三角形、梯形中位线练习题

三角形、梯形中位线练习题
三角形、梯形中位线练习题

三角形、梯形中位线

一、选择

1.三角形的三边长分别为12cm、16cm、20cm,则它的中位线

构成的三角形的周长与面积分别为____ 和___.

2.在Rt△ABC中,∠C=90°,D、E、F分别为AB、BC、AC边上的中点,AC=4 cm ,BC=6 cm,那么四边形CEDF为__________,它的边长分别为_________________.

3.三角形一条中位线分三角形所成的新三角形与原三角形周长之和为60 cm ,则原三角形的周长为_______.

4. 已知梯形的上底长为3cm,下底长为7cm,则此梯形中位线长为__________cm.

5.等腰三角形的两条中位线长分别是3和4,则它的周长是____________.

6. 已知D、E、F分别是△ABC三边的中点,当△ABC满足条件___________时,四边形AFDE是菱形.

7.已知等腰梯形的周长为80cm,中位线长与腰长相等,则它的中位线长等于_____cm.

8.如图,已知等腰梯形ABCD的中位线EF的长为5,腰AD 的长为4,则这个等腰梯形的周长为 . 9.如图,ABC

?沿DE折叠后,点A落在BC边上的A'处,

若点D为AB边的中点,ο

50

=

∠B,则A

BD'

∠的度数

为 .

10、等腰梯形上、下底长分别为,且两条对角线

互相垂直,则这个梯形的面积为.

二、选择题:

1、如果顺次连结四边形各边中点组成的四边形是菱形,那么

原来的四边形的对角线()

A.互相平分

B.互相垂直

C.相等

D.相

等且互相平分

2、顺次连结下列各四边形中点所得的四边形是矩形的是().

A.等腰梯形B.矩形C.平行四边形D.菱形或对角线互

相垂直的四边形

3、已知三角形的3条中位线分别为3cm、4cm、6cm,则这

个三角形的周长是().

A.3cm B.26cm C.24cm D.65cm

4.已知DE是△ABC的中位线,则△ADE和△ABC的面积之比是

( )

(A) 1:1 (B) 1:2 (C) 1:3 (D ) 1:4

5.若梯形中位线的长是高的2倍,面积是18cm2,则这个梯形

的高等于()

(A)62cm (B)6cm (C)32cm (D)

6.如图,梯形ABCD中,AD//BC,BD为对角线,中位线EF

BD于O点,若FO-EO=3,则BC-AD等于()

A.4 B.6 C.8 D.10

7.如图,△ABC中,D、E分别为AC、

BC边上的点,AB∥DE,CF为AB边

上的中线,若AD=5,CD=3,DE=4,

则BF的长为()

A.

3

32 B.

3

16 C.

3

10 D.

3

8

A D

C

E F

D O

F

E

D

C

B

A

8.小明作出了边长为的第1个正△A 1B 1C 1,算出了正△A 1B 1C 1

的面积。然后分别取△A 1B 1C 1的三边中点A 2、B 2、C 2,作出了第2个正△A 2B 2C 2,算出了正△A 2B 2C 2的面积。用同样的方法,作

出了第3个正△A 3B 3C 3,算出了正△A 3B 3C 3的面积……,由此可得,第10个正△A 10B 10C 10的面积是 A

931()4? B

10

31()4

?C

9

31()2

? D .

1031()42

? 三、解答题:

1、梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,且AC =5cm ,BD =12cm ,求该梯形的中位线长.

2、已知,如图,△ABC 的中线BD 、CE 交于点O ,F 、G 分别是OB 、OC 的中点。

求证:EF=DG 且EF ∥DG 。

3、如图,在锐角三角形ABC 中,AB <

AC ,AD ⊥BC ,交BC 与点D ,E 、F 、G 分别是BC 、CA 、AB 的中点。求证:四边形DEFG 是等腰梯形

4.如图,在△ABC 中,BC >AC ,点D 在BC 上,且DC=AC ,∠ACB 的平分线CF 交AD 于点F .点E 是AB 的中点,连结EF . (1)求证:EF∥BC; (2)若△ABD 的面积是6.求四边形BDFE 的面积

5、如图,在平行四边形ABCD 中,E 、F 分别是BC 、AD 的中点,AE 与BF 相交于点G ,DE 与CF 相交于点H ,试说明GH ∥AD 且GH=

2

1

AD

6、如图,梯形ABCD 中,AD ∥BC ,点

E 是

AB 中点,连结EC 、ED 、CE ⊥DE ,CD 、AD 与BC 三

条线段之间有什么样的数量关系?请说明理由。

E

D

B

C

A

H G E

F A D

C

F

E D

C

B

A

O

G

F

E

B

G

F

E

D

C

B

A

F

E D

C B

A

7、在△ABC 中,AH ⊥BC 于H ,D ,E ,F 分别是BC ,CA ,AB 的中点.求证:∠DEF=∠HFE .

8、已知,如图梯形ABCD 中,

AD//BC ,对角线AC 与BD 垂直相交于O ,MH 是梯形中位线,∠DBC =30o ,猜想MN 与AC 什么关系?并证明猜想

9、如图,四边形ABCD 中,AB=CD ,M 、N 分别是AD 、BC 的中点,延长BA 、NM 、CD 分别交于点E 、F 。试说明∠BEN=∠NFC.

10、如图.D ,E 分别在AB ,AC 上,BD=CE ,BE ,CD 的中点分别是M ,N ,直线MN 分别交AB ,AC 于P ,Q .求证:AP=AQ .

