考研数学求函数渐近线的方法

分式函数

第 1 页 共 4 页 一次分式函数 班级__________姓名____________ ______年____月____日 1、 理解分式函数的概念 2、 掌握一次分式函数的图像画法及性质 【教学过程】 一、知识梳理: 1. 一次分函数的定义 我们把形如(0,)cx d y a ad bc ax b +=≠≠+的函数称为一次分函数。 2. 一次分函数(0,)cx d y a ad bc ax b +=≠≠+的图象和性质 2.1 图象:其图象如图所示. 2.2定义域: ? ?????-≠a b x x ; 2.3 值域:? ?????≠ a c y y ; 2.4 对称中心:??? ? ?- a c a b ,;

2.5 渐近线方程:b x a =- 和c y a =; 2.6 单调性:当ad>bc 时,函数在区间(,)b a -∞-和(,)b a -+∞分别单调递减;当ad

分式指数函数和分式对数函数的对称中心的应用

分式指数函数和分式对数函数的对称中心的应用 知识准备:函数)(x f 满足n x m f x m f =-++)()(,则)(x f 的图像关于点)2 ,(n m 对称。 1、函数)1,0(11)(≠>+=a a a x f x 的图像关于点)2 1,0(对称。 推论:函数)1,0(2111)(≠>-+= a a a x f x 为奇函数,它的图像关于原点)0,0(对称。 2、函数)1,0(11)(≠>-=a a a x f x 的图像关于点)2 1,0(-对称。 推论:函数)1,0(2 111)(≠>+-= a a a x f x 为奇函数,它的图像关于原点)0,0(对称。 3、函数)0,1,0()(>≠>+= b a a b a c x f x 的图像关于点)2,(log b c b a 对称。 4、函数)0,1,0()(>≠>-=b a a b a c x f x 的图像关于点)2,(log b c b a -对称。 结论:函数)0,1,0()(≠≠>+=m a a m a n x f x 的图像关于点)2,(log m n m a 对称。 一、分式指数函数的对称中心的应用 1、分式指数函数a a a x f x x +=)( 的图像关于)21,21(中心对称,所以总有1)1()(=-+x f x f 例:已知244)(+=x x x f ,则)2018 2017()20182016()20182()20181(f f f f ++???++ 的值是

1014。 2、分式指数函数a a x f x +=1)(的图像关于)21,21(a 中心对称,所以总有a x f x f 1)1()(=-+ 例:已知2 21)(+=x x f ,则)6()5()4()5(f f f f ++???+-+-的值是23。 3、分式指数函数x a a x f -=21)(的图像关于)21,2(2a 中心对称,所以总有2 1)1()(a x f x f =-+ 例:已知函数x x f 2 41)(-=的图像关于点P 对称,则点P 的坐标是)81,2(。 4、分式指数函数)1,0,0,()(≠≠≠++=a a rs qr ps s ra q pa x f x x >的图像关于)2,log (rs qr ps r s a +中心对称,所以总有rs qr ps x r s f x f a +=-+)2log ()( 二、分式对数函数的对称中心的应用 分式对数函数)1,0,0,(log )(≠≠≠++=a a rs qr ps s rx q px x f a >的图像关于)log ,2(r p rp qr ps a -+中心对称,所以总有r p x rp qr ps f x f a log 2)()(=--++

数学物理方程有感

书本个人总结: 由于物理学,力学和工程技术等方面的许多问题都可以归结为偏微分方程的定解问题,而在数学物理方程这门课上,我们的主要任务便是求解这些定解问题,也就是说在已经列出的方程与定解条件之后,怎样去求既满足方程又满足定解条件的解。 而我们的常用的解决偏微分方程的方法的统一思路是将一个偏微分方程的求解设法转化成一个常微分方程问题的求解。 而我们在学习过程中接触到的常用方法有:分离变量法,行波法,积分变换法和拉普拉斯方程的格林函数法 第二章: 本章主要介绍了分离变量法,介绍了有界弦的自由振动,有限长杆上的热传导,圆域内的二维拉普拉斯方程的定解问题等泛定方程和边界条件都是齐次的偏微分方程的求解,还介绍了非齐次方程的解法,非齐次边界条件的处理等等。 A . 其中泛定方程和边界条件都是齐次的偏微分方程的求解步骤,取有界弦的自由振动的方程求解作为例子,定解问题为: 第一步:分离变量 目标:分离变量形式的非零解)()(),(t T x X t x u = 结果:函数)(x X 满足的常微分方程和边界条件以及)(t T 满足的常微分方程 条件:偏微分方程和边界条件都是齐次的 第二步:求解本征值问题 利用0)()(''=+x X x X λ和边界条件0)0(=X 和0)(=l X 求出本征值和本函数: 本征值: 本征函数: 第三步:求特解,并叠加出一般解 ? ??????====<<>??=??) ()0,(),()0,(,0),(),0(0 ,0 ,22222x x u x x u t L u t u L x t x u a t u t ψ?0 )(2 )(''=+t T a t T λ ,3,2,1 2)(==n l n n πλx l n πsin (x)X n =x l n at l n D at l n C t x u n n n πππsin )cos sin (),(1∑∞ =+=

