空间向量练习题

空间向量练习题
空间向量练习题

空间向量在立体几何中的应用

【知识梳理】1、已知直线12,l l 的方向向量分别为12,v v ,平面,αβ的法向量分别为12,n n ,则 (1)12//l l ? ;(2)12l l ⊥? ;(3)若直线12,l l 的夹角为θ,则cos θ= ;

(4)1//l α? ;(5)1l α⊥? ;(6)若直线1l 与面α的成角为θ,则sin θ= ;

(7)//αβ?面面 ;(8)αβ⊥?面面 ;(9)若αβ面与面成二面角的平面角为θ,则 。 2、(1)三余弦定理: ; (2)三垂线定理(及逆定理): ; (3)二面角的平面角定义(范围): ; 【小试牛刀】1、A (1,1,-2)、B (1,1,1),则线段AB 的长度是(

2、向量a =(1,2,-2),b =(-2,-4,4),则a 与b ( ) A.相交 B.垂直

平行

以上都不对

3.如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点.若11B A =a ,

11D A =b ,A A 1=c ,则下列向量中与M B 1相等的向量是( )

A .-

21a +21b +c B .21a +21

b +

c C .2

1

a -

21b +c D .-21a -2

1

b +

c 4.下列等式中,使点M 与点A 、B 、C 一定共面的是 A.OM --=23 B.5

1

3121++=

C.0=+++OM

D.0=++

5.已知空间四边形ABCD 的每条边和对角线的长都等于1,点E 、F 分别是AB 、AD 的中点,则DC EF ?等于

A.

41 B.4

1

- C.43 D.43-

6.若)2,,1(λ=a ,)1,1,2(-=b ,a 与b 的夹角为060,则λ的值为 A.17或-1 B.-17或1 C.-1 D.1

7.设)2,1,1(-=,)8,2,3(=,)0,1,0(=,则线段AB 的中点P 到点C 的距离

为 A.

213 B.253 C.453 D.4

53

8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 A .BD ∥平面CB 1D 1 B .AC 1⊥BD

C .AC 1⊥平面CB 1

D 1

D .异面直线AD 与CB 1所成的角为60°

9.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1, 则BC 1与平面BB 1D 1D 所成角的正弦值为

A .

3 B .552 C .5 D .5

10.⊿ABC 的三个顶点分别是)2,1,1(-A ,)2,6,5(-B ,)1,3,1(-C ,则AC 边上的高BD 长为

A.5

B.41

C.4

D.52 11.设)3,4,(x =a ,),2,3(y -=b ,且b a //,则=xy .

12.已知向量)1,1,0(-=a ,)0,1,4(=b ,29=+b a λ且0λ>,则λ=________. 13.在直角坐标系xOy 中,设A (-2,3),B (3,-2),沿x 轴把直角坐标平面折成大小为θ的二面角后,这时112=AB ,则θ的大小为 .

14.如图,P —ABCD 是正四棱锥,1111ABCD A B C D -是正方体,

其中2,AB PA ==,则1B 到平面P AD 的距离为 .

15、已知()()2,4,,2,,26a x b y a b ===⊥,若a 且,求x y +值.

俯视图

侧视图

正视图

E

D

C

B

A

P

16如图所示,直三棱柱ABC —A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点. (1)求BN 的长;

(2)求cos<11,CB BA >的值 (3)求证:A 1B ⊥C 1M .

17.如图,在四面体ABCD 中,CB CD AD BD =⊥,,点E F ,分别是AB BD ,的中点.求证:

(1)直线//EF 面ACD ; (2)平面EFC ⊥面BCD . 18.(本小题满分14分)如图,已知点P 在正方体''''D C B A ABCD -的对角线'BD 上,∠PDA=60°.

(1)求DP 与'CC 所成角的大小;

(2)求DP 与平面D D AA ''所成角的大小.

19.(本小题满分14分)已知一四棱锥P -ABCD 的三视图如下,E 是侧棱PC 上的动点.

(1)求四棱锥P -ABCD 的体积;

(2)是否不论点E 在何位置,都有BD ⊥AE ?证明你的结论; (3)若点E 为PC 的中点,求二面角D -AE -B 的大小.

D 'C 'B'

A'P D C

B

A

参考答案1、C 2、C

3.)(2

1

111BC BA A A BM B B M B ++=+==c +21(-a +b )=-21a +21b +c ,故选A.

4.

1

),,(=++∈++=?z y x R z y x z y x C B A M 且四点共面、、、由于C B A --=?=++∴0由于都不正确、、选项.)()()(

共面使所以存在MC MB MA MC y MB x MA y x ,,,1,1∴+==-=

四点共面,

、、、为公共点由于C B A M M ∴故选D. 5.∵的中点分别是AD AB F E ,,,BD EF BD EF BD EF 2

1

,21//=∴=

∴且,

4

1

120cos 1121,210-=???>=<=?=

?∴故选B . 6.B 7.B 8.D 9.D 10.

4,cos ==><=AC AB

5==,故选A

11.9 12.3

13.作AC ⊥x 轴于C ,BD ⊥x 轴于D ,则DB CD AC AB ++=

θθcos 6)180,0,0,2530-=-=?=?=?===

0022222

120,1800 .2

1

cos ),cos 600(2253)112()(2)(=∴≤≤-=∴--+++=∴?+?+?+++=++=θθθθ由于

14.以11B A 为x 轴,11D A 为y 轴,A A 1为z 轴建立空间直角坐标系设平面P AD 的法向量是

(,,)m x y z =,(0,2,0),(1,1,2)AD AP ==,∴02,0=++=z y x y ,

取1=z 得(2,0,1)m =-,

1(2,0,2)B A =-,∴1B 到平面PAD 的距离15

B A m d m

?=

=

. 15、解:由2

2

2

62436a x =?++=,又0a b a b ⊥??=即4420y x ++= 由①②有:4,34,1x y x y ==-=-=或13x y ∴+=-或

16、如图,建立空间直角坐标系O —xyz . (1)依题意得B (0,1,0)、N (1,0,1) ∴|BN |=

3)01()10()01(222=-+-+-.