11、已知:如图5,在梯形ABCD 中,AB ∥CD ,E ,

F 分别是AC 和BD 的中点。

求证:EF =2

1

(AB-CD )

12、如图8,等腰梯形ABCD 的周长为80cm ,如果它的中位线与腰长相等,它的

高是12cm ,求这个梯形的面积。

想一想

如图7,在四边形ABCD 中,AB 与CD 不平行,

E ,

F 分别是AD ,BC 的中点。那么, EF=2

1

(AB+CD )成立吗?为什么?

N

M

A

D

B

C

E

F

μ1 = 30?

M O

N A D

C

B

图5

B

E

D

F

C

A

图8

B E

D

F C

A 图7

B

E

D F

C

A

。THANKS !!!

致力为企业和个人提供合同协议,策划案

计划书,学习课件等等

打造全网一站式需求

欢迎您的下载,资料仅供参考

三角形经典习题(必看)

三角形复习卷 一、选择题 1.一个三角形的两边长分别是2cm 和9cm ,第三边的长是一个奇数,则第三边长为( ) A 、5cm B 、7cm C 、9cm D 、11cm 2. 1.在下列条件中:①∠A+∠B=∠C ,②∠A∶∠B∶∠C=2∶3∶4,③∠A=90°-∠B ,④∠A=∠B= 2 1 ∠C 中,能确定△ABC 是直角三角形的条件有( ) A 、1个; B 、2个; C 、3个; D 、4个 3.对于三角形的内角,下列判断中不正确的是( ); A.至少有两个锐角 B.最多有一个直角 C.必有一个角大于600 D.至少有一个角不小600 4. 如图,∠BAC=90°,AD⊥BC,则图中互余的角有( ) A 、2对; B 、3对; C 、4对; D 、5对; 5. 下列说法错误的是( ) A. 三角形三条中线交于三角形内一点; B. 三角形三条角平分线交于三角形内一点 C. 三角形三条高交于三角形内一点; D. 三角形的中线、角平分线、高都是线段 6、一个三角形的两个内角分别为55°和65°,这个三角形的外角不可能是( ) A 、115° B、120° C、125° D、130° 7、如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,且CD 、BE 相交于一点P ,若∠A=50°,则∠BPC=( ) A 、150° B、130° C、120° D、100° 8、7.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是( ) A.5 B.6 C.7 D.8 9如图,在△ABC 中,AD 是角平分线,AE 是高,已知∠BAC=2∠B,∠B=2∠DAE,那么∠ACB 为( )A. 80° B. 72° C. 48° D. 36° 10.在△ABC 中,∠A=2∠B=4∠C ,则△ABC 为( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.都有可能 11.直角三角形两锐角的平分线相交所夹的钝角为( ) A 、125° B 、135° C 、145° D 、150° 12.等腰△ABC 的底边为5cm ,一腰上的中线把周长分为差为3cm 的两部分,则△ABC 的腰长是( )cm 。 A B C D E P 第7题 第9题

解三角形典型例题

1.正弦定理和余弦定理 在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 2.S △ABC =2ab sin C =2bc sin A =2ac sin B =4R =2(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r . 1.在△ABC 中,A >B ?a >b ?sin A >sin B ?cos A c; a-b

三角形、梯形的中位线

第3章《中心对称图形(一)》易错题集(08):3.6 三角形、梯 形的中位线 选择题 1.(2010?威海)如图,在△ABC中,D,E分别是边AC,AB的中点,连接BD.若BD 平分∠ABC,则下列结论错误的是() A.BC=2BE B.∠A=∠EDA C.BC=2AD D.BD⊥AC 2.(2009?锦州)如图所示,在△ABC中,AB=AC,M,N分别是AB,AC的中点,D,E 为BC上的点,连接DN、EM,若AB=5cm,BC=8cm,DE=4cm,则图中阴影部分的面积为() A.1cm2 B.1.5cm2C.2cm2 D.3cm2 3.(2009?绍兴)如图,D,E分别为△ABC的AC,BC边的中点,将此三角形沿DE折叠,使点C落在AB边上的点P处.若∠CDE=48°,则∠APD等于() A.42°B.48°C.52°D.58° 4.(2009?衢州)在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为() A.9.5 B.10.5 C.11 D.15.5 5.(2009?赤峰)将一张三角形纸片沿中位线剪开,拼成一个新的图形,这个新的图形可能是()

A.三角形B.平行四边形C.矩形 D.正方形 6.(2008?铜仁地区)如图,M是△ABC的边BC的中点,AN平分∠BAC,且BN⊥AN,垂足为N,且AB=6,BC=10,MN=1.5,则△ABC的周长是() A.28 B.32 C.18 D.25 7.(2008?随州)如图,点D、E、F分别是△ABC三边的中点,则下列判断错误的是() A.四边形AEDF一定是平行四边形 B.若∠A=90°,则四边形AEDF是矩形 C.若AD平分∠A,则四边形AEDF是正方形 D.若AD⊥BC,则四边形AEDF是菱形 8.(2008?嘉兴)如图,△ABC中,已知AB=8,BC=6,CA=4,DE是中位线,则DE=() A.4 B.3 C.2 D.1 9.(2008?大庆)如图,将非等腰△ABC的纸片沿DE折叠后,使点A落在BC边上的点F 处.若点D为AB边的中点,则下列结论:①△BDF是等腰三角形;②∠DFE=∠CFE; ③DE是△ABC的中位线,成立的有() A.①②B.①③C.②③D.①②③ 10.(2007?随州)如图,沿Rt△ABC的中位线DE剪切一刀后,用得到的△ADE和四边形DBCE拼图,下列图形中不一定能拼出的是()

