二进制转换
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几种进位计数制
数制 十进制 二进制 0,1 2 逢二进一 借一当二 i 2 Binary
n-2 1
八进制 0,1,…,7 8 逢八进一 借一当八 i 8 Octal
0 -1
数码个数 0,1,…,9 基数 规则 权 形式表示 10 逢十进一 借一当十 i 10 Decimal
n-1
十六进制 0,1,…,9, A,B,C,D,E,F 16 逢十六进一 借一当十六 i 16 Hexadecimal
1 0 0
1 1
16
16
6
0
4
6
100(D)=144(O)=64(H)=1100100(B) (0.6875)10=(0.1011)2
将R进制转换为十进制:采用按权展开相加的 方法 1011.101(B)=1*2^3+0*2^2+1*2^1+1*2^0+1 *2^(-1)+0*2^(-2)+1*2^(-3)=(11.625)10 (123.45)8 =1*8^2+2*8^1+3*8^0+4*8^(1)+5*8^(-2)=(83.58)10 (1CB.D8)16= 1*16^2+12*16^1+11*16^0+13*16^(1)+8*16^(-2)=(459.84)10
②十六进制数转换成二进制数
一位拆四位:把一位十六进制数写成对应 的四位二进制数,然后按权连接即可。例如: (123.EF)16=(?)2 1 2 3 . E F (十六进制) 0001,0010,0011.1110,1111 (二进制) (123.EF)16=(100100011.11101111)2
2.十进制数转换成其他任意进制 整数部分:除以基数取余法,商为0止 小数部分:乘以基数取整法,小数为0或达精度 例如: (105.625)10=(?)2
2. 十进制转化成 2 进百度文库 整数部分:除以 2取余数,直到商为0,余数从下到上排列。 小数部分:乘以 2取整数,整数从上到下排列。 ~ 例 100.345(D)=1100100.01011(B) 2 2 2 2 2 2 2 100 50 25 12 6 3 1 0 0 0 0.345 2 0.690 2 1.380 2 0.760 2 1.520 2 1.04 100(D)=144(O)=64(H) 8 8 8 100 12 1 0 100 4 4 1
1111.0101(B)
3.二进制数与八进制数的互换 ①二进制数转换成八进制数 三位并一位:以小数点为基准,整数部分 从右到左,小数部分从左到右,每三位一组, 不足三位添0补足,然后把每组的三位二进制转 换为一位八进制数码,即得相应的八进制数。 例如: (1011100.00101011)2=(?)8 (001,011,100.001,010,110)2=(134.126)8 1 3 4 . 1 2 6
3.2字符的编码
2、汉字编码 汉字信息交换码(国标码):GB2312码字符 集适用于汉字处理、汉子通信等系统间的信息 交换, GB2312是一个94行94列的二维表,行 号为区号,列号为位号例如“学”为4907。 汉字机内码:是供计算机系统内部进行存储、 加工处理、传输统一使用的代码,又叫汉字内 部码。 汉字输入码:将汉字通过键盘输入计算机而设 计的代码。 汉字字形码:汉字字形点阵的代码,16*16
3数制
计算机内部,全部采用二进制数据。原因: ⑴电路简单:计算机由逻辑电路组成,而逻辑 电路通常只有两个状态。 ⑵可靠性高:两个状态表示二进制两个数码, 数字传输和处理不容易出错。 ⑶运算简单: ⑷逻辑性强:计算机工作原理是建立在逻辑运 算基础上的,逻辑代数是逻辑运算的理论依据 。
3.1 数制的概念
-m
注:①i 为整数 ②(N) R =a n-1 R +a n-2 R +…+a 1 R +a 0 R +a -1 R +…+a -m R 其中:R 表示基数,a 表示某进制的数码
几种进位计数制的对应关系
十进制
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
二进制
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
3.3字符的编码
1、ASCⅡ:用一个8位二进制数表示,基本ASCⅡ
的最高位恒为0,7位ASCⅡ可以表示128中字符,第 0~32及第127号,是控制字符或通信字符,如LF为换 行,对应十进制数为12。第32~126号是字符,其中第 48~57号为0~9十位阿拉伯数字,65~90号为26个大写 字母,97~122为26个小写英文字母,其余为标点符号 、运算符等。
数制:又称计数制,指用一组固定的数码和统 一的规则表示数值的方法。三个基本要素: 数位:数码在一个数中所处的位置。 基数:指某进位计数制中允许用的数码个数。 位权:以基数为底的幂。数码所在的位置不同 ,所对应的位权也不同。 按位权展开式:例如: 123.4=1×102+2×101+3×100 +4×10-1
八进制
0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17
十六进制
0 1 2 3 4 5 6 7 8 9 A B C D E F
3.2 数制转换
1.任意进制转换为十进制 转换原则:采用按权展开式计算求和即可。 例如:
(101.1)2=1*22+0*21+1*20+1*2-1=(?)10
②八进制数转换成二进制数 一位拆三位:把每一位八进制数写成对应 的三位二进制数,然后按权连接即可。例如: (123.67)8=(?)2 1 2 3 . 6 7 (八进制) 001,010,011.110111 (二进制) (123.67)8=(1010011.110111)2
4.二进制数与十六进制数的互换 ①二进制数转换成十六进制数 四位并一位:以小数点为基准,整数部分 从右到左,小数部分从左到右,每四位一组, 不足四位补0,然后把每组的四位二进制转换为 一位十六进制数码,即得相应的十六进制数。 例如:(1011110.00011)2=(?)16 (0101,1110.0001,1000)2=(5E.18)16 5 E . 1 8