函数的周期和对称性

专题:函数的周期性对称性 1、周期函数的定义 一般地,对于函数)(x f y =,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+,那么函数)(x f y =就叫做周期函数,非零常数T 叫做这个函数的一个周期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 显然,若T 是函数的周期,则)0,(≠∈k z k kT 也是)(x f 的周期。如无特别说明,我们后面一般所说的周期是指函数的最小正周期。 说明:1、周期函数定义域必是无界的。 2、周期函数不一定都有最小正周期。 推广:若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期; )2 ()2(T x f T x f -=+,则)(x f 周期为T ; ()f x 的周期为)(x f T ω?的周期为 ω T 。 2、常见周期函数的函数方程: (1)函数值之和定值型,即函数)()()(b a C x b f x a f ≠=+++ 对于定义域中任意x 满足)()()(b a C x b f x a f ≠=+++,则有)()]22([x f a b x f =-+,故函数)(x f 的周期是)(2a b T -= 特例:()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数; (2)两个函数值之积定值型,即倒数或负倒数型 若)()()(可正可负,C b a C x b f x a f ≠=+?+,则得 )]22()2[()2(a b a x f a x f -++=+,所以函数)(x f 的周期是)(2a b T -=

数学物理方法试卷(全答案).doc

嘉应学院物理系《数学物理方法》B课程考试题 一、简答题(共70 分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一( 6 分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数 相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类如何判别(6分) 在挖去孤立奇点Zo 而形成的环域上的解析函数F( z)的洛朗级数,或则没有负幂项,或则 只有有限个负幂项,或则有无限个负幂项,我们分别将Zo 称为函数 F( z)的可去奇点,极点及本性奇点。 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性( 6 分) 1,定解问题有解; 2,其解是唯一的; 3,解是稳定的。满足以上三个条件,则称为定解问题 的适定性。 4、什么是解析函数其特征有哪些( 6 分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数 . u x, y C1 2)这两曲线族在区域上正交。 v x, y C2 3)u x, y 和 v x, y 都满足二维拉普拉斯方程。(称为共轭调和函数 ) 4)在边界上达最大值。 4、数学物理泛定方程一般分为哪几类波动方程属于其中的哪种类型( 6 分)

数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出 (x) 挑选性的表达式( 6 分) f x x x 0 dx f x 0 f x x dx f 0 f (r ) ( r R 0 ) dv f ( R 0 ) 、写出复数 1 i 3 的三角形式和指数形式( 8 分) 6 2 cos isin 1 3 2 i 2 三角形式: 2 sin 2 cos 2 1 i 3 cos i sin 2 3 3 1 指数形式:由三角形式得: 3 i z e 3 、求函数 z 在奇点的留数( 8 分) 7 1)( z 2) 2 (z 解: 奇点:一阶奇点 z=1;二阶奇点: z=2 Re sf (1) lim (z 1) z 1 ( z 1)( z 2) 2 z 1

一类隐函数求斜渐近线的方法

一类隐函数求斜渐近线的方法Ξ 李冬红 (中央财经大学数学部 北京 100081) 摘 要 给出形如笛卡儿叶形线一类由二元高次方程所确定隐函数求斜渐近线的方法和相关结论 关键词 隐函数 斜渐近线 中图分类号O172.1 由方程(或方程组)所确定的隐函数(或隐函数组),不仅包含了所有的显函数,重要的是它包含了很多有用的非初等函数,从而给出了表示非初等函数的一种新方法。有些微分方程的解不能用显函数表示,但却能用函数方程所确定的隐函数表示。我们可以象研究显函数一样,研究隐函数(尤其是不能显化的隐函数)的各种性态。高等数学的教材中对隐函数求导问题已经论述的非常充分,继而与之相关的隐函数的单调性、极值等问题就迎刃而解了。但是要想描绘出隐函数的图象,如笛卡儿叶形线的图象,还需要了解隐函数求渐近线的方法。本文给出了形如笛卡儿叶形线这一类隐函数(由二元高次方程所确定)求斜渐近线的方法。 下面介绍求由方程y3+x3-3axy=0所确定的隐函数的斜渐近线的解法。 解法一 将隐函数方程转化为参数方程 令y=t x,则t3x3+x3-3ax?t x=0 x= 3at 1+t3 y=3at2 1+t 3当t→-1时x→∞1 由斜渐近线计算公式[1]有 斜率 k=lim x→∞y x =lim t→-1 3at2 1+t3 3at 1+t3 =lim t→-1 t=-1 截距 b=lim x→∞ (y-kx) =lim t→-13at2 1+t3 + 3at 1+t3 =lim t→-13at2+3at 1+t3 =-a 所以斜渐近线为y=-x-a 解法二 直接由斜渐近线计算公式 令 k=lim x→∞y x 42 高等数学研究 STUDIES IN COLL ECE MA THEMA TICS Vol.6,No.3 Sep1,2003 Ξ收稿日期:2002-12-23