(2)依题意得A 1(1,0,2)、B (0,1,0)、C (0,0,0)、B 1(0,1,2) ∴1BA ={-1,-1,2},1CB ={0,1,2,},1BA ·1CB =3,|1BA |=6,

|1CB |=

5

∴cos<1BA ,1CB 3010

1

||||1111=?CB BA .

(3)证明:依题意,得C 1(0,0,2)、M (

21,21,2),A 1={-1,1,2},M C 1={2

1

,21,0}.∴B A 1·M C 1=-2

1

21++0=0,∴B A 1⊥M C 1,∴A 1B ⊥C 1M .

17.证明:(1)∵E,F 分别是AB BD ,的中点,

∴EF 是△ABD 的中位线,∴E F ∥AD ,

∵AD ?面ACD ,E F ?面ACD ,∴直线E F ∥面ACD ;

(2)∵AD ⊥BD ,E F ∥AD ,∴E F ⊥BD ,

∵CB=CD ,F 是BD的中点,∴CF ⊥BD 又EF ∩CF=F, ∴BD ⊥面EFC , ∵B D ?面BCD ,∴面EFC ⊥面BCD .

18.解:如图,以D 为原点,DA 为单位长建立空间直角坐标系D xyz -.

则(100)DA =,

,,(001)CC '=,,.连结BD ,B D ''. 在平面BB D D ''中,延长DP 交B D ''于H .

设(1)(0)DH m m m =>,,

,由已知60DH DA <>=,, 由cos DA DH DA DH DA DH =<

>,

,可得2

m = 解得2m =

,所以2122DH ??= ? ??

?

. (1

)因为0011

cos 2DH CC +?'<>==,, 所以45DH CC '<>=,

,即DP 与CC '所成的角为45. (2)平面AA D D ''的一个法向量是(010)DC =,

,.

因为0110

1cos 2DH DC +?<>==,, 所以60DH DC <>=,

,可得DP 与平面AA D D ''所成的角为30. 19.解:(1)由该四棱锥的三视图可知,该四棱锥P -ABCD 的底面是边长为1的正

方形,侧棱PC ⊥底面ABCD ,且PC=2.∴12

33

P ABCD ABCD V S PC -=?=

(2)不论点E 在何位置,都有BD ⊥AE

证明如下:连结AC ,∵ABCD 是正方形,∴BD ⊥AC ∵PC ⊥底面ABCD 且BD ?平面ABCD ∴BD ⊥PC 又AC

PC C =∴BD ⊥平面PAC ∵不论点E 在何位置,都有AE ?平面PAC

∴不论点E 在何位置,都有BD ⊥AE

(3)解法1:在平面DAE 内过点D 作DG ⊥AE 于G ,连结BG

∵CD=CB,EC=EC ,∴Rt ECD ?≌Rt ECB ?,∴ED=EB ∵AD=AB ,∴△EDA ≌△EBA ,∴BG ⊥EA ∴DGB ∠为二面角D -EA -B 的平面角 ∵BC ⊥DE ,

AD ∥BC ,∴AD

⊥DE

在R t△ADE 中AD DE DG AE ?==BG

在△DGB 中,由余弦定理得2

1

2cos 222-=?-+=∠BG DG BD BG DG DGB

∴DGB ∠=

23π,∴二面角D -AE -B 的大小为23

π

. 解法2:以点C 为坐标原点,CD 所在的直线为x轴建立空间直角坐标系如图示:

则(1,0,0),(1,1,0),(0,1,0),(0,0,1)D A B E ,从而

(1,0,1),(0,1,0),(1,0,0),(0,DE DA BA BE =-===-设平面ADE 和平面ABE 的法向量分别为

(,,),(',',')m a b c n a b c ==

由法向量的性质可得:0,0a c b -+==,'0,'a b =-令1,'1c c ==-,则1,'1a b ==-,∴(1,0,1),(0,1,1)m n ==-- 设二面角D -AE -B 的平面角为θ,则1cos 2

||||

m n m n θ?==-?

∴23πθ=

,∴二面角D -AE -B 的大小为23

π.

高中数学第三章空间向量与立体几何单元质量测评新人教A版选修21

高中数学第三章空间向量与立体几何单元质量测评新人教A 版选 修21 第三章 单元质量测评 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟. 第Ⅰ卷 (选择题,共60分) 一、选择题:本大题共12小题,每小题5分,共60分. 1.若平面α外直线l 的方向向量为a ,平面α的法向量为n ,则能使l ∥α的是( ) A .a =(1,0,1),n =(-2,0,0) B .a =(1,3,5),n =(1,0,1) C .a =(0,2,1),n =(-1,0,-1) D .a =(1,-1,3),n =(0,3,1) 答案 D 解析 若l ∥α,则a ·n =0,只有选项D 中a ·n =0. 2.已知A (1,2,-1),B 为A 关于平面xOy 的对称点,C 为B 关于y 轴的对称点,则BC →=( ) A .(-2,0,-2) B .(2,0,2) C .(-1,0,-1) D .(0,-2,-2) 答案 A 解析 由题意可知B (1,2,1),C (-1,2,-1),∴BC → =(-2,0,-2). 3.以下四组向量中,互相平行的组数为( ) ①a =(2,2,1),b =(3,-2,-2); ②a =(8,4,-6),b =(4,2,-3); ③a =(0,-1,1),b =(0,3,-3); ④a =(-3,2,0),b =(4,-3,3). A .1 B .2 C .3 D .4 答案 B 解析 ∵②中a =2b ,∴a ∥b ;③中a =-1 3b ,∴a ∥b ;而①④中的向量不平行.故选B. 4.已知a =(1,x,1),b =(2,1,-1)的夹角为锐角,则函数y =x 2 +4x -1的值域是( ) A .(-∞,3) B .(-∞,-3) C .(-4,+∞) D .(-∞,-4) 答案 C