解三角形典型例题答案

1. 解:cos cos cos ,sin cos sin cos sin cos a A b B c C A A B B C C +=+= sin 2sin 2sin 2,2sin()cos()2sin cos A B C A B A B C C +=+-= cos()cos(),2cos cos 0A B A B A B -=-+= cos 0A =或cos 0B =,得2A π=或2B π= 所以△ABC 是直角三角形。 2. 证明:将ac b c a B 2cos 222-+=,bc a c b A 2cos 2 22-+=代入右边 得右边22222222 22()222a c b b c a a b c abc abc ab +-+--=-= 22a b a b ab b a -==-=左边, ∴)cos cos (a A b B c a b b a -=- 3.证明:∵△AB C 是锐角三角形,∴,2A B π+>即022A B ππ>>-> ∴sin sin()2 A B π >-,即sin cos A B >;同理sin cos B C >;sin cos C A > ∴C B A C B A cos cos cos sin sin sin ++>++ 4.解:∵2,a c b +=∴sin sin 2sin A C B +=,即2sin cos 4sin cos 2222 A C A C B B +-=, ∴1sin cos 222B A C -==0,22 B π<<∴cos 2B = ∴sin 2sin cos 22244B B B ==?=839 5解:22222222sin()sin cos sin ,sin()cos sin sin a b A B a A B A a b A B b A B B ++===-- cos sin ,sin 2sin 2,222cos sin B A A B A B A B A B π===+=或2 ∴等腰或直角三角形 6解:2sin sin 2sin sin )sin ,R A A R C C b B ?-?=- 222sin sin )sin ,,a A c C b B a c b -=--=-

三角形中位线定理 知识讲解

三角形中位线定理 【学习目标】 1. 理解三角形的中位线的概念,掌握三角形的中位线定理. 2. 掌握中点四边形的形成规律. 【要点梳理】 要点一、三角形的中位线 1.连接三角形两边中点的线段叫做三角形的中位线. 2.定理:三角形的中位线平行于第三边,并且等于第三边的一半. 要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系. (2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个 小三角形的周长为原三角形周长的1 2 ,每个小三角形的面积为原三角形 面积的1 4 . (3)三角形的中位线不同于三角形的中线. 要点二、顺次连接特殊的平行四边形各边中点得到的四边形的形状 (1)顺次连接平行四边形各边中点得到的四边形是平行四边形. (2)顺次连接矩形各边中点得到的四边形是菱形. (3)顺次连接菱形各边中点得到的四边形是矩形. (4)顺次连接正方形各边中点得到的四边形是正方形. 要点诠释:新四边形由原四边形各边中点顺次连接而成. (1)若原四边形的对角线互相垂直,则新四边形是矩形. (2)若原四边形的对角线相等,则新四边形是菱形. (3)若原四边形的对角线垂直且相等,则新四边形是正方形. 【典型例题】 类型一、三角形的中位线 1、(优质试题?北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN. (1)求证:BM=MN; (2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长. 【思路点拨】(1)根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明.

三角形经典题50道附答案解析

1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:1 2CD AB 延长CD 与P ,使D 为CP 中点。连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形 又∠ACB=90 ∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 A D B C

证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF 连接BE 在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。 ∵ ∠ABC=∠AED 。 ∴ ∠ABE=∠AEB 。 ∴ AB=AE 。 在三角形ABF 和三角形AEF 中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形ABF 和三角形AEF 全等。 ∴ ∠BAF=∠EAF (∠1=∠2)。 4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 过C 作CG ∥EF 交AD 的延长线于点G CG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角) ∴△EFD ≌△CGD EF =CG B A C D F 2 1 E

正弦定理余弦定理综合应用解三角形经典例题老师

一、知识梳理 1.内角和定理:在ABC ?中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C - 面积公式: 111 sin sin sin 222ABC S ab C bc A ac B ?= == 在三角形中大边对大角,反之亦然. 2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二: ?? ? ??===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 形式三:::sin :sin :sin a b c A B C = 形式四: sin ,sin ,sin 222a b c A B C R R R = == 3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:2 2 2 2cos a b c bc A =+- 2 2 2 2cos b c a ca B =+- 222 2cos c a b ab C =+-(解三角形的重要工具) 形式二: 222cos 2b c a A bc +-= 222cos 2a c b B ac +-= 222 cos 2a b c C ab +-= 二、方法归纳 (1)已知两角A 、B 与一边a ,由A +B +C =π及sin sin sin a b c A B C == ,可求出角C ,再求b 、c . (2)已知两边b 、c 与其夹角A ,由a 2=b 2+c 2 -2b c cosA ,求出a ,再由余弦定理,求出角B 、C . (3)已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C . (4)已知两边a 、b 及其中一边的对角A ,由正弦定理sin sin a b A B = ,求出另一边b 的对角B ,由C =π-(A +B ),求出c ,再由sin sin a c A C =求出C ,而通过sin sin a b A B = 求B 时,可能出一解,两解或无解的情况 a = b sinA 有一解 b >a >b sinA 有两解 a ≥b 有一解 a >b 有一解 三、课堂精讲例题 问题一:利用正弦定理解三角形