有理分式函数的图象及性质

有理分式函数的图象及性质 【知识要点】 1.函数(0,)ax b y c ad bc cx d += ≠≠+ (1)定义域:{|}d x x c ≠-(2)值域:{|y y ≠ 单调区间为(,),(,+)d d c c -∞-- ∞(4)直线,d a x y c c =- = ,对称中心为点(,)d a c c - (5)奇偶性:当0a d ==时为奇函数。(62.函数(0,0)b y ax a b x =+ >>的图象和性质: (1)定义域:{|0}x x ≠(2)值域:{|y y y ≥≤或(3)奇偶性:奇函数(4)单调性:在区间+),(∞上是增函数;在区间0)上是减函数(5以y 轴和直线y ax =为渐近线(6)图象:如图所示。 3.函数(0,0)b y ax a b =+ ><的图象和性质:

【例题精讲】 1.函数1 1+- =x y 的图象是 ( ) A B C D 2.函数23 (1)1 x y x x += <-的反函数是 ( ) 3333.(2) . (2) . (1) .(1)2 2 2 2 x x x x A y x B y x C y x D y x x x x x ++++= <= ≠=<= ≠---- 3.若函数2()x f x x a +=+的图象关于直线y x =对称,则a 的值是 ( ) . 1 . 1 . 2 .2A B C D -- 4.若函数21 ()x f x x a -=+存在反函数,则实数a 的取值范围为 ( ) 11. 1 . 1 . .2 2 A a B a C a D a ≠-≠≠ ≠- 5.不等式14x x > 的解集为 ( ) 1111111. (,0)( ,) . (-,)( ,) . (,0)(0,,+) .(,0)(0, ) 22 2 2 2 2 2A B C D - +∞∞- +∞-∞- 6.已知函数2 ()ax b f x x c += +的图象如图所示,则,,a b c 的大小关系为 ( ) . . . .A a b c B a c b C b a c D b c a >>>>>>>> 7.若正数a 、b 满足,3++=b a ab 则ab 的取值范围是_____ 。 8.函数2 34 x y x = +的值域是 。 9.若函数1 a x y x a -= --的反函数的图象关于点(1,4)-成中心对称,则实数 a = 。 10.函数11 x x e y e -= +的反函数的定义域是 。 11.不等式 2113 x x ->+的解集是 。 12.函数2 2 1 x x y x x -= -+的值域是 。

数学物理方程-第五章格林函数法

第五章 格林函数法 在第二章中利用分离变量法求出了矩形区域和圆域上位势方程Dirichlet 问 题的解.本章利用Green 函数法求解一些平面或空间区域上位势方程Dirichlet 问题. 另外,也简单介绍利用Green 函数法求解一维热传导方程和波动方程半无界问题. 应指出的是:Green 函数法不仅可用于求解一些偏微分方程边值问题或初边值问题,特别重要的是,它在偏微分方程理论研究中起着非常重要的作用. §5?1 格林公式 在研究Laplace 方程或Poisson 方程边值问题时,要经常利用格林(Green )公式,它是高等数学中高斯(Gauss )公式的直接推广. 设Ω为3R 中的区域,?Ω充分光滑. 设k 为非负整数,以下用()k C Ω表示在 Ω上具有k 阶连续偏导的实函数全体,()k C Ω表示在Ω上具有k 阶连续偏导的实 函数全体. 如()10()()()()u C C C C ∈Ω?ΩΩ=Ω,表示(,,)u x y z 在Ω具有一阶连续偏导数而在Ω上连续. 另外,为书写简单起见,下面有时将函数的变量略去. 如将(,,)P x y z 简记为P ,(,,)P x y z x ??简记为P x ??或x P 等等. 设(,,)P x y z ,(,,)Q x y z 和(,,)R x y z 1()C ∈Ω,则成立如下的Gauss 公式 ( )P Q R dV Pdydz Qdydx Rdxdy x y z Ω ?Ω ???++=++???????? (1.1) 或者 ( )(cos cos cos )P Q R dV P Q R ds x y z αβγΩ ?Ω ???++=++???????? (1.2) 如果引入哈米尔顿(Hamilton )算子: ( ,,)x y z ??? ?=???,并记(,,)F P Q R = ,则Gauss 公式具有如下简洁形式 ???????=??Ω Ω ds n F dv F (1.3) 其中(cos ,cos ,cos )n αβγ= 为?Ω的单位外法向量. 注1 Hamilton 算子是一个向量性算子,它作用于向量函数(,,)F P Q R = 时,其运算定义为 (,,)(,,) , F P Q R x y z P Q R x y z ??? ??=???????=++???

