,为国家培养出适应新世纪发展的一代新人。

不等式是数学基础理论的重要部分。不等式是刻画现实世界和日常生活、生产和科学研究中的不等关系的数学模型,反映了事物在量上的区别,是研究数量关系和进一步学习数学的必备知识。此外,不等式在高中数学中占有举足轻重的地位,是学习数学及其他学科的基础知识。

2.研究背景及研究意义

2.1 不等式研究背景

继义务教育阶段课程改革的全面推进,我国高校规定了高校数学教学的课程目标设置大纲》。目前,高校数学课程改革己经得到了普遍实施和开展,我们知道,新课程改革的核心环节是课程实施,而课程实施的基本方式是教学,那么如何将新课程的理念和构想落实到实处,这是需要通过实际的课堂教学来完成的。高校数学课程改革对教学提出了以下新的要求:数学教学要以学生为本,以学生的发展为本,应当指导学生根据自己的实际情况和兴趣爱好来合理地选择课程和制定学习计划;高校数学教学要打好学生的知识基础,注重发展能力;高校数学教学要注重联系,提高数学整体的认识;高校数学教学中要关注数学的文化价值,促进学生科学观的形成;数学教学应改善教与学的方式,使高校学生主动地学习。

不等式与数、式、方程、函数、三角等内容有密切的联系,体现出了“工具”的作用。如研究函数的定义域时常用到分式的分母不为零、偶次根式的被开方数非负、对数的真数大于0等不等关系;求函数定义域、值域(最值)、单调性;讨论方程根与系数的关系;数列的项的最值与前n项和的最值;讨论方程与方程组的解的情况,在一元二次求根公式的教学中,用判别式的符号判断方程的根的存在情况;求空间线线、线面、面面间的距离及夹角的范围;概率的范围等等。可以看出,不等式与集合、充要条件、函数、方程、数列、三角函数、解析几何、立体几何、实际问题都有知识交汇处,在相关的数学领域中有着广泛的应用。

在不等式学习过程中,可以体现出数学思想及素养的培养。数学思想不仅在学生形成良好认知结构的过程中起着桥梁作用,在将基础知识转化为能力和技能的过程中也发挥着重要作用,它是培养学生的数学思维意识和形成好的数学思维素质的关键所在。不等式的相关教学内容涉及到数形结合、分类转化、函数与方程、转化等数学思想。例如:通过图象解法渗透数形结合、分类化归等数学思想,

能够培养学生的动手能力、观察分析能力、抽象概括能力、归纳总结等系统的逻辑思维能力,培养简约直观的思维方法和良好的思维品质,进而渗透抽象与具体、联系与转化等辩证唯物主义的观点和方法;二元一次不等式(组)与平面区域,揭示出了不等式的几何意义,使学生对不等式的认识有了质的飞跃,同时,极有利于发展学生对集合思想,数形结合思想在思维层面上的提升,进一步促使学习者在思维的深层面上主动完成对函数、方程、不等式形成有机的数学知识网络的构建;线性规划问题开拓了不等式的实际运用的领域。

本文希望通过对高中数学不等式的教学进行研究,结合相关数学教育理论,针对不等式各部分教学内容和知识点提出有效的教学策略,改进不等式课堂教学,提高学生的学习效率和教师的教学效果,对进行高中不等式教学的教师提供一定的参考作用。使得通过不等式基础知识的学习和基本技能的训练,学生的逻辑推理等思维能力能力以及分析解决问题的综合能力能够得以培养和提升。

2.2 研究意义

教学策略是当前教学研究的一个重要问题,它无论是对教学理论研究的深化,还是对教学实践的变革都有重要价值。教学策略可以帮助我们从整体上综合地认识和探讨教学过程中各种因素间的相互作用,有利于从动态上把握教学过程的本质和规律。不等式教学策略的研究,有助于促进不等式教学法的丰富与发展,有助于教师理论与实践相结合,使教师形成自己的教学风格。教学策略既是教学过程理论体系的具体化,又是建立在教学经验的基础上的,既具体、明了、可操作性强,又具有概括、完整和系统性,便于理解和掌握,有利于提高教学质量。以期改进不等式课堂教学,提高学生的学习效率和教师的教学效果,对进行高中不等式教学的教师提供一定的参考作用,减少不等式教学中的困惑。使得通过不等式基础知识的学习和基本技能的训练,学生的逻辑推理等思维能力能力以及分析解决问题的综合能力能够得以培养和提升。

相关文档
最新文档