一元二次不等式恒成立题型

一元二次不等式恒成立题型
一元二次不等式恒成立题型

一元二次不等式恒成立专题

例题:设函数f (x )=mx 2-mx -1.

(1)若对于一切实数x ,f (x )<0恒成立,求m 的取值范围;

(2)对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.

(3)对于任意m ∈[1,3],f (x )<-m +5恒成立,求实数x 的取值范围. 解: (1)要使mx 2-mx -1<0恒成立,

若m =0,显然-1<0,满足题意;

若m ≠0,则??? m <0,

Δ=m 2+4m <0,即-4

(2)方法一 要使f (x )<-m +5在x ∈[1,3]上恒成立,

就要使m ? ????

x -122

+34m -6<0在x ∈[1,3]上恒成立.

令g (x )=m ? ????x -122

+34m -6,x ∈[1,3].

当m >0时,g (x )在[1,3]上是增函数,

∴g (x )max =g (3)=7m -6<0,∴0

当m =0时,-6<0恒成立;

当m <0时,g (x )在[1,3]上是减函数,

∴g (x )max =g (1)=m -6<0,得m <6,∴m <0.

综上所述,m 的取值范围是? ????

-∞,67.

方法二 当x ∈[1,3]时,f (x )<-m +5恒成立,

即当x ∈[1,3]时,m (x 2-x +1)-6<0恒成立.

∵x 2-x +1=? ????

x -122

+34>0,

又m (x 2-x +1)-6<0,∴m <6

x 2-x +1.

∵函数y =6x 2-x +1=6? ????x -122+34

在[1,3]上的最小值为67

,∴只需

m <67即可.

综上所述,m 的取值范围是?

????-∞,67. (3) 解 f (x )<-m +5,即mx 2-mx -1<-m +5,

m (x 2-x +1)-6<0.

设g (m )=m (x 2-x +1)-6.

则g (m )是关于m 的一次函数且斜率

x 2-x +1=? ????x -122+34

>0.

∴g (m )在[1,3]上为增函数,要使g (m )<0在[1,3]上恒成立,只需g (m )max =g (3)<0, 即3(x 2-x +1)-6<0,x 2-x -1<0,

方程x 2-x -1=0的两根为x 1=1-52,x 2=1+52, ∴x 2-x -1<0的解集为? ????1-52

,1+52, 即x 的取值范围为? ????1-52

,1+52. 练习:

1. 当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是________. 解析: 构造函数f (x )=x 2+mx +4,x ∈[1,2],

则f (x )在[1,2]上的最大值为f (1)或f (2).

由于当x ∈(1,2)时,不等式x 2+mx +4<0恒成立.

则有??? f 10,f 20,即??? 1+m +4≤0,4+2m +4≤0,

可得??? m ≤-5,m ≤-4,所以m ≤-5.

2.若不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是( )

A.m ≥2

B.m ≤-2

C.m ≤-2或m ≥2

D.-2≤m ≤2

答案 D

解析 由题意,得Δ=m 2-4≤0,∴-2≤m ≤2.

3.当不等式x 2+x +k >0恒成立时,k 的取值范围为________.

答案 ? ??

??14,+∞ 解析 由题意知Δ<0,即1-4k <0,

得k >14,即k ∈? ??

??14,+∞.

3.若关于x 的不等式x 2-4x -m ≥0对任意x ∈(0,1]恒成立,则m 的最大值为

( )

A.1

B.-1

C.-3

D.3

答案 C

解析 由已知可得m ≤x 2-4x 对一切x ∈(0,1]恒成立,

又f (x )=x 2-4x 在(0,1]上为减函数,

∴f (x )min =f (1)=-3,

∴m ≤-3,

∴m 的最大值为-3.

4.对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,则x 的取值范围是( )

A.1

B.x <1或x >3

C.1

D.x <1或x >2

答案 B

解析 设g (a )=(x -2)a +(x 2-4x +4), g (a )>0恒成立且a ∈[-1,1]

???? g 1x 2-3x +2>0,g 1x 2-5x +6>0

???? x <1或x >2,x <2或x >3?x <1或x >3.

5.对于任意实数x ,不等式(a -2)x 2-2(a -2)x -4<0恒成立,则实数a 的取值范围是( )

A.(-∞,2)

B.(-∞,2]

C.(-2,2)

D.(-2,2]

答案 D 解析 当a -2≠0时,

??? a -2<0,4a -22-4

a -24<0,即??? a <2,a 2<4, 解得-2

当a -2=0时,-4<0恒成立,

综上所述,-2

6.若不等式(a 2-1)x 2-(a -1)x -1<0的解集为R ,则实数a 的取值范围是________.