数学物理方法课程教学大纲

《数学物理方法》课程教学大纲 (供物理专业试用) 课程编码:140612090 学时:64 学分:4 开课学期:第五学期 课程类型:专业必修课 先修课程:《力学》、《热学》、《电磁学》、《光学》、《高等数学》 教学手段:(板演) 一、课程性质、任务 1.《数学物理方法》是物理教育专业本科的一门重要的基础课,它是前期课程《高等数学》的延伸,为后继开设的《电动力学》、《量子力学》和《电子技术》等课程提供必需的数学理论知识和计算工具。本课程在本科物理教育专业中占有重要的地位,本专业学生必须掌握它们的基本内容,否则对后继课的学习将会带来很大困难。在物理教育专业的所有课程中,本课程是相对难学的一门课,学生应以认真的态度来学好本课程。 2.本课程的主要内容包括复变函数、傅立叶级数、数学物理方程、特殊函数等。理论力学中常用的变分法,量子力学中用到的群论以及现代物理中用到的非线性微分方程理论等,虽然也属于《数学物理方法》的内容,但在本大纲中不作要求。可以在后续的选修课中加以介绍。 3.《数学物理方法》既是一门数学课程,又是一门物理课程。注重逻辑推理和具有一定的系统性和严谨性。但是,它与其它的数学课有所不同。本课程内容有很深广的物理背景,实用性很强。因此,在这门课的教学过程中,不能单纯地追求理论上的完美、严谨,而忽视其应用。学生在学习时,不必过分地追求一些定理的严格证明、复杂公式的精确推导,更不能死记硬背,而应重视其应用技巧和处理方法。

4.本课程的内容是几代数学家与物理学家进行长期创造性研究的成果,几乎处处都闪耀创新精神的光芒。教师应当提示学生注意在概念建立、定理提出的过程中所用的创新思维方法,在课堂教学中应尽可能地体现历史上的创造过程,提高学生的创造性思维能力。二、课程基本内容及课时分配 第一篇复数函数论 第一章复变函数(10) 教学内容: §1.1.复数与复数运算。复平面,复数的表示式,共轭复数,无穷远点,复数的四则运算,复数的幂和根式运算,复数的极限运算。 §1.2.复变函数。复变函数的概念,开、闭区域,几种常见的复变函数,复变函数的连续性。 §1.3.导数。导数,导数的运算,科希—里曼方程。 §1.4.解析函数。解析函数的概念,正交曲线族,调和函数。 §1.5.平面标量场。稳定场,标量场,复势。 第二章复变函数的积分(7) 教学内容: §2.1.复数函数的积分,路积分及其与实变函数曲线积分的联系。 §2.2.科希定理。科希定理的内容和应用,孤立奇点,单通区域,复通区域,回路积分。 §2.3.不定积分*。原函数。 §2.4.科希公式。科希公式的导出,高阶导数的积分表达式。(模数原理及刘维定理不作要求) 第三章幂级数展开(9) 教学内容:

关于函数曲线的渐近线

关于函数的渐近线问题 函数的渐近线:假设函数()f x 是我们要求解的函数。那么它的渐近线会是什么形式呢? 首先我们知道函数()f x 的渐近线肯定是一条一次函数即y kx b =+,其中k 和b 分别为渐进线的斜率和截距。那么我们知道所谓渐进线就是函数曲线与这条直线的距离越来越小,就是曲线与渐近线越来越近,那么我们知道当x →∞时函数()f x 与渐近线的距离应该为0.从而我们有:()lim ()0x f x kx b →∞ -+=????, 从而[]()11lim lim ()lim 0x x x f x k f x kx b x x x →∞→∞→∞??-=-==???? 也就是说函数的渐近线的斜率为:()lim x f x k x →∞=。 这样我们就知道了渐近线的斜率,剩下的就是求解渐近线的截距了,然而我们知道: ()lim ()0x f x kx b →∞-+=????,即[]lim ()x f x kx b →∞ -=,所以渐近线我们也就求出来了。 当函数存在不定义的点时,比如1()1 f x x = -在1x =处就是它的不定义点,但是我们知道当1x →时,函数趋向于∞,所以直线1x =就是函数曲线的垂直渐近线。 综上所述,我们知道求解函数曲线的渐近线时,首先我们要考虑正常的渐近线,即斜率存在,那么利用上面的分析就可以求解出来渐近线的斜率和截距。然后就是考虑函数的不定义点了,那么也就把函数的渐近线就全部求解出来了。 例、求曲线3 2()23 x f x x x =+-的渐近线。 解:我们有:2 2()lim lim 123x x f x x x x x →∞→∞==+- 因此[]3 3322223lim ()lim lim 22323x x x x x x x x b f x kx x x x x x →∞→∞→∞????--+=-=-==-????+-+-???? 所以函数有渐近线2y x =-。然而易知:()() 33 2()=2331x x f x x x x x =+-+-,也就是说333lim ()lim (3)(1)x x x f x x x →-→-==∞+-和3 11lim ()lim (3)(1) x x x f x x x →→==∞+-,这样函数还有3,1x x =-=两条渐近线。