沪教版八年级数学-三角形梯形的中位线-学生版讲义

三角形、梯形的中位线 知识精要 一、三角形的中位线 1)、三角形的中位线定义: 在△ABC 中①、BC AB F E 、为、 的中点 ②、∵M 、N 分别是BC 、AC 的中点 ∴线段EF 是 △ABC 的 ∴ 线段MN 是△ABC 的 2)、三角形有 条中位线,它们构成的三角形叫 。 3)、三角形的中位线定理: 4)、在△ABC 中,AB =3,BC =5,CA =7,顺次连结三边中点得△DEF 的周长为___ ______. 5)、在△ABC 中,D 、E 、F 分别 为AB 、BC 、CA 的中点,△DEF 的周长为10,则△ABC 的周长是 6)、三角形的三条中位线的长分别是3,4,5,则这个三角形的周长是_ 结论:中点三角形的周长等于原三角形的 . 7)、一个三角形的面积是40,则它的中点三角形的面积是__ 结论:中点三角形的面积是原三角形面积的_ 二、中点四边形 1、定义:顺次连接四边形各边中点的四边形叫 2、中点四边形的形状与原四边形的对角线数量和位置有关 1)、原四边形的对角线相等时,中点四边形是 ; 2)、原四边形的对角线垂直时,中点四边形是 ; 3)、原四边形的对角线既相等又垂直时,中点四边形是 ; 4)、原四边形的对角线既不相等又不垂直时,中点四边形是 。 5)、任意四边形的中点四边形是 ;菱形的中点四边形是 ; 矩形、等腰梯形的中点四边形是 ;正方形的中点四边形是 。 三、梯形中位线 1、定义:联结梯形两腰中点的线段叫做梯形的中位线。

2、梯形中位线定理: 热身练习 1.若三角形三条中位线长分别是3cm 、4cm 、5cm ,则这个三角形的面积是 cm 2。 2.梯形的上底长为6,下底长为10,则由中位线所分得的两个梯形的面积之比为 . 3. 梯形的两条对角线的中点的连线长为7,上底长为8,则下底长为 . 4. 若等腰梯形的腰长是5cm ,中位线是6cm ,则它的周长是 cm . 5. 已知等腰梯形的上、下底长分别为 2cm 和6cm ,且它的两条对角线互相垂直,则这个梯形的面积为 cm 2. 6. 已知三角形三边长分别为a 、b 、c ,它的三条中位线组成一个新的三角形,这个新三角形的三条中位线又组成一个小三角形,这个小三角形的三条中位线又组成一个新小三角形,则最小的三角形的周长是( ) A. (a+b+c) B. (a+b+c) C. (a+b+c) D. (a+b+c) 7.若等腰梯形较长的底等于对角线,较短的底等于高,则较短的底和较长的底的长的长度之比是 ( ) A.1:2 B. 2:3 C.4:1 D. 3:5 8.直角梯形中,上底和斜腰长均为a ,且斜腰和下底的夹角是60°,则梯形中位线长为( ) A. B. a C. D. 都不对 9.在梯形ABCD 中,AB//CD ,DC :AB=1:2,E 、F 分别是两腰BC 、AD 的中点,则 ( ) A. 1:4 B. 1:3 C. 1:2 D. 3:4 10. 如图,在直角梯形ABCD 中,点O 为CD 的中点,AD ∥BC,试判断OA 与OB 的关系? (10题图) (11题图) 11. 如图,梯形ABCD 中,AD ∥BC ,点E 是AB 中点,连结EC 、ED 、CE ⊥DE ,CD 、AD 与BC 三条线段之间有什么样的数量关系?请说明理由. 精解名题 例1.已知:如图所示,Rt △ABC 中,∠=ACB D E 90°,、分别为AB 、BC 的中点,点F 在AC 的延长线上,∠=∠FEC B 。

等腰三角形典型例题练习(含答案)#(精选.)

等腰三角形典型例题练习

等腰三角形典型例题练习 一.选择题(共2小题) 1.如图,∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D到AB的距离为() A.5cm B.3cm C.2cm D.不能确定 2.如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为边并且在AB的同一侧作等边△ACD 和等边△BCE,连接AE交CD于M,连接BD交CE于N.给出以下三个结论: ①AE=BD ②CN=CM ③MN∥AB 其中正确结论的个数是() A.0B.1C.2D.3 二.填空题(共1小题) 3.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF 的面积与△ABC的面积之比等于_________. 三.解答题(共15小题) 4.在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠EAF=180°,求证 DE=DF. 5.在△ABC中,∠ABC、∠ACB的平分线相交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.请说明DE=BD+EC.

6.>已知:如图,D是△ABC的BC边上的中点,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF.请判断△ABC 是什么三角形?并说明理由. 7.如图,△ABC是等边三角形,BD是AC边上的高,延长BC至E,使CE=CD.连接DE. (1)∠E等于多少度? (2)△DBE是什么三角形?为什么? 8.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠A=30°.求证:AB=4BD. 9.如图,△ABC中,AB=AC,点D、E分别在AB、AC的延长线上,且BD=CE,DE与BC相交于点F.求证:DF=EF. 10.已知等腰直角三角形ABC,BC是斜边.∠B的角平分线交AC于D,过C作CE与BD垂直且交BD延长线于E, 求证:BD=2CE.