答案 ? ??

??-35,1 解析 ①当a 2-1=0时,a =1或a =-1.

若a =1,则原不等式为-1<0,恒成立,满足题意.

若a =-1,则原不等式为2x -1<0,

即x <12

,不合题意,舍去. ②当a 2-1≠0,即a ≠±1时,

原不等式的解集为R 的条件是

??? a 2-1<0,Δ=[a -1]2+4a 2-1<0,解得-35

??-35,1. 7.已知函数f (x )=x 2

+ax +3.

(1)当x ∈R 时,f (x )≥a 恒成立,求a 的取值范围;

(2)当x ∈[-2,2]时,f (x )≥a 恒成立,求a 的取值范围.

解 (1)f (x )≥a 恒成立,即x 2+ax +3-a ≥0恒成立,必须且只需Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0,

∴-6≤a ≤2,∴a 的取值范围为[-6,2].

(2)f (x )=x 2+ax +3=? ????x +a 22+3-a 24.

①当-a 2<-2,即a >4时, f (x )min =f (-2)=-2a +7,

由-2a +7≥a ,得a ≤73

,∴a 不存在; ②当-2≤-a 2≤2,即-4≤a ≤4时,f (x )min =3-a 24, 由3-a 24

≥a ,得-6≤a ≤2,∴-4≤a ≤2; ③当-a 2

>2,即a <-4时,f (x )min =f (2)=2a +7, 由2a +7≥a ,得a ≥-7,∴-7≤a <-4. 综上,a 的取值范围为[-7,2].

不等式恒成立问题

不等式恒成立问题 一、 教学目标 1、 知识目标;掌握不等式恒成立问题求参数的范围的求解方法并会运用 2、 能力目标;培养学生分析问题解决问题的能力 3、 情感目标;优化学生的思维品质 二、 教学重难点 1、教学的重点;不等式恒成立问题求参数的范围的求解方法并会运用 2、教学的难点;不等式恒成立问题求参数的范围的求解方法的选择 三、 教学方法:高三复习探究课:学生研讨探究----学生归纳小结-----学生巩 固练习----学生变式探究---学生总结 四、 教学过程 1、 引人 高三数学复习中的不等式恒成立问题,涉及到函数的性质、图象, 渗透着换元、化归、数形结合、函数方程等思想方法,有利于考查学生的综合解题能力,因此备受命题者的青睐,也成为历年高考的一个热点。我们今天这堂课来研究不等式恒成立求参数的取值范围问题的求解方法。引入课题 2、新课 下面我们来看例1例1、对一切实数x ]1,1[-∈,不等式 a x a x 24)4(2-+-+>0恒成立,求实数a 的取值范围(由学生完成) 由一个基本题得到不等式恒成立问题求参数的范围的求解方法 解法一;分离参数 由原不等式可得:a(x-2) > -x 2+4x-4 , 又因为x ∈[-1,1] ,x-2∈[-3,-1] a<2-x 又因为x ∈[-1,1],所以 a<1. 解法二;分类讨论、解不等式

(x-2)[x-(2-a)]>0 当a=0时不等式恒成立 当a<0 时x>2-a 或x<2 不等式恒成立 当a>0时x>2 或x<2-a 所以2-a>1 即a<1 所以a<1时不等式恒成立 解法三;构造函数求最值 设f(x)=x2+(a-4)x+4-2a 当(4-a)/2∈[-1,1],即a∈[2,6]时 -a2<0 不成立,舍弃; 当a>6时,f(-1)=1-a+4+4-2a>0 a<3 不成立,舍弃; 当a<2时,f(1)=1+a-4+4-2a=1-a>0 a<1 综上得:a<1 解法四;构造方程用判别式韦达定理根的分布 设x2+(a-4)x+4-2a=0 方程无实根或有两实根两根小于-1或两根大于1 △=(a-4)2-4(4-2a)=a2≥0 所以1-(a-4)+4-2a>0且(4-a)/2<-1 或1+(a-4)+4-2a>0 且(4-a)/2>16且a<3 或a<1且a<2, 所以a<1 解法五;数形结合(用动画来演示 a(x-2)>-x2+4x-4 设y=a(x-2) 和y=-x2+4x-4 分别作两函数的图象