数学物理方程期末试卷

2012学年第二学期数学与物理方程期末试卷 出卷人:欧峥 1、长度为 l 的弦左端开始时自由,以后受到强度为sin A t ω的力的作用,右端系在弹性系数为k 的弹性支承上面;初始位移为(),x ?初始速度为().x ψ试写出相应的定解问题。(10分) 2、长为l 的均匀杆,侧面绝热,一端温度为0度,另一端有已知的恒定热流进入, 设单位时间流入单位截面积的热量为q ,杆的初始温度分布是() 2 x l x -,试写出 其定解问题。(10分) 3、试用分离变量法求定解问题(10分): .? ?? ?? ?? ??===><??? ==?????=+= ????? 5、利用行波法,求解波动方程的特征问题(又称古尔沙问题)(10分): ???? ???==??=??=+=-).()(002 22 22x u x u x u a t u at x at x ψ? ())0()0(ψ?=

6、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?????=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 7、用积分变换法求解定解问题(10分): ???? ???=+=>>=???==,1,10,0,1002y x u y u y x y x u 8、用积分变换法求解定解问题(10分): ?? ?==>∈=0)0,(,sin )0,(0,,2x u x x u t R x u a u t xx tt 9、用格林函数法求解定解问题(10分): 22220 0, y 0, () , .y u u x y u f x x =???+=

函数对称性的三类题型

对称性 一、有关对称性的常用结论 (一)函数图象自身的对称关系(加法) 1、轴对称 (1))(x f -=)(x f ?函数)(x f y =图象关于y 轴对称; (2) 函数)(x f y =图象关于a x =对称?)()(x a f x a f -=+?()(2)f x f a x =- ?()(2)f x f a x -=+; (3)若函数)(x f y =定义域为R ,且满足条件)()(x b f x a f -=+,则函数)(x f y =的 图象关于直线对称。 2、中心对称 (1))(x f -=-)(x f ?函数)(x f y =图象关于原点对称;. (2)函数)(x f y =图象关于(,0)a 对称?)()(x a f x a f --=+?()(2)f x f a x =-- ?)2()(x a f x f +=-; (3)函数)(x f y =图象关于),(b a 成中心对称?b x a f x a f 2)()(=++- (4)若函数)(x f y = 定义域为R ,且满足条件c x b f x a f =-++)()((c b a ,,为常数), 则函数)(x f y =的图象关于点 对称。 (二)两个函数图象之间的对称关系(减法) 1.若函数)(x f y =定义域为R ,则两函数)(x a f y +=与)(x b f y -=的图象关于直线 对称。 推论1:函数)(x a f y +=与函数)(x a f y -=的图象关于直线0=x 对 称。 推论2:函数)(a x f y -=与函数)(x a f y -=的图象关于直线a x =对称。 2.若函数)(x f y =定义域为R ,则两函数)(x a f y +=与)(x b f c y --=的图象关于点 对称。 推论:函数)(x a f y +=与函数)(x b f y --=图象关于点)0,2 ( a b -对称。 类型一:双对称问题 1. 设)(x f 是定义在R 上的偶函数,且)1()1(x f x f -=+,当01≤≤-x 时, 2 a b x -= )2 ,2( c a b -2 b a x += )2 ,2(c b a +