解三角形的必备知识和典型例题及习题

解三角形的必备知识和典型例题及习题一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC中,C=90°,AB=c,AC=b,BC=a。 2 2 2 (1)三边之间的关系: a + b =c 。(勾股定理) (2)锐角之间的关系:A+B=90°; (3)边角之间的关系:(锐角三角函数定义) sin A=cos B=a c ,cos A=sin B= b c ,tan A= a b 。 2.斜三角形中各元素间的关系: 在△ABC中,A、B、C为其内角,a、b、c 分别表示A、B、C的对边。(1)三角形内角和:A+B+C=π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 a sin A b sin B c sin C 2R (R为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 2 2 2 2 2 2 2 2 2 a = b + c -2bc cos A; b =c +a -2ca cos B; c =a +b -2ab cos C。 3 .三角形的面积公式: (1)S =1 2 ah a= 1 2 bh b= 1 2 ch c(h a、h b、h c 分别表示a、b、c 上的高); (2)S =1 2 ab sin C= 1 2 bc sin A= 1 2 ac sin B; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题: 第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角. 第2、已知两边和他们的夹角,求第三边和其他两角. 5.三角形中的三角变换 三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

三角形 梯形的中位线精典例题

三角形梯形的中位线精典例题 10.三角形、梯形的中位线 知识考点: 掌握三角形、梯形的中位线定理,并会用它们进行有关的论证和计算。 精典例题: 【例1】如图,梯形ABCD中,AD∥BC,M是腰AB的中点,且AD+BC=DC。求证:MD⊥MC。 分析:遇到腰上中点的问题构造梯形中位线可证明,也可以因为腰上有中点,延长DM与CB的延长线交于E点进行证明。 ADACDMNQPEGFBCBDMC例1图 AB 例2图问题图 【例2】如图,△ABC的三边长分别为AB=14,BC=16,AC=26,P为∠A的平分线AD上一点,且BP⊥AD,M为BC 的中点,求PM的长。 分析:∠A的平分线与BP边上的垂线互相重合,通过作辅助线延长BP交AC于点Q,△ABP≌△AQP知AB=AQ=14,又知M是BC的中点,所以PM是△BQC的中位线,于是本题得以解决。

答案:PM=6 探索与创新: 【问题一】 E、F为凸四边形ABCD的一组对边AD、BC 的中点,若EF= 1(AB?CD),2问:ABCD为什么四边形?请说明理。 分析与结论:如图,利用三角形和梯形的中位线定理,连结AC,取AC的中点G,连EG、FG,则EG∥ 111CD,FG∥AB,∴EG+FG=(AB?CD),即EG+FG=EF,则222G点在EF上,EF∥CD,EF∥AB,故AB∥CD。 若AD∥BC,则凸四边形ABCD为平行四边形;若AD不平行于BC,则凸四边形ABCD为梯形。 评注:利用中位线构造出 11CD、AB,其关键是连AC,并取其中点G。 22跟踪训练: 一、填空题: 1、三角形各边长为5、9、12,则连结各边中点所构成的三角形的周长是。 2、一个等腰梯形的周长为100cm,如果它的中位线与腰长相等,它的高为20cm,那么这个 梯形的面积是。 3、若梯形中位线被它的两条对角线分成三等分,则梯形的两底之比为。

三角形中位线中的常见辅助线-)

三角形中位线中的常见辅助线知识梳理 知识点一中点 一、与中点有关的概念 三角形中线的定义:三角形顶点和对边中点的连线 等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合) 三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线. 三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半. 中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边. 直角三角形斜边中线:直角三角形斜边中线等于斜边一半 斜边中线判定:若三角性一边上的中线等于该边的一半,则这个三角形是直角三角形 二、与中点有关的辅助线 方法一:倍长中线 解读:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的可以旋转等长度的线段,从而达到将条件进行转化的目的。 方法二:构造中位线 解读:凡是出现中点,或多个中点,都可以考虑取另一边中点,或延长三角形一边,从而达到构造三角形中位线的目的。 方法三:构造三线合一 解读:只要出现等腰三角形,或共顶点等线段,就需要考虑构造三线合一,从而找到突破口 其他位置的也要能看出 方法四:构造斜边中线 解读:只要出现直角三角形,或直角,则考虑连接斜边中线段,第一可以出现三条等线段,第二可以出现两个等腰三角形,从而转化线段关系。 其他位置的也要能看出