高中数学选修2-1第三章空间向量检测题(一)

选修2-1第三章空间向量检测题(一) 时间:120分钟 总分:150分 第Ⅰ卷(选择题,共60分) 1.已知向量a =(2,-3,5)与向量b =(3,λ,15 2 )平行,则λ=( ) A.23 B.92 C .-92 D .-23 2.在长方体ABCD -A 1B 1C 1D 1中,AB →+BC →+CC 1→-D 1C 1→等于( ) A.AD 1→ B.AC 1→ C.AD → D.AB → 3.若向量a =(1,m,2),b =(2,-1,2),若cos 〈a ,b 〉=8 9,则m 的值为( ) A .2 B .-2 C .-2或2 55 D .2或-2 55 4.已知空间向量a =(1,1,0),b =(-1,0,2),则与向量a +b 方向相反的单位向量的坐标是( ) A .(0,1,2) B .(0,-1,-2) C .(0,15,2 5 ) D .(0,-15,-2 5 ) 5.已知A ,B ,C 三点不共线,对平面ABC 内任一点O ,下列条件中能确定M 与点A ,B ,C 一定共面的是( )

A.OM →=OA →+OB →+OC → B.OM →=2OA →-OB →-OC → C.OM →=OA →+12OB →+13OC → D.OM →=13OA →+13OB →+13OC → 6.如图,已知空间四边形OABC ,其对角线为OB , AC ,M ,N 分别是对边OA ,BC 的中点,点G 在线 段MN 上,且MG →=2GN →,现用基向量OA →,OB →,OC →表示向量,设OG →=xOA →+yOB →+zOC →,则x ,y ,z 的值分别是( ) A .x =13,y =13,z =13 B .x =13,y =13,z =1 6 C .x =13,y =16,z =13 D .x =16,y =13,z =1 3 7.如图所示,已知三棱锥A -BCD ,O 为△BCD 内一点,则AO →=13 (AB →+AC →+AD →)是O 为△BCD 的重心的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 8.已知平行六面体ABCD -A 1B 1C 1D 1中,若ABCD 是边长为2的正方形, AA 1=1,∠A 1AD =∠A 1AB =60°,则BD 1的长为( ) A .3 B.7 C.13 D .9 9.如图所示,在直三棱柱ABC -A 1 B 1 C 1中,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线 EF 与BC 1所成的角是( ) A .45° B .60° C .90° D .120°

高中数学-空间直角坐标系与空间向量典型例题

高中数学-空间直角坐标系与空间向量 一、建立空间直角坐标系的几种方法 构建原则: 遵循对称性,尽可能多的让点落在坐标轴上。 作法: 充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系. 类型举例如下: (一)用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠ A 为直角,A B ∥CD ,AB =4,AD =2,D C =1,求异面直线BC 1与DC 所成角的余弦 值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--u u u u r ,,,(010)CD =-u u u r ,,. 设1BC u u u u r 与CD uuu r 所成的角为θ, 则11317 cos 17BC CD BC CD θ== u u u u r u u u r g u u u u r u u u r . (二)利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于 C 、C 1的一点,EA ⊥EB 1.已知2AB = ,BB 1=2,BC =1,∠BCC 1= 3 π .求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB = 2,∠BCC 1= 3 π,

空间向量与立体几何练习题

空间向量与立体几何单元检测题 一、选择题: 1、若a r ,b r ,c r 是空间任意三个向量, R λ∈,下列关系式中,不成立的是( ) A 、a b b a +=+r r r r B 、() a b a b λλλ+=+r r r r C 、()() a b c a b c ++=++r r r r r r D 、b a λ=r r 2、已知向量a r =(1,1,0),则与a r 共线的单位向量( ) A 、(1,1,0) B 、(0,1,0) C 、( 22,2 2,0) D 、(1,1,1) 3、若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 4、设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 5、若向量(12)λ=,,a 与(212)=-,,b 的夹角的余弦值为8 9 ,则λ=( ) A.2 B.2- C.2-或 2 55 D.2或255 - 6、已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,, 则D 的坐标为( ) A.7412 ?? - ??? , , B.(241),, C.(2141)-,, D.(5133)-,, 7、在正方体1111ABCD A B C D -中,O 为AC BD ,的交点,则1C O 与1A D 所成角的( ) A.60° B.90° C. D. 8、正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点,则E 到平面11ABC D 的距离是( ) C.12 9、ABCD 为正方形,P 为平面ABCD 外一点,2PD AD PD AD ⊥==,,二面角 P AD C --为60°,则P 到AB 的距离为( )

高考总复习 中学教学案空间向量单元(教师版全套)

空间向量 2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算.3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式; 理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直. 第1课时空间向量及其运算 量.因此,空间向量的加减、数乘向量运算也是平面向量对应运算的推广. 本节知识点是: 1.空间向量的概念,空间向量的加法、减法、数乘运算和数量积; (1) 向量:具有和的量. (2) 向量相等:方向且长度. (3) 向量加法法则:. (4) 向量减法法则:. (5) 数乘向量法则:. 2.线性运算律 (1) 加法交换律:a+b=. (2) 加法结合律:(a+b)+c=. (3) 数乘分配律:λ(a+b)=. 3.共线向量 (1)共线向量:表示空间向量的有向线段所在的直线互相或. (2) 共线向量定理:对空间任意两个向量a、b(b≠0),a∥b等价于存在实数λ, 使.