数学物理方法 课程教学大纲

数学物理方法课程教学大纲 一、课程说明 (一)课程名称:数学物理方法 所属专业:物理、应用物理专业 课程性质:数学、物理学 学分:5 (二)课程简介、目标与任务 这门课主要讲授物理中常用的数学方法,主要内容包括线性空间和线性算符、复变函数、积分变换和δ-函数、数学物理方程和特殊函数等,适当介绍近年来的新发展、新应用。本门课程是物理系学生建立物理直观的数学基础,其中很多内容是为后续物理课程如量子力学、电动力学等服务,是其必需的数学基础。 这门课中的一些数学手段将在今后的基础研究和工程应用中发挥重要的作用,往往构成了相应领域的数学基础。一般来讲,因为同样的方程有同样的解,掌握和运用这些数学方法所体现的物理内容将更深入,更本质。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接 本课程以普通物理、高等数学和部分线性代数知识为基础,为后继的基础课程和专业课程研究有关的数学问题作准备,也为今后工作中遇到的数学物理问题求解提供基础。 (四)教材:《数学物理方法》杨孔庆编 参考书:1. 《数学物理方法》柯朗、希尔伯特著 2. 《特殊函数概论》王竹溪、郭敦仁编著 3. 《物理中的数学方法》李政道著 4. 《数学物理方法》梁昆淼编 5. 《数学物理方法》郭敦仁编 6. 《数学物理方法》吴崇试编 二、课程内容与安排 第一部分线性空间及线性算子 第一章R3空间的向量分析 第一节向量的概念 第二节R3空间的向量代数

第三节R3空间的向量分析 第四节R3空间的向量分析的一些重要公式 第二章R3空间曲线坐标系中的向量分析 第一节R3空间中的曲线坐标系 第二节曲线坐标系中的度量 第三节曲线坐标系中标量场梯度的表达式 第四节曲线坐标系中向量场散度的表达式 第五节曲线坐标系中向量场旋度的表达式 第六节曲线坐标系中Laplace(拉普拉斯)算符▽2的表达式第三章线性空间 第一节线性空间的定义 第二节线性空间的内积 第三节Hilbert(希尔伯特)空间 第四节线性算符 第五节线性算符的本征值和本征向量 第二部分复变函数 第四章复变函数的概念 第一节映射 第二节复数 第三节复变函数 第五章解析函数 第一节复变函数的导数 第二节复变函数的解析性 第三节复势 第四节解析函数变换 第六章复变函数积分 第一节复变函数的积分 第二节Cauchy(柯西)积分定理 第三节Cauchy(柯西)积分公式 第四节解析函数高阶导数的积分表达式 第七章复变函数的级数展开

一次分式函数最值问题

一次分式函数最值问题Last revision on 21 December 2020

拆分函数解析式结构,巧解问题 --------------函数()ax b f x cx d +=+值域(最值)问题的解法 在高中,初学函数之时,我们接触的具体函数并不多。前面我们已经给出了一元二次函数值域(最值)的求法步骤。除此,还有一类()(0)ax b f x c cx d +=≠+函数也很常见,它也是今后解决其他复杂函数值域(最值)问题的基础。此类函数看似生疏,而实际这类函数的图像,就是我们初中学过的反比例函数图像。 此类问题有三种类型,一种是函数式子决定定义域,不额外附加函数定义域;另一种是附加定义域。还有一种是可转化为()(0)ax b f x c cx d += ≠+型的函数,此类随着学习的深入,再行和大家见面。 下面我们以具体实例,说明如何依据函数解析式的结构特征,选择适当的方法步骤解决问题。 【例题1】:求函数21()3 x f x x +=-的值域; 【思路切入】:从函数结构可以得出,函数定义域由分式决定,为 {|3}x x R x ∈≠且,此时,将函数解析式的结构进行拆分变换,不难得出反比例函数结构,如此,得到解法程序: 1、将函数分解为反比例的结构; 2、根据反比例结构特性,或者利用图像,或者利用数式属性得到函数值域。 【解析】:原函数可化为212677()2333 x x f x x x x +-+===+---, 7303 x x ≠≠-且 ,2y ∴≠,函数()f x 值域为{|2}y y R y ∈≠且; 【例题2】:求函数21(),(2,4]1x f x x x -=∈-的值域;

一次分式型函数

:Y 一次分式型函数(0,)cx d y a ad bc ax b += ≠≠+ 一、课前准备: 1.一次分函数的定义 我们把形如(0,)cx d y a ad bc ax b += ≠≠+的函数称为一次分函数。 2. 一次分函数的图象是双曲线 3.一次分函数(0,)cx d y a ad bc ax b += ≠≠+的性质 ①.定义域:? ? ????-≠a b x x ; ②. 值域:? ?????≠a c y y ; ③.对称中心:?? ? ??-a c a b ,; ④. 渐近线方程:b x a =-和c y a =; ⑤.对称轴方程:[()]c b y x a a -=--和[()]c b y x a a -=--- ⑥单调性:当ad>bc 时,函数在区间(,)b a -∞-和(,)b a -+∞分别单调递减; 当adbc 时,在“一、三象限”;当ad