常见考点

构造三角形中位线 考点说明:①凡是出现中点,或多个中点,都可以考虑取四边形对角线中点、等腰三角形底边中点、直角 三角形斜边中点或其他线段中点; ②延长三角形一边,从而达到构造三角形中位线的目的。 “题中有中点,莫忘中位线”.与此很相近的几何思想是“题中有中线,莫忘加倍延”,这两个是常用几何思想,但注意倍长中线的主要目的是通过构造三角形全等将分散的条件集中起来.平移也有类似作用. 典型例题 【例1】 已知:AD 是ABC △的中线,AE 是ABD △的中线,且AB BD =,求证:2AC AE =. 举一反三 1. 如右下图,在ABC ?中,若2B C ∠=∠,AD BC ⊥,E 为BC 边的中点.求证:2AB DE =. 2. 在ABC ?中,90ACB ∠=?,12 AC BC = ,以BC 为底作等腰直角BCD ?,E 是CD 的中点,求证:AE EB ⊥且AE BE =. 【例2】 已知四边形ABCD 的对角线AC BD =,E 、F 分别是AD 、BC 的中点,连结EF 分别交AC 、BD 于M 、N ,求证:AMN BNM =∠∠. 举一反三 1. 已知四边形ABCD 中,AC BD <,E F 、分别是AD BC 、的中点,EF 交AC 于M ;EF 交BD 于N ,AC 和BD 交于G 点.求证:GMN GNM ∠>∠. 2. 已知:在ABC ?中,BC AC >,动点D 绕ABC ?的顶点A 逆时针旋转,且AD BC =,连结DC .过AB 、DC 的中点E 、F 作直线,直线EF 与直线AD 、BC 分别相交于点M 、N . (1)如图1,当点D 旋转到BC 的延长线上时,点N 恰好与点F 重合,取AC 的中点H ,连结HE 、HF ,求证: AMF BNE ∠=∠ (2)当点D 旋转到图2中的位置时,AMF ∠与BNE ∠有何数量关系?请证明. 【例3】 如图,在五边形ABCDE 中,90ABC AED ∠=∠=?,BAC EAD ∠=∠,F 为CD 的中点.求证: BF EF =. 举一反三 1.如图所示,在三角形ABC 中,D 为AB 的中点,分别延长CA 、CB 到点E 、F ,使DE=DF .过E 、 F 分别作直线CA 、CB 的垂线,相交于点P ,设线段PA 、PB 的中点分别为M 、N .求证: (1)DEM FDN ??≌; (2)PAE PBF ∠=∠.

三角形培优经典题型

《三角形》练习题 班级_________ 姓名__________ 分数__________一、选择题(每题4分) 1.等腰三角形的两边长分别是3和7,那么它的周长是() A、13 B、16 C、17 D、13或17 2、如图1,图中三角形的个数为() A.17 B.18 C.19 D.20 3、在△ABC中,∠A-∠C=25°,∠B-∠A=10°,则∠B=() A、28° B、35° C、15° D、21° 4、如图2,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点, ∠A=50°,则∠D=() A.15°B.20°C.25°D.30° 5、已知一个多边形的每一个内角都等于135°,则这个多边形是() A. 五边形 B. 六边形 C. 七边形 D. 八边形 6、如图3,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°, 则∠P的度数为() A.15°B.20°C.25°D.30° 7、一个多边形截去一个内角后,形成另一个多边形,它的内角和为2520°, 则原来多边形的边数不可能是() A、15条 B、16条 C、17条 D、18条 8、已知三条线段分别是a、b、c且a<b<c(a、b、c均为整数), 若c=6,则线段a、b、c能组成三角形的个数为() A、3个 B、4个 C、5个 D、6个

图1 图2 图3 二、填空题(每题4分) 9、若△ABC的三边长分别是4,X,9,则X的取值范围是_____, 周长L的取值范围是_____;当周长为奇数时,X=_____ 10、一条线段的长为a,若要使3a—l,4a+1,12-a这三条线段组成一个三角形,则a 的取值范围__________. 11、等腰三角形一腰上的中线把这个等腰三角形的周长分成12和10两部分, 则此等腰三角形的腰长是_____ 12、如图4,小亮从A点出发,沿直线前进100m后向左转30°,再沿直线前进100m, 又向左转30°,…照这样走下去,他第一次回到出发地A点时,一共走了________m 13、如图5,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,S△ABC=12, 则S△ADF -S△BEF=_____. 14、如图6,∠A+∠B+∠C+∠D+∠E+∠F的度数是______° 15、如图7,DC平分∠AD B,E C平分∠AEB,若∠DAE=α, ∠D BE=β,则∠D CE=______ (用α、β表示). 16、如图8,DO平分∠CDA,BO平分∠CBA,∠A=20°,∠C=30°,∠O=______°.

(完整版)解三角形三类经典题型

解三角形三类经典类型 类型一 判断三角形形状 类型二 求范围与最值 类型三 求值专题 类型一 判断三角形形状 例1:已知△ABC 中,bsinB=csinC,且C B A 2 22sin sin sin +=,试判断三角形的形状. 解:∵bsinB=csinC,由正弦定理得 sin 2B=sin 2 C ,∴ sinB=sinC ∴ B=C 由 C B A 222sin sin sin += 得 2 22c b a += ∴三角形为等腰直角三角形. 例2:在△ABC 中,若B=ο 60,2b=a+c,试判断△ABC 的形状. 解:∵2b=a+c, 由正弦定理得2sinB=sinA+sinC,由B=ο 60得sinA+sinC=3 由三角形内角和定理知sinA+sin(A -ο 120)=3,整理得 sin(A+ο30)=1 ∴A+ο ο ο 60,9030==A 即,所以三角形为等边三角形. 例3:在△ABC 中,已知2 2 tan tan b a B A =,试判断△ABC 的形状. 解:法1:由题意得 B A A B B A 2 2sin sin cos sin cos sin =,化简整理得sinAcosA=sinBcosB 即sin2A=sin2B ∴2A=2B 或2A+2B=π ∴A=B 或2 π = +B A ,∴三角形的形状为等腰三角形或直角三角形. 法2:由已知得22cos sin cos sin b a A B B A =结合正、余弦定理得2 222222222b a bc a c b b a c b c a a =-+? -+? , 整理得0))((2 2 2 2 2 =-+-c b a b a ∴ 2 2222c b a b a =+=或 即三角形为等腰三角形或直角三角形 例4:在△ABC 中,(1)已知sinA=2cosBsinC ,试判断三角形的形状; (2)已知sinA= C B C B cos cos sin sin ++,试判断三角形的形状. 解:(1)由三角形内角和定理得 sin(B+C)=2cosBsinC 整理得sinBcosC -cosBsinC=0即sin(B -C)=0 ∴ B=C 即三角形为等腰三角形. (2)由已知得 sinAcosB+sinAcosC=sinB+sinC ,结合正、余弦定理得