(3) 直线的向量参数方程:设直线l 过定点A 且平行于非零向量a ,则对于空间中任意一点O ,点P 在l 上等价于存在R t ∈,使 .4.共面向量 (1) 共面向量:平行于 的向量. (2) 共面向量定理:两个向量a 、b 不共线,则向量P 与向量a 、b 共面的充要条件是存在实数对(y x ,),使P . 共面向量定理的推论: .5.空间向量基本定理 (1) 空间向量的基底: 的三个向量. (2) 空间向量基本定理:如果a ,b ,c 三个向量不共面,那么对空间中任意一个向量p ,存在一个唯一的有序实数组z y x ,,,使 . 空间向量基本定理的推论:设O ,A ,B ,C 是不共面的的四点,则对空间中任意一点P ,都存在唯一的有序实数组z y x ,,,使 . 6.空间向量的数量积 (1) 空间向量的夹角: . (2) 空间向量的长度或模: . (3) 空间向量的数量积:已知空间中任意两个向量a 、b ,则a ·b = .空间向量的数量积的常用结论:(a) cos 〈a 、b 〉= ; (b) ?a ?2= ; (c) a ⊥b ? . (4) 空间向量的数量积的运算律:(a ) 交换律a ·b = ; (b ) 分配律a ·(b +c )= . 例1.已知正方体ABCD —A 1B 1C 1D 1中,点F 是侧面CDD 1C 1的中心,若1AA y x ++=,求x -y 的值. 解:易求得0 ,2 1 =-∴==y x y x 变式训练1. 在平行六面体1111D C B A ABCD -中,M 为AC 与BD 的交点,若=11B A a ,=11D A b , =A A 1c ,则下列向量中与M B 1相等的向量是 ( ) A .-2 1a +2 1b +c B .2 1a +2 1b +c C .2 1a -2 1b +c D .-2 1a -2 1b +c 解:A 例2. 底面为正三角形的斜棱柱ABC -A 1B 1C 1中,D 为AC 的中点,求证:AB 1∥平面C 1BD. 证明:记,,,1AA ===则 A B C D A B

《空间向量与立体几何》单元测试题3

实用文档 《空间向量与立体几何》单元测试题3 一、选择题 1、空间四边形OABC 中,OB OC =,3 AOB AOC π ∠=∠= , 则cos <,OA BC >的值是( ) A . 21 B .22 C .-2 1 D .0 2、若A )12,5,(--x x x ,B )2,2,1(x x -+,当B A 取最小值时,x 的值等于( ) A .19 B .78- C .78 D .14 19 3、若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( ) A .不等边锐角三角形 B .直角三角形 C .钝角三角形 D .等边三角形 4、若向量)2,1,2(),2,,1(-==b a λ,且a 与b 的夹角余弦为9 8 ,则λ等于( ) A .2 B .2- C .2-或 552 D .2或55 2- 5、已知点(3,1,4)A --,则点A 关于x 轴对称的点的坐标为( ) A .)4,1,3(-- B .)4,1,3(--- C .)4,1,3( D .)4,1,3(--

实用文档 6、下列各组向量中不平行的是( ) A .)4,4,2(),2,2,1(--=-=b a B .)0,0,3(),0,0,1(-==d c C .)0,0,0(),0,3,2(==f e D .)40,24,16(),5,3,2(=-=h g 二、填空题 7、已知正方体1111ABCD A B C D -的棱长是1,则直线1DA 与AC 间的距离为 。 8、已知空间四边形OABC ,点,M N 分别为,OA BC 的中点,且c C O b B O a A O ===,,,用a ,b , c 表示N M ,则N M =_______________。 9、若19(0,2, )8A ,5(1,1,)8B -,5 (2,1,)8 C -是平面α内的三点,设平面α的法向量),,(z y x a = ,则=z y x ::________________。 10、若(3)a b +⊥)57(b a -,且(4)a b -⊥)57(b a -,则a 与b 的夹角为____________。 11、已知向量,3,5k r j i b k j i m a ++=-+=若//a b 则实数=m ______,=r _______。

空间向量与立体几何单元测试题

空间向量与立体几何单元测试题一、选择题 1、若a,b,c是空间任意三个向量, R λ∈,下列关系式中,不成立的是() A.a b b a +=+ B. () a b a b λλλ +=+ C.()() a b c a b c ++=++ D. b a λ = 2、给出下列命题 ①已知a b ⊥, 则 ()() a b c c b a b c ?++?-=? ; ②A、B、M、N 为空间四点,若 ,, BA BM BN 不构成空间的一个基底, 则A、B、M 、N共面; ③已知a b ⊥,则,a b与任何向量不构成空间的一个基底; ④已知{} ,, a b c 是空间的一个基底,则基向量 ,a b 可以与向量 m a c =+构成空间另一个基底. 正确命题个数是() A.1 B.2 C.3 D.4 3、已知,a b 均为单位向量,它们的夹角为60?,那么 3 a b + 等于() A 7 B 10 C 13 D.4 4、 1,2,, a b c a b ===+ 且 c a ⊥,则向量a b 与 的夹角为() A.30?B.60?C.120?D.150?5、已知 ()() 3,2,5,1,,1, a b x =-=- 且 2 a b?=,则x的值是() A.3 B.4 C.5 D .6 6、若直线l的方向向量为 a,平面α的法向量为n,则能使//lα的是( ) A ()() 1,0,0,2,0,0 a n ==- B. ()() 1,3,5,1,0,1 a n == C ()() 0,2,1,1,0,1 a n ==-- D. ()() 1,1,3,0,3,1 a n =-= 7.空间四边形OABC中,OB OC =, 3 AOB AOC π ∠=∠=,则cos<, OA BC>的值是() A. 2 1 B. 2 2 C.- 2 1 D.0 8、正方体ABCD-1 1 1 1 D C B A的棱长为1,E是 1 1 B A中点,则E到平面 1 1 D ABC的距离是() A. 3 B. 2 C. 1 2D. 3 9.若向量a与b的夹角为60°,4 = b,(2)(3)72 a b a b +-=-,则a=() A.2B.4 C.6 D.12 10.如图,A1B1C1—ABC是直三棱柱,∠BCA=90°,点D1、F1分别是A1B1、A1C1的中点,若BC=CA=CC1,则BD1与AF1所成角的余弦值是() A. 10 30 B. 2 1 C. 15 30 D. 10 15 1

