高数A第7章课件:第七章习题课1

高数A第7章课件:第七章习题课1
高数A第7章课件:第七章习题课1

习 题 课

一、填空题

1.设C 为闭曲线2=+y x ,取逆时针方向,则=+?∫C y

x bydx axdy ___。 2.设为平面Σ4=++z y x 被圆柱截下的有限限部分,则122=+y x ∫∫Σ

=zdS ___。

3.设具有连续导数,且,C 为半圆周)(u f ∫=4

04)(du u f 22x x y ?=,起点为,终点为,则___。 )0,0(A )0,2(B =+∫C

ydy )+xdx y x f )((22二、解答题

1.计算曲线积分,其中C 曲线上从到的一段。

dy y xe dx xy e I y C

y )cos ()12(?+?=∫2x y =)1 ,1(?A )1 ,1(B 2.求dy y x y

x dx y x y x I C 2222++++?=∫,其中C 从点)0 ,(a A ?经上半椭圆)0(122

22≥=+y b y a x 到达点的弧段,且)0 ,(a B a b <<0。

3.计算曲线积分∫++?C y x xdy

ydx 224,其中C 是由点经半圆周)0,1(A 21x y ?=到点

再沿直线)0,1(?B 1?=+y x 到点的路径。

)2,1(?E 4.设曲线积分与路径无关,其中dy x y dx xy C

)(2?+∫)(x ?具有连续导数,且, 0)0(=?计算的值。

dy x y dx xy )()

1,1()0,0(2?+∫5.设函数在)(x f ),(+∞?∞),(b a 内具有一阶连续导数,L 是上半平面内有向分段光滑曲线,其起点为,终点为,记

)0(>y ),(d c dy xy f y y x dx xy f y y I L ]1)([)](1[122?++=∫

(1) 证明:曲线积分I 与路径无关;(2)当cd ab =时,求I 的值。 6.已知曲线积分)()(22为常数A A x y ydx

xdy C ≡?+?∫,

其中)(x ?的一阶导数连续,且, 1)1(=?C 是围绕原点一周的任一正向闭曲线,

(1)证明在任一不包含原点的单连通区域内,曲线积分∫?+?C x y ydx xdy )(22与路径无关;

(2)确定,并求A 的值。 )(x ?7.设,为连续可微函数,且0>x )(x f 2)1(=f ,对的任一闭曲线C ,有 0>x 0)(43=+∫C dy x xf ydx x ,求和积分)(x f ∫+)(3)(4AB C dy x xf ydx x 的值,其中AB 是由 )0,2(A 至的一段弧。

)3,3(B

大一经典高数复习资料经典最新经典全面复习

高等数学(本科少学时类型) 第一章 函数与极限 第一节 函数 ○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★) (){} ,|U a x x a δδ=-< (){},|0U a x x a δδ=<-, ∴()N g ε=???? 2.即对0>?ε,()N g ε?=????,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞ →lim 第三节 函数的极限 ○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0 lim 【证明示例】δε-语言 1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg = 2.即对0>?ε,()εδg =?,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0 lim ○∞→x 时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x =∞ →lim 【证明示例】X -ε语言 1.由()f x A ε-<化简得()x g ε>, ∴()εg X = 2.即对0>?ε,()εg X =?,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞ →lim 第四节 无穷小与无穷大 ○无穷小与无穷大的本质(★) 函数()x f 无穷小?()0lim =x f 函数()x f 无穷大?()∞=x f lim ○无穷小与无穷大的相关定理与推论(★★) (定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ?=???? (定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f 1 -为无穷大 【题型示例】计算:()()0 lim x x f x g x →???? ?(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U ο 内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0 =→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;) 3.由定理可知()()0 lim 0x x f x g x →?=???? (()()lim 0x f x g x →∞ ?=????) 第五节 极限运算法则 ○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则 关于多项式()p x 、()x q 商式的极限运算 设:()()?????+?++=+?++=--n n n m m m b x b x b x q a x a x a x p 1 101 10 则有()()???????∞=∞→0 lim 0 b a x q x p x m n m n m n >=< ()()() ()000lim 0 0x x f x g x f x g x →?? ??=∞????? ()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00 lim 0 x x f x g x →=(不定型)时,通常分 子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解) 【题型示例】求值2 3 3 lim 9 x x x →--