全等三角形经典例题整理

全等三角形的典型习题 一、全等在特殊图形中的运用 1、如图,等边△ABC 中,D 、E 分别是AB 、CA 上的动点,AD =CE ,试求∠DFB 的度数. 2、如下图所示,等边△ABC 中,D 、E 、F 是AB 、BC 、CA 上动点,AD =BE =CF ,试判断△DEF 的形状. 3、如图,△ABC 和△ADE 都是等边三角形,线段BE 、CD 相交于点H ,线段BE 、AC 相交于点G ,线段BE 、CD 相交于点H .请你解决以下问题: (1) 试说明BE =CD 的理由; (2) 试求BE 和CD 的夹角∠FHE 的度数 A A

C B Ex1、如下图所示,△ABC 和△ADE 都是等边三角形,且点B 、A 、D 在同一直线上,AC 、BE 相交于点G ,AE 、CD 相交于点F ,试说明AG =AF 的理由. Ex2、如图,四边形ABCD 与BEFG 都是正方形,AG 、CE 相交于点O ,AG 、BC 相交于点M ,BG 、CE 相交于点N ,请你猜测AG 与CE 的关系(数量关系和位置关系)并说明理由. 4、△ABC 是等腰直角三角形,AB =AC ,∠BAC =90°,∠B =∠C =45°,D 是底边BC 的中点,DE ⊥DF ,试用两种不同的方法说明BE 、CF 、EF 为边长的三角形是直角三角形。 A

二.证明全等常用方法(截长发或补短法) 5、如图所示,在△ABC 中,∠ABC =2∠C ,∠BAC 的平分线交BC 于点D .请你试说明AB +BD =AC 的理由. Ex1,∠C +∠D =180°,∠1=∠2,∠3=∠4.试用截长法说明AD +BC =AB . Ex2、五边形ABCDE 中,AB =AE,∠BAC +∠DAE =∠CAD,∠ABC +∠AED =180°,连结AC ,AD .请你用补短法说明BC +DE =CD .(也可用截长法, 自己考虑) 6、如图,正方形ABCD 中,E 是AB 上的点,F 是BC 上的点,且∠EDF =45°.请你试用补短法说明AE +CF =EF . B B F C

九年级数学下册《解直角三角形》典型例题(含答案)

《解直角三角形》典型例题 例1 在Rt △ABC 中,∠C=90°,∠B=60°,a=4,解这个三角形. 分析 本题实际上是要求∠A 、b 、c 的值.可根据直角三角形中各元素间的关系解决. 解 (1) ; (2)由a b B =tan ,知 ; (3)由c a B = cos ,知860cos 4cos =?==B a c . 说明 此题还可用其他方法求b 和c . 例 2 在Rt △ABC 中, ∠C=90°,∠A=30°,3=b ,解这个三角形. 解法一 ∵ ∴ 设 ,则 由勾股定理,得 ∴ . ∴ . 解法二 133330tan =?=?=b a 说明 本题考查含特殊角的直角三角形的解法,它可以用目前所学的解直角三角形的方法,也可以用以前学的性质解题. 例 3 设 中, 于D ,若 ,解三 角形ABC .

分析“解三角形ABC”就是求出的全部未知元素.本题CD不是的边,所以应先从Rt入手. 解在Rt中,有: ∴ 在Rt中,有 说明(1)应熟练使用三角函数基本关系式的变形,如: (2)平面几何中有关直角三角形的定理也可以结合使用,本例中 “”就是利用“对30°角的直角边等于斜边的一半”这一定理.事实上,还可以用面积公式求出AB的值: 所以解直角三角形问题,应开阔思路,运用多种工具. 例4在中,,求. 分析(1)求三角形的面积一方面可以根据面积公式求出底和底上的高的长,也可以根据其中规则面积的和或差; (2)不是直角三角形,可构造直角三角形求解.

解如图所示,作交CB的延长线于H,于是在Rt△ACH中,有,且有 ; 在中,,且 , ∴; 于是,有, 则有 说明还可以这样求:

22.6 三角形梯形的中位线(2)

课题:22.6(2)梯形的中位线 教学目标 1、理解梯形的中位线概念; 2、经历探索梯形中位线性质的过程,体会转化的思想方法; 3、掌握梯形的中位线的性质定理,能运用梯形中位线定理进行计算和论证.教学重点及难点 重点:掌握梯形中位线定理,并能应用定理进行计算和证明; 难点:识图,认识梯形中位线的性质. 教学过程设计 一、情景引入 1、温故知新 (1)结合图形,讲出三角形中位线定义及其性质; 几何语言:因为……,所以……. (2)习题评析 ①联结三角形各边中点得到的三角形,它的周长为原三角形周长的, 面积为原三角形面积的; ②三角形的一条中位线分原三角形所成的一个小三角形与一个梯形的面积 比是; ③以等腰梯形两底的中点及两对角线的中点为顶点的四边形是; ④顺次联结对角线互相垂直的四边形各边中点所成的四边形是. 2、思考:什么是梯形的中位线?梯形中位线有什么性质? 二、学习新课 1、概念辨析 (1)梯形中位线定义:联结梯形两腰的中点的线段叫做梯形的中位线. 如图,已知点E、F分别是梯形的腰AB、CD中点,则EF为梯形ABCD的 中位线. 探讨1:如何添加辅助线 探讨2:如何利用中点条件添加辅助线?