高二数学选修2-1-空间向量与立体几何-单元测试题

东升学校《空间向量与立体几何》单元测试题 一、选择题(本大题8小题,每小题5分,共40分) 1、若a r ,b r ,c r 是空间任意三个向量, R λ∈,下列关系式中,不成立 的是( ) A .a b b a +=+r r r r B .() a b a b λλλ+=+r r r r C .( )()a b c a b c ++=++r r r r r r D .b a λ=r r 2、给出下列命题 ①已知a b ⊥r r ,则() () a b c c b a b c ?++?-=?r r r u r r r r r ; ②A 、B 、M 、N 为空间四点,若,,BA BM BN u u u r u u u u r u u u r 不构成空间的一个基 底,则A 、B 、M 、N 共面; ③已知a b ⊥r r ,则,a b r r 与任何向量不构成空间的一个基底; ④已知{ } ,,a b c r r r 是空间的一个基底,则基向量,a b r r 可以与向量 m a c =+u r r r 构成空间另一个基底. 正确命题个数是( ) A .1 B .2 C .3 D .4 3、已知,a b r r 均为单位向量,它们的夹角为 60,那么 3a b +r r 等于 ( ) A . 7 B . 10 C .13

D .4 4、 1,2,,a b c a b ===+r r r r r 且c a ⊥r r ,则向量a b r r 与的夹角为( ) A .30 B .60 C .120 D .150 5、已知()()3,2,5,1,,1,a b x =-=-r r 且2a b ?=r r ,则 x 的值是( ) A .3 B .4 C .5 D .6 6、若直线l 的方向向量为a r ,平面α 的法向量为n r ,则能使//l α的 是( ) A .()()1,0,0,2,0,0a n ==-r r B .()()1,3,5,1,0,1a n ==r r C .()()0,2,1,1,0,1a n ==--r r D .()()1,1,3,0,3,1a n =-=r r 7、在平面直角坐标系中, (2,3),(3,2)A B --,沿x 轴把平面直角坐标 系折成120的二面角后,则线段的长度为( ) A .2 B . 11 C .32 D .4 2 8、正方体1B 1C 1D 1的棱长为1是A 1B 1中点,则E 到平面1D 1的距离是( ) A . 3 B . 22 C . 1 2

高中数学典型例题解析平面向量与空间向量

高中数学典型例题分析 第八章 平面向量与空间向量 §8.1平面向量及其运算 一、知识导学1.模(长度):向量的大小,记作||。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作-a 。 5.向量的加法:求两个向量和的运算。 已知a ,b 。在平面内任取一点,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和。 记作a +b 。 6. 向量的减法:求两个向量差的运算。 已知a ,b 。在平面内任取一点O ,作OA =a ,OB =b ,则向量BA 叫做a 与b 的差。 记作a -b 。 7.实数与向量的积: (1)定义: 实数λ与向量a 的积是一个向量,记作λa ,并规定: ①λa 的长度|λa |=|λ|·|a |; ②当λ>0时,λa 的方向与a 的方向相同; 当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,λa =0 (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa )=(λμ) a ②(λ+μ) a =λa +μa ③λ(a +)=λa +λ 8.向量共线的充分条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa 。 另外,设a =(x 1 ,y 1), b = (x 2,y 2),则a //b x 1y 2-x 2y 1=0 9.平面向量基本定理: 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ 2 使 a =λ11e +λ22e ,其中不共线向量1e 、2e 叫做表示这一

高中数学空间向量与立体几何单元练习题

《空间向量与立体几何》习题 一、选择题(每小题5分,共50分) 1.如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点.若11B A =a , 11D A =b ,A A 1=c ,则下列向量中与M B 1相等的向量是 A .- 21a +21b +c B .21a +21b +c C .2 1a - 21b +c D .-21a -2 1 b + c 2.下列等式中,使点M 与点A 、B 、C 一定共面的是 A.OC OB OA OM --=23 B.OC OB OA OM 51 3121++= C.0=+++OC OB OA OM D.0=++MC MB MA 3.已知空间四边形ABCD 的每条边和对角线的长都等于1,点E 、F 分别是AB 、AD 的中点,则DC EF ?等于 A.41 B.4 1 - C.43 D.43- 4.若)2,,1(λ=a ,)1,1,2(-=b ,a 与b 的夹角为060,则λ的值为 A.17或-1 B.-17或1 C.-1 D.1 5.设)2,1,1(-=OA ,)8,2,3(=OB ,)0,1,0(=OC ,则线段AB 的中点P 到点C 的距离为 A. 213 B.253 C.453 D.4 53 6.下列几何体各自的三视图中,有且仅有两个视图相同的是 A .①② B .①③ C .①④ D .②④ 7.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 ①正方体 ②圆锥 ③三棱台 ④正四棱锥