高等数学第一章1

高数第一周测试题 出题人:洪义伟姜继伟贾西南马刚 一、选择题 1. 数列有界是函数收敛的() A 充要条件 B 必要条件 C 充分条件D即非充分条件又非必要条件 2.根据limXn=a的定义,对任给ε>0,存在正整数N,使得对于n>N的一切Xn,不等式|Xn—a|<ε都成立,这里的N() A 是ε的函数N(ε),且当ε减小时N(ε)增大 B 与ε有关,但ε给定时N并不唯一确定 C 是由ε所唯一确定的 D 是一个很大的常数,与ε无关 3. f(x)=在其定义域(—∞,+∞)上是() A 最小正周期为3π的周期函数 B 最小正周期为的周期函数 C 最小正周期为的周期函数D非周期函数 5.函数f(x)=(x∈R)的值域是() A (0,1) B (0,1] C [0,1) D [ 0 , 1 ]

7.函数f(x)=x2-mx+5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是增函数,则f(1)等于( ) A -7 B 1 C 17 D 25 8.下列函数是无穷小量的是() ( ) A g(2)>g(-1)>g(-3) B g(2)>g(-3)>g(-1) C g(-1)>g(-3)>g(2) D g(-3)>g(-1)>g(2)

A 1 B ∞ C 2 D 0 二、填空题 13.求 的定义域____________。 14. 已知求f (5)____________。 15.数列 的极限______。 16.求函数 的极限______。 三、 解答题 17.求函数 在指定定义域下的单调性。 18.求 的极限。 19.用数列极限的定义证明 。 20.用函数极限的定义证明 。 21.根据定义证明 22.求 的极限。 ???<+≥-=8,)]5([8 ,3)(x x f f x x x f

大一高数第一章 函数、极限与连续

第一章 函数、极限与连续 由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为自然科学的中心问题.与之相适应,数学在经历了两千多年的发展之后进入了一个被称为“高等数学时期”的新时代,这一时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究比“形”更重要,以积极的态度开展对“无限”的研究,由常量数学发展为变量数学,微积分的创立更是这一时期最突出的成就之一.微积分研究的基本对象是定义在实数集上的函数. 极限是研究函数的一种基本方法,而连续性则是函数的一种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍高等数学的一些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作用的无穷小量的概念和性质.此外,还给出了两个极其重要的极限.随后,运用极限的概念引入函数的连续性概念,它是客观世界中广泛存在的连续变化这一现象的数学描述. 第一节 变量与函数 一、变量及其变化范围的常用表示法 在自然现象或工程技术中,常常会遇到各种各样的量.有一种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这一类量叫做变量;另一类量在考察过程中保持不变,它取同样的数值,我们把这一类量叫做常量.变量的变化有跳跃性的,如自然数由小到大变化、数列的变化等,而更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何一个数.变量取值范围常用区间来表示.满足不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ????,即 ,{|}a b x a x b =≤≤????; 满足不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即 (,){|}a b x a x b =<<; 满足不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ?? (或),a b ??),即 (,{|}a b x a x b =<≤?? (或),{|}a b x a x b =≤

(完整版)大一高数复习资料(免费)

高等数学 第一章 函数与极限 第一节 函数 ●函数基础(高中函数部分相关知识)(▲▲▲) ●邻域(去心邻域)(▲) (){} ,|U a x x a δδ=-< (){},|0U a x x a δδ=<-, ∴()N g ε=???? 2.即对0>?ε,()N g ε?=????,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞ →lim 第三节 函数的极限 ●0x x →时函数极限的证明(▲) 〖題型 〗已知函数()x f ,证明()A x f x x =→0 lim 〖证明 〗δε-语言 1.由()f x A ε-<化簡得()00x x g ε<-<, ∴()εδg = 2.即对0>?ε,()εδg =?,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0 lim ●∞→x 时函数极限的证明(▲) 〖題型 〗已知函数()x f ,证明()A x f x =∞ →lim 〖证明 〗X -ε语言 1.由()f x A ε-<化簡得()x g ε>, ∴()εg X = 2.即对0>?ε,()εg X =?,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞ →lim 第四节 无穷小与无穷大 ●无穷小与无穷大的本质(▲) 函数()x f 无穷小?()0lim =x f 函数()x f 无穷大?()∞=x f lim ●无穷小与无穷大的相关定理与推论(▲▲) (定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ?=???? (定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f 1 -为无穷大 〖題型 〗計算:()()0 lim x x f x g x →???? ?(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U ο 内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0 =→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;) 3.由定理可知()()0 lim 0x x f x g x →?=???? (()()lim 0x f x g x →∞ ?=????) 第五节 极限运算法则 ●极限的四则运算法则(▲▲) (定理一)加减法则 (定理二)乘除法则 关于多项式()p x 、()x q 商式的极限运算 设:()()?????+?++=+?++=--n n n m m m b x b x b x q a x a x a x p 1 101 10 则有()()???????∞=∞→0 lim 0 b a x q x p x m n m n m n >=< ()()() ()000lim 0 0x x f x g x f x g x →?? ??=∞????? ()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00 lim 0 x x f x g x →=(不定型)时,通常分 子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解) 〖題型 〗求值2 3 3 lim 9 x x x →--