探讨3:能否运用三角形的中位线定理得出梯形的中位线定理? (3)结论1 梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半. (4)结论2 梯形面积公式:梯形面积=中位线×高. 2、例题分析 例 1 如图,一把梯子每一横档都互相平行,高度相等,已知最上面两条横档的长度分别为6、7,那么下面几根横档的长度分别为多少? 【分析】利用梯形中位线定理可以先得出第三条边,其余的就 迎刃而解了. 例2 如图,在梯形ABCD 中,AD//BC ,E 为AB 的中点,AD+BC=DC . 求证:DE ⊥EC . 【分析】利用梯形中位线定理解题,即可考虑添加中位线. 由已知条件,联想到利用梯形ABCD 的中位线,并且可知中位线的长是DC 的一半;又梯形中位线与上、下底平行,于是可以从几对等角中获得结论. B B 另外,也有一种常用的添加辅助线方法,可以探讨是否可行. 3、问题拓展 当梯形的上底收缩为一点时,梯形成为三角形.因此可以说,三角形中位线定理是梯形中位线定理的特殊情况. 三、巩固练习 1、联结三角形各边中点得到的三角形,它的周长为原三角形周长的 ;面积为原三角形面积的 . 2、三角形的一条中位线分原三角形所成的一个小三角形与一个梯形的面积比 .

三角形的中位线经典习题类型大全

第 1 页 共 2 页 1 三角形的中位线综合练习题 姓名 例1如图1,在△ABC 中,AC>AB ,M 为BC 的中点.AD 是∠BAC 的平分线,若CF ⊥AD 交AD 的延长线于F .求证: ()1 2MF AC AB = - . F E D C B A 图1 图2 图3 图4 图5 例2. 如图2,在四边形ABCD 中,E 、F 分别为AC 、BD 的中点,则EF 与AB +CD 的关系是 ( ) A .2EF AB CD =+ B. 2EF AB CD >+ C. 2EF AB CD <+ D. 不确定 例3. 如图5,AB ∥CD ,E 、F 分别是BC 、AD 的中点,且AB=a ,CD=b ,则EF 的长为 . 4.在Rt △ABC 中,∠C=90°,AC=?5,?BC=?12,?则连结两条直角边中点的线段长为_______. 5.若三角形的三条中位线长分别为2cm ,3cm ,4cm ,则原三角形的周长为( ) A .4.5cm B .18cm C .9cm D .36cm 6.已知△ABC 的周长为1,连结△ABC 的三边中点构成第二个三角形,?再连结第二个三角形的三边中点构成第三个三角形,依此类推,第2010个三角形的周长是( ) A 、 20081 B 、20091 C 、220081 D 、2 20091 7.如图4所示,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从 点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ) A .线段EF 的长逐渐增大 B .线段EF 的长逐渐减少 C .线段EF 的长不变 D .线段EF 的长不能确定 8.如图5,在△ABC 中, E ,D , F 分别是AB ,BC ,CA 的中点,AB=6,AC=4,则四边形AEDF?的周长是( ) A .10 B .20 C .30 D .40 9.顺次连接一个四边形的各边中点,得到一个菱形,这个四边形一定是( ) A.平行四边形 B.菱形 C 、矩形 D.对角线相等的四边形 10.已知:如图,DE 是△ABC 的中位线,AF 是BC 边上的中线, 求证:DE 与AF 互相平分 11.如图所示,在△ABC 中,点D 在BC 上且CD=CA ,CF 平分∠ACB ,AE=EB ,求证:EF= 1 2 BD . 12.如图所示,已知在□ABCD 中,E ,F 分别是AD ,BC 的中点,求证:MN ∥BC . 13.如图,点E ,F ,G ,H 分别是CD ,BC ,AB ,DA 的中点。 求证:四边形EFGH 是平行四边形。 F E D B H G F E D C B A

相似三角形经典题(含答案)

相似三角形经典习题 例1 从下面这些三角形中,选出相似的三角形. 例2 已知:如图, ABCD 中,2:1:=EB AE ,求AEF ?与CDF ?的周长的比,如果2cm 6=?AEF S ,求CDF S ?. 例3 如图,已知ABD ?∽ACE ?,求证:ABC ?∽ADE ?. 例4 下列命题中哪些是正确的,哪些是错误的? (1)所有的直角三角形都相似. (2)所有的等腰三角形都相似. (3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似. 例5 如图,D 点是ABC ?的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ?的边上,并且点D 、点E 和ABC ?的一个顶点组成的小三角形与ABC ?相似.尽可能多地画出满足条件的图形,并说明线段DE 的画法. 例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.

例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,若5.1=AC m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度(精确到0.1m ). 例8 格点图中的两个三角形是否是相似三角形,说明理由. 例9 根据下列各组条件,判定ABC ?和C B A '''?是否相似,并说明理由: (1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A . (2)?='∠?='∠?=∠?=∠35,44,104,35A C B A . (3)?='∠=''=''?=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB . 例10 如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据. 例11 已知:如图,在ABC ?中,BD A AC AB ,36,?=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ?=2 .

相关文档
最新文档