A .9π B .10π C .11π D .12π 8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 A .BD ∥平面CB 1D 1 B .AC 1⊥BD C .AC 1⊥平面CB 1 D 1 D .异面直线AD 与CB 1所成的角为60° 9.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为 A . 6 B .552 C .15 D .10 10.⊿ABC 的三个顶点分别是)2,1,1(-A ,)2,6,5(-B ,)1,3,1(-C ,则AC 边上的高BD 长为 A.5 B.41 C.4 D.52 二、填空题(每小题5分,共20分) 11.设)3,4,(x =a ,),2,3(y -=b ,且b a //,则=xy . 12.已知向量)1,1,0(-=a ,)0,1,4(=b ,29=+b a λ且0λ>,则λ=________. 13.在直角坐标系xOy 中,设A (-2,3),B (3,-2),沿x 轴把直角坐标平面折成大小为θ的二面角后,这时112=AB ,则θ的大小为 . 14.如图,P —ABCD 是正四棱锥, 1111ABCD A B C D -是正方体,其中 2,6AB PA ==,则1B 到平面P AD 的距离为 . 三、解答题(共80分) 俯视图 正(主)视图 侧(左)视图 2 3 2 2

高中数学典型例题解析汇报平面向量与空间向量

实用文档 文案大全高中数学典型例题第八章平面向量与空间向量 §8.1平面向量及其运算 一、、疑难知识导析 1.向量的概念的理解,尤其是特殊向量“零向量” 向量是既有大小,又有方向的量.向量的模是正数或0,是可以进行大小比较的,由于方向不能比较大小,所以向量是不能比大小的.两个向量的模相等,方向相同,我们称这两个向量相等,两个零向量是相等的,零向量与任何向量平行,与任何向量都是共线向量; 2.在运用三角形法则和平行四边形法则求向量的加减法时要注意起点和终点; 3.对于坐标形式给出的两个向量,在运用平行与垂直的充要条件时,一定要区分好两个公式,切不可混淆。因此,建议在记忆时对比记忆; 4.定比分点公式中则要记清哪个点是分点;还有就是此公式中横坐标和纵坐标是分开计算的; 5.平移公式中首先要知道这个公式是点的平移公式,故在使用的过程中须将起始点的坐标给出,同时注意顺序。 二知识导学 1.模(长度):向量AB的大小,记作|AB|。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a?长度相等,方向相反的向量叫做a?的相反向量。记作-a?。 5.向量的加法:求两个向量和的运算。 已知a?,b?。在平面内任取一点,作AB=a?,BC=b,则向量AC 叫做a与b?的和。记作a?+b?。 6. 向量的减法:求两个向量差的运算。 已知a?,b?。在平面内任取一点O,作OA=a?,OB=b?,则向量BA 叫做a?与b?的差。记作a?-b?。 7.实数与向量的积: (1)定义:实数λ与向量a?的积是一个向量,记作λa?,并规定: ①λa?的长度|λa?|=|λ|·|a?|; ②当λ>0时,λa?的方向与a?的方向相同; 当λ<0时,λa?的方向与a?的方向相反; 当λ=0时,λa?=0? (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa?)=(λμ) a?

空间向量与立体几何-单元测试-有答案

& 第三章 空间向量与立体几何 单元测试 (时间:90分钟 满分:120分) 第Ⅰ卷(选择题,共50分) 一、选择题:本大题共10小题,每小题5分,共50分. 1.以下四组向量中,互相平行的组数为( ) ①a =(2,2,1),b =(3,-2,-2);②a =(8,4,-6),b =(4,2,-3);③a =(0,-1,1),b =(0,3,-3);④a =(-3,2,0),b =(4,-3,3) A .1组 B .2组 C .3组 D .4组 : 解析:∵②中a =2b ,∴a ∥b ;③中a =-1 3b , ∴a ∥b ;而①④中的向量不平行. 答案:B 2.在以下命题中,不正确的个数为( ) ①|a |-|b |=|a +b |是a ,b 共线的充要条件;②若a ∥b ,则存在唯一 的实数λ,使a =λb ;③对空间任意一点O 和不共线的三点A ,B ,C ,若OP → =2OA →-2OB →-OC → ,则P ,A ,B ,C 四点共面;④若{a ,b ,c }为空间的一组基底,则{a +b ,b +c ,c +a }构成空间的另一组基底;⑤|(a ·b )·c |=|a |·|b |·|c |. A .2个 B .3个 C .4个 D .5个 解析:①|a |-|b |=|a +b |?a 与b 共线,但a 与b 共线时|a |-|b |=|a +b |不一定成立,故不正确;②b 需为非零向量,故不正确;③因为2-2-1≠1,由共面向量定理知,不正确;④由基底的定义知正确;⑤由向

量的数量积的性质知,不正确. ! 答案:C 3.如图,已知四边形ABCD 为矩形,PA ⊥平面ABCD ,连接AC ,BD ,PB , PC ,PD ,则下列各组向量中,数量积不一定为零的是( ) 与BD → 与PB → 与AB → 与CD → 解析:建立如图所示的空间直角坐标系. 设矩形ABCD 的长、宽分别为a ,b ,PA 长为c ,则A (0,0,0),B (b,0,0), D (0,a,0),C (b ,a,0),P (0,0,c ). - 则PC →=(b ,a ,-c ),BD →=(-b ,a,0),DA →=(0,-a ,0),PB → =(b,0,

专题04 空间向量与立体几何(单元测试卷)(原卷版)