函数的渐近线

函数的渐近线 当前讲授 下面是一些我们非常熟悉的基本初等函数的图形.它们分别是反比例函数、指数函数、、对数函数、正切函数和反正切函数的图形. 当前讲授 请同学们对照图形,发挥想象力,思考两个问题:1、“函数的渐近线”这一说法从字面上顾名思义,可理解为函数曲线可以无限去趋近的直线.按照这样的理解, 以上这些函数曲线有没有渐近线呢?2、如果你认为上面给出的曲线有渐近线,你觉 得应该用什么样的数学语言去描述比较确切呢 定义 1 考察函数在某个点处的极限.如果 函数在该点的极限(或左极限,或右极限)为无穷大,则称直 线是曲线的铅直渐近线.定义2 考察 函数当自变量趋于无穷大时的极限.如果极限为某 常数C,即(或,或 ),则称直线为曲线的水平 渐近线. 简言之,在自变量的某个变化过程中,曲线上的动点与某条直线的距离趋于零,那么 这种直线叫做该曲线的渐近线. 反比例函数??因为,所以直线即轴是函数的铅直渐近线.因为,所以直线即轴是函数的水平渐近线.

指数函数? 因为,,所以直线是指数函数、的水平渐近线. 自然对数函数? 因为,所以直线即轴是对数函数的铅直渐近线.正切函数?

因为,,所以直线,都是正切函数??的铅直渐近线. 反正切函数因为,,所以直线,都是反正切函数的水平渐近线. 典型例题? 例?求曲线的渐近线.解:? 首先考察函数有 无水平渐近线.∵,∴曲线有水平渐近线.其次考察曲线有无铅直渐近线.因为?,有间断点和.∵,∴是曲线的铅直渐近线. ∵,∴是曲线的铅直渐近线. 例求曲线的渐近线.解函数的定义域为.首 先考察函数有无水平渐近线.∵,∴曲线有水平渐近线.其次考察函数有无铅直渐近线. ∵,∴曲线有铅直渐近线.

分式函数求最值

分式函数的图象及性质和值域(4,13班) 耿 在近几年的高考和模拟考试题目中,经常会出现求解模型函数为分式函数值域的题目,而分式函数的值域求法有共同的规律,本节课给大家介绍解法并总结出通法! 【知识要点】 1.函数(0,)ax b y c ad bc cx d +=≠≠+ (1)定义域:{|}d x x c ≠-(2)值域:{|y y ≠单调区间为(,),(,+)d d c c -∞--∞(4)直线,d a x y c c =-=,对称中心为点(,)d a c c - (5)奇偶性:当0a d ==时为奇函数。(62.函数(0,0)b y ax a b x =+ >>的图象和性质: (1)定义域:{|0}x x ≠(2)值域:{|y y y ≥或(3)奇偶性:奇函数(4 )单调性:在区间+),(∞上是增函数;在区间上是减函数(5以y 轴和直线y ax =为渐近线(6)图象:如图所示。 3.函数(0,0)b y ax a b x = + ><的图象和性质: (1)定义域:{|0}x x ≠(2)值域:R (3调性:在区间(0,+)∞和(,0)-∞上是增函数。(5直线y ax =为渐近线(6)图象:如图所示。 (0)b y ax a x =+ <的图象(如图所示)和性质(略) :

类型一:(, ,,) ax b y a b c d R cx d + =∈ + (“一次比一次”型) 备注:本质上一定是反比例函数上下或左右平移而来,所以一定是中学对称函数,可以从图像观察出其值域范围。 例1。函数 1 1 + - = x y的图象是() A B C D 例2、画出函数 21 1 x y x - = - 的图像,依据函数图像,指出函数的单调区间、值域、对称中心。【分析】 212(1)11 2 111 x x y x x x --+ ===+ --- ,即函数 21 1 x y x - = - 的图像可以经由函数 1 y x = 的图像向右平移1个单位,再向上平移2个单位得到。如下表所示: 12 111 2 11 y y y x x x =??→=??→=+ -- 右上 由此可以画出函数 21 1 x y x - = - 的图像,如下: 单调减区间:(,1),(1,) -∞+∞; 值域:(,2)(2,) -∞+∞ U; x O y x O y 1 2 x O y 1