高数第七章无穷级数知识点

第七章 无穷级数 一、敛散性判断(单调有界,必有极限;从上往下,具有优先顺序性): 1、形如∑∞ =-11 n n aq 的几何级数(等比级数):当1p 时收敛,当1≤p 时发散。 3、? ≠∞ →0lim n n U 级数发散; 级数收敛 lim =?∞ →n n U 4、比值判别法(适用于多个因式相乘除):若正项级数∑∞ =1 n n U ,满足 条件 l U U n n n =+∞→1 lim : ?当1l 时,级数发散(或+∞=l ); ?当1=l 时,无法判断。 5、根值判别法(适用于含有因式的n 次幂):若正项级数∑∞ =1n n U ,满足 条件λ =∞ →n n n U lim : ?当1<λ时,级数收敛; ?当1>λ时,级数发散(或+∞=λ); ?当1=λ时,无法判断。 注:当1,1==λl 时,方法失灵。 6、比较判别法:大的收敛,小的收敛;小的发散,大的发散。(通过不等式的放缩)

推论:若∑∞ =1 n n U 与 ∑∞ =1 n n V 均为正项级数,且 l V U n n n =∞→lim (n V 是已知敛散 性的级数) ?若+∞<

大一高数复习资料

第一章 函数与极限 第一节 函数 ○邻域(去心邻域) (){} ,|U a x x a δδ=-< (){},|0U a x x a δδ=<-< 第二节 数列的极限 ○数列极限的证明 【题型示例】已知数列{}n x ,证明{}lim n x x a →∞ = 【证明示例】N -ε语言 1.由n x a ε-<化简得()εg n >, ∴()N g ε=???? 2.即对0>?ε,()N g ε?=????,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞ →lim 第三节 函数的极限 ○0x x →时函数极限的证明 【题型示例】已知函数()x f ,证明()A x f x x =→0 lim 【证明示例】δε-语言 1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg = 2.即对0>?ε,()εδg =?,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0 lim ○∞→x 时函数极限的证明 【题型示例】已知函数()x f ,证明()A x f x =∞ →lim 【证明示例】X -ε语言 1.由()f x A ε-<化简得()x g ε>, ∴()εg X = 2.即对0>?ε,()εg X =?,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞ →lim 极限存在准则及两个重要极限 ○夹逼准则 第一个重要极限:1sin lim 0=→x x x ∵?? ? ??∈?2, 0πx ,x x x tan sin <<∴1sin lim 0=→x x x 0 000lim11lim lim 1sin sin sin lim x x x x x x x x x x →→→→===?? ??? (特别地,000 sin() lim 1x x x x x x →-=-) ○单调有界收敛准则 第二个重要极限:e x x x =?? ? ??+∞ →11lim (一般地,()() ()() lim lim lim g x g x f x f x =???????? ,其中 ()0lim >x f ) 【题型示例】求值:1 1232lim +∞→?? ? ??++x x x x 【求解示例】 ()()2111 212 1212 2121 1221 2 2121lim 212 21232122lim lim lim 121212122lim 1lim 121212lim 121x x x x x x x x x x x x x x x x x x x x x x x x +++→∞→∞+→∞?++++??+++→∞ +→∞++→∞+++????? ?==+ ? ? ?+++?????? ? ???? ???=+=+ ? ???++?? ?? ? ? ? ?? ???=+ ???+???? 解:()()12lim 121 21212 121 22lim 121x x x x x x x x x e e e e +→∞?? ?+?? +??+→∞+→∞???+?? +?? +?? ? +? ? ==== 第四节 无穷小量与无穷大量 ○无穷小与无穷大的本质 函数()x f 无穷小?()0lim =x f 函数()x f 无穷大?()∞=x f lim ○无穷小与无穷大的相关定理与推论 (定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ?=???? (定理四)在自变量的某个变化过程中,若()x f 为 无穷大,则()1 f x -为无穷小;反之,若()x f 为无 穷小,且()0f x ≠,则()x f 1 -为无穷大 【题型示例】计算:()()0 lim x x f x g x →???? ?(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U 内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0 =→x g x x 即函数()x g 是0x x →时的无穷小;

相关文档
最新文档