专题04 《空间向量与立体几何》单元测试卷 一、单选题 1.(2020·山东省微山县第二中学高二月考)空间直角坐标中A(1,2,3),B(-1,0,5),C(3,0,4),D(4,1,3),则直线AB 与CD 的位置关系是( ) A .平行 B .垂直 C .相交但不垂直 D .无法确定 2.(2019·四川省绵阳南山中学高二月考)如图,在平行六面体111ABCD A B C D -中,M 为AC 与BD 的交点若11A B a =,11A D b =,1A A c =,则下列向量中与1B M 相等的向量是( ) A .1122 a b c -++ B . 1122a b c ++ C .1122a b c -+ D .1122a b c --+ 3.(2019·江苏省高二期中)已知向量()0,1,1a =,()1,2,1b =-.若向量a b +与向量()2,,4c m =--平行,则实数m 的值是( ) A .2 B .2- C .10 D .10- 4.(2020·湖南省高二期末)如图,已知正方体ABCD ﹣A 'B 'C 'D '中,E 是CC '的中点,1'2a AA =,12b AB =,13 c AD =,AE =x a +y b +z c ,则( )

A .x =1,y =2,z =3 B .x 12=,y =1,z =1 C .x =1,y =2,z =2 D .x 12=,y =1,z 32= 5.(2020·四川省双流中学高二月考)正方体不在同一侧面上的两顶点(1,2,1)A --,(1,0,1)B ,则正方体外接球体积是( ) A .43π B .323π C .323π D .4π 6.(2019·江苏省苏州实验中学高二月考)已知(1,2,3),OA =(2,2,1),OB =-(1,1,2)OC =,若点D 是AC 中点,则BC OD ?=( ) A .2 B .32- C .-3 D .6 7.(2019·江苏省苏州实验中学高二月考)平行六面体1111ABCD A B C D -中, 1 2,AM MC =1AM xAB yAD zAA =++,则实数x ,y ,z 的值分别为( ) A .1,32,323 B .2,31,323 C .2,32,313 D .2,31,223 8.(2020·银川唐徕回民中学高二月考)三棱柱111ABC A B C -中,底面边长和侧棱长都相等, 1160BAA CAA ?∠=∠=,则异面直线1AB 与1BC 所成角的余弦值为( ) A .33 B .66 C .34 D 39.(2019·浙江省柯桥中学高二期中)如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,13AA =,2AB AC BC ===,则1AA 与平面11AB C 所成角的大小为

空间向量和立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A . 13 B . 3 C .3 D .2 3 1.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB = ,棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为11AO AB =另解:设1,,AB AC AA 为空间向量的一组基底,1,,AB AC AA 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为1111 33 OA AA AB AC =- -,11AB AB AA =+ 2111126 ,,333 OA AB a OA AB ?= == 则1AB 与底面ABC 所成角的正弦值为 111 12 3 OA AB AO AB ?= . 二、填空题: 1 .(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角 C AB D --M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1.答案: 1 6 .设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11 (),22 AN AC AB EM AC AE =+=-, 11()()22AN EM AB AC AC AE ?=+?-=1 2 故EM AN ,所成角的余弦值 1 6 AN EM AN EM ?= 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,

新版精选高中数学单元测试试题-空间向量与立体几何专题完整题库(含参考答案)

2019年高中数学单元测试试题 空间向量与立体几何 专题(含答案) 学校:__________ 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、选择题 1.(2010全国2理)与正方体1111ABCD A B C D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点 A .有且只有1个 B .有且只有2个 C .有且只有3个 D .有无数个 【答案解析】D 2.向量=(1,2,0),=(-1,0,6)点C 为线段AB 的中点,则点C 的坐标为( ) (A)(0,2,6) (B)(-2,-2,6) (C)(0,1,3) (D)(-1,-1,3) 3.已知空间的基底{i ,j ,k },向量a =i +2j +3k ,b =-2i +j +k ,c =-i +mj -nk ,若向量c 与向量a ,b 共面,则实数m +n =( ) (A )1 (B )-1 (C )7 (D )-7 4.在长方体ABCD -A 1B 1C 1D 1中,1DD BC BA ++=( )

(A )11B D (B )D 1 (C )1DB (D )1BD 第II 卷(非选择题) 请点击修改第II 卷的文字说明 二、填空题 5. (理科)空间直角坐标系中,点4sin ,3sin ),(0,3cos ,4cos )A B αββα-,则A 、B 两点间距离的最大值为 . 6.如果平面的一条斜线和它在这个平面上的射影的方向向量分别是→a =(1,0,1),→b =(0,1,1),那么这条斜线与平面所成的角是 . 7. 点()1,1,2P -关于xoy 平面的对称点的坐标是 。 8.如图所示,在棱长为2的正方体1AC 中,点P Q 、分别在棱BC CD 、上,满足11B Q D P ⊥, 且PQ = (1)试确定P 、Q 两点的位置. (2)求二面角1C PQ A --大小的余弦值. D A B 11 第22题

选修2-1空间向量单元测试题(经典)

第三章 单元质量评估(二) 时限:120分钟 满分:150分 第Ⅰ卷(选择题 共60分) 一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的) 1.已知空间四边形ABCD ,G 是CD 的中点,连接AG ,则AB →+12(BD →+BC → )=( ) A.AG → B.CG → C.BC → D.12BC → 解析:在△BCD 中,因为G 是CD 的中点,所以BG →=12(BD →+BC →),从而AB →+12(BD →+BC →)=AB →+BG →=AG →,故选A. 答案:A 2.设l 1的方向向量为a =(1,2,-2),l 2的方向向量为b =(-2,3,m ),若l 1⊥l 2,则m 等于( ) A .1 B .2 C.1 2 D .3 解析:∵l 1⊥l 2, ∴a ·b =0,代入可解得m =2. 答案:B 3.已知i ,j ,k 为单位正交基底,a =3i +2j -k ,b =i -j +2k ,则5a 与3b 的数量积等于( )