格林函数以及拉普拉斯方程

格林函数 格林函数的概念及其物理意义 格林函数法是求解导热问题的又一种分析解法。 从物理上看,一个数学物理方程是表示一种特定的"场"和产生这种场的"源"之间的关系。例如,热传导方程表示温度场和热源之间的关系,泊松方程表示静电场和电荷分布的关系,等等。这样,当源被分解成很多点源的叠加时,如果能设法知道点源产生的场,利用叠加原理,我们可以求出同样边界条件下任意源的场,这种求解数学物理方程的方法就叫格林函数法.而点源产生的场就叫做格林函数。 物体中的温度分布随时间的变化是由于热源、边界的热作用以及初始温度分布作用的结果。这些热作用都可以看做广义上的热源。从时间的概念上说,热源可以使连续作用的,如果作用的时间足够短,则可以抽象为瞬时作用的热源。同样的热源在空间上是有一定分布的,但如果热源作用的空间尺度足够小,也可以抽象为点热源、线热源和面热源。在各种不同种类的热源中,瞬时点热源虽然仅是一种数学上的抽象,却有着重要的意义,因为在其他的各种热源都可以看作是许多瞬时热源的集合,即把空间中的热源看成是在空间中依次排列着的许多点热源,在特定的几何条件的导热系统中,在齐次边界条件和零初始条件下单位强度的瞬时点热源所产生的温度场称为热源函数,或称格(Green)函数。对于二维和一维导热问题,也把由线热源和面热源引起的温度场称为相应的格林函数。对于线性的导热问题,由各种复杂的热源引起的温度场可以由许多这样的瞬时热源引起的温度场叠加得到,数学上即成为某种几分。这就是热源法,或称格林函数法,求解非稳态导热问题的基本思路。采用格林函数法可以求解带有随时间变化的热源项且具有非齐次边界条件的导热微分方程,对于一维、二维和三维问题的解在形式上都可以表示的非常紧凑,而且解的物理意义比较清楚。格林函数法可以来求解不同类型的偏微分方程,包括线性的椭圆形的偏微分方程(如带有热源项的稳态导热问题)以及双曲型偏微分方程(如力学中的震动问题)。在此仅讨论用格林函数法求解非稳态导热问题。 用格林函数法求解的困难在于找到格林函数,而格林函数的形式取决于特定问题的具体条件,包括几何条件(即有限大、半无限大或无限大)、边界条件和坐标系的选取。因此用格林函数法求解非稳态导热问题首先需要对特定定解条件的导热系统确定其格林函数。本方法的第二个要点是确定有热源和非齐次边界条件的一般导热问题的温度分布与格林函数的关系。本节从几个较简单的例子开始介绍格林函数法在解决稳态导热问题中的应用,再推广到更为一般的情况。 “瞬时”和“点”热源的概念在数学上都可用狄克拉δ分布函数,简称δ函数,来表示。δ函数的定义为

数学物理方法解析函数

第二章 解析函数 第一节 解析函数的概念及哥西-黎曼条件 一 导数的定义 定义 2.1. 设函数()w f z =在区域D 上有定义,且z 及z z +?均属于D ,如果 0()()lim z f z z f z z ?→+?-? 2.1 存在,则称此极限为函数()f z 在z 点的导数,记为()df z dz 或'()f z . 这时称函数()f z 在z 点可微. 例1. ()n f z z =在复平面上每点均可微,且 1n n d z nz dz -=. 事实上,对固定的点z ,有 121100()(1)lim lim[()]2n n n n n n z z z z z n n nz z z z nz z ----?→?→+?--=+?++?=?. 例2. ()f z z =在复平面上均不可微. 事实上, z z z z z z z z z z +?-+?-?==???. 当0z ?→时,上式的极限不存在. 因为当z ?取实数而趋于0时,它趋于1,当z ?取纯虚数而趋于0时,它趋于1-. 函数在一点可微,则它在该点必连续,反之不一定正确. 例如函数()f z z =,由000 lim ()lim ()lim ()()z z z f z z z z z z z f z ?→?→?→+?=+?=?+==,知它在复平面上处处连续,但由例2知它处处不可微.

若函数(),()f z g z 在区域D 上z 点可微,则其和,差,积,商(要求分母不为0)在区域D 上z 点可微,且有如下的求导法则: [()()]''()'()f z g z f z g z ±=±, [()()]''()()()'()f z g z f z g z f z g z =+, 2 ()'()()()'()[]'(()0)()[()]f z f z g z f z g z g z g z g z -=≠. 二 哥西---黎曼条件 现在,我们来研究复变函数()f z 在点z 可微的必要条件和充分条件. 函数()(,)(,)f z u x y iv x y =+在一点可微,也就是说, 0()()lim '()z f z z f z f z z ?→+?-=?. 2.2 令,()()z x i y f z z f z u i v ?=?+?+?-=?+?,其中 (,)(,)u u x x y y u x y ?=+?+?-, (,)(,)v v x x y y v x y ?=+?+?-, 则前式变为 00lim '()x y u i v f z x i y ?→?→?+?=?+?. 因为z x i y ?=?+?无论按什么方式趋于0,(2.2)式总是成立的.可先让 0,0,x y ?→?=即变点z z +?沿平行于实轴的方向趋于z 点,此时(2.2)成为 00lim lim '()x x u v i f z x x ?→?→??+=??. 于是知道,u v x x ????必存在,且 '().u v f z i x x ??=+?? 2.3 同样,让0,0,y x ?→?=即变点z z +?沿平行于虚轴的方向趋于z 点,此时(2.2)成为

相关文档
最新文档