A .-15 B .-5 C .-3 D .-1 解析:∵i ,j ,k 两两垂直且|i |=|j |=k |=1,∴5a ·3b =(15i +10j -5k )·(3i -3j +6k )=45-30-30=-15. 答案:A 4.已知二面角α—l —β的大小为60°,m ,n 为异面直线,且m ⊥α,n ⊥β,则m ,n 所成的角为( ) A .30° B .60° C .90° D .120° 解析:设m ,n 的方向向量分别为m ,n . 由m ⊥α,n ⊥β知m ,n 分别是平面α,β的法向量. ∵|cos 〈m ,n 〉|=cos60°=12,∴〈m ,n 〉=60°或120°. 但由于两异面直线所成的角的范围为? ? ???0,π2, 故异面直线m ,n 所成的角为60°. 答案:B 5.已知向量a =(1,2,3),b =(-2,-4,-6),|c |=14,若(a +b )·c =7,则a 与c 的夹角为( ) A .30° B .60° C .120° D .150° 解析:设向量a +b 与c 的夹角为α,因为a +b =(-1,-2,-3,),|a +b |=14,cos α= (a +b )·c |a +b ||c | =12, 所以α=60°. 因为向量a +b 与a 的方向相反,所以a 与c 的夹角为120°.故选C.

高中空间向量试题

高二数学单元试题 1.已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2 a -b 互相垂直,则k 的值是( ) A . 1 B . 51 C . 53 D . 5 7 2.已知与则35,2,23+-=-+=( )A .-15 B .-5 C .-3 D .-1 3.已知A 、B 、C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A 、B 、C 一定共面的是 ( ) A .OM ++= B .OM --=2 C .3121++ =D .3 1 3131++= 4.已知向量a =(0,2,1),b =(-1,1,-2),则a 与b 的夹角为 ( ) A . 0° B . 45° C . 90° D .180° 5.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为 A .2 B .3 C .4 D .5 6.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =xa +yb +zc .其中正确命题的个数为( )A . 0 B .1 C . 2 D .3 7.已知空间四边形ABCD ,M 、G 分别是BC 、CD 的中点,连结AM 、AG 、MG ,则?→ ?AB +1 ()2 BD BC +等于( ) A .?→ ?AG B . ?→ ?CG C . ?→ ?BC D .21?→? BC 8.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) A . +-a b c B .-+a b c C . -++a b c D . -+-a b c 9.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 10.已知点A (4,1,3),B (2,-5,1),C 为线段AB 上一点,且3||||AC AB =,则点的坐标是 ( ) A .715(,,)222- B . 3(,3,2)8- C . 107(,1,)33- D .573(,,)222 - 11.设A 、B 、C 、D 是空间不共面的四点,且满足0,0,0=?=?=?,则△BCD 是 ( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .不确定 12.(理科)已知正方形ABCD 的边长为4, E 、 F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,则点B 到平面 EFG 的距离为( ) A . 1010 B . 11112 C . 5 3 D . 1 二.填空题(本大题4小题,每小题4分,共16分) 13.已知向量a =(λ+1,0,2λ),b =(6,2μ-1,2),若a ∥b,则λ与μ的值分别是 . 14.已知a,b,c 是空间两两垂直且长度相等的基底,m=a+b,n=b -c ,则m ,n 的夹角为 . 15.已知向量a 和c 不共线,向量b ≠0,且()()??=??a b c b c a ,d =a +c ,则,??d b = .

空间向量与立体几何 单元测试 有答案

第三章 空间向量与立体几何 单元测试 (时间:90分钟 满分:120分) 第Ⅰ卷(选择题,共50分) 一、选择题:本大题共10小题,每小题5分,共50分. 1.以下四组向量中,互相平行的组数为( ) ①a =(2,2,1),b =(3,-2,-2);②a =(8,4,-6),b =(4,2,-3);③a =(0,-1,1),b =(0,3,-3);④a =(-3,2,0),b =(4,-3,3) A .1组 B .2组 C .3组 D .4组 解析:∵②中a =2b ,∴a ∥b ;③中a =-1 3b , ∴a ∥b ;而①④中的向量不平行. 答案:B 2.在以下命题中,不正确的个数为( ) ①|a |-|b |=|a +b |是a ,b 共线的充要条件;②若a ∥b ,则存在唯一的实数λ,使a =λb ;③对空间任意一点O 和不共线的三点A ,B ,C ,若OP → =2OA →-2OB →-OC → ,则P ,A ,B ,C 四点共面;④若{a ,b ,c }为空间的一组基底,则{a +b ,b +c ,c +a }构成空间的另一组基底;⑤|(a ·b )·c |=|a |·|b |·|c |. A .2个 B .3个 C .4个 D .5个 解析:①|a |-|b |=|a +b |?a 与b 共线,但a 与b 共线时|a |-|b |=|a +b |不一定成立,故不正确;②b 需为非零向量,故不正确;③因为2-2-1≠1,由共面向量定理知,不正确;④由基底的定义知正确;⑤由向量的数量积

的性质知,不正确. 答案:C 3.如图,已知四边形ABCD 为矩形,P A ⊥平面ABCD ,连接AC ,BD ,PB ,PC ,PD ,则下列各组向量中,数量积不一定为零的是( ) A.PC →与BD → B.DA →与PB → C.PD →与AB → D.P A →与CD → 解析:建立如图所示的空间直角坐标系. 设矩形ABCD 的长、宽分别为a ,b ,P A 长为c ,则A (0,0,0),B (b,0,0),D (0,a,0),C (b ,a,0),P (0,0,c ).

相关文档
最新文档