函数不等式恒成立问题经典总结

函数、不等式恒成立问题解法(老师用) 恒成立问题的基本类型: 类型1:设)0()(2 ≠++=a c bx ax x f ,(对于任意实数R 上恒成立) (1)R x x f ∈>在0)(上恒成立00?且a ; (2)R x x f ∈<在0)(上恒成立00a 时,],[0)(βα∈>x x f 在上恒成立?????>>-?????<- ?0 )(2020)(2βββαααf a b a b f a b 或或, ],[0)(βα∈x x f 在上恒成立?? ?>>?0 )(0 )(βαf f ],[0)(βα∈- ?????<-?0 )(2020)(2βββαααf a b a b f a b 或或 类型3: αα>?∈>min )()(x f I x x f 恒成立对一切 αα>?∈?∈>的图象的上方或的图象在恒成立对一切 恒成 一、用一次函数的性质 对于一次函数],[,)(n m x b kx x f ∈+=有: ?? ?<>?>0 )(0 )(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立 例1:若不等式)1(122 ->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。 解析:我们可以用改变主元的办法,将m 视为主变元,即将元不等式化为:0)12()1(2 <---x x m ,;令)12()1()(2 ---=x x m m f ,则22≤≤-m 时,0)(

不等式恒成立、能成立、恰成立问题

编号:2007-HX-001 不等式恒成立、能成立、恰成立问题 [文档副标题] [日期] 福建省长乐第一中学教科室 [公司地址]

不等式恒成立、能成立、恰成立问题 一、不等式恒成立问题的处理方法 1、转换求函数的最值: (1)若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >,?()f x 的下界大于A (2)若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <,()f x 的上界小于A 例1、设f(x)=x 2 -2ax+2,当x ∈[-1,+∞]时,都有f(x)≥a 恒成立,求a 的取值范围。 例2、已知(),22x a x x x f ++= 对任意[)()0,,1≥+∞∈x f x 恒成立,试求实数a 的取值范围; 例 3、R 上的函数()x f 既是奇函数,又是减函数,且当?? ? ??∈2, 0πθ时,有() ()022sin 2cos 2>--++m f m f θθ恒成立,求实数m 的取值范围. 例4、已知函数)0(ln )(4 4>-+=x c bx x ax x f 在1=x 处取得极值3c --,其中a 、b 为常数. (1)试确定a 、b 的值; (2)讨论函数)(x f 的单调区间; (3)若对任意0>x ,不等式2 2)(c x f -≥恒成立,求c 的取值范围。 2、主参换位法 例5、若不等式a 10x -<对[]1,2x ∈恒成立,求实数a 的取值范围 例6、若对于任意1a ≤,不等式2 (4)420x a x a +-+->恒成立,求实数x 的取值范围 例7、已知函数32 3()(1)132 a f x x x a x = -+++,其中a 为实数.若不等式2()1f x x x a '--+>对任意(0)a ∈+∞,都成立,求实数x 的取值范围. 3、分离参数法 (1) 将参数与变量分离,即化为()()g f x λ≥(或()()g f x λ≤)恒成立的形式; (2) 求()f x 在x D ∈上的最大(或最小)值; (3) 解不等式()max ()g f x λ≥(或()()min g f x λ≤) ,得λ的取值范围。 适用题型:(1) 参数与变量能分离;(2) 函数的最值易求出。 例8、当(1,2)x ∈时,不等式2 40x mx ++<恒成立,则m 的取值范围是 .

不等式恒成立问题的基本类型及常用解法 - 副本

不等式恒成立问题基本类型及常用解法 类型1:设f(x)=ax+b f(x) >0在x ∈[]n m ,上恒成立? ???0 )(0)( n f m f f(x) <0在x ∈[]n m ,上恒成立??? ?0)(0)( n f m f . 例1. 设y=(log 2x)2+(t-2)log 2x-t+1,若t 在[-2,2]上变化,y 恒取正值,求实数x 的取值范围。 例2. 对于 -1≤a ≤1,求使不等式(21)ax x +2<(2 1)12-+a x 恒成立的x 的取值范围。 类型2:设f(x)=ax 2+bx+c (a ≠0) f(x) >0在x ∈R 上恒成立?a >0 且△<0; f(x) <0在x ∈R 上恒成立?a <0 且△<0. 说明:①.只适用于一元二次不等式 ②.若未指明二次项系数不等于0,注意分类讨论. 例3.不等式3 642222++++x x m mx x <1对一切实数x 恒成立,求实数m 的取值范围。

类型3:设f(x)=ax 2+bx+c (a ≠0) (1) 当a >0时 ① f(x) >0在x ∈[]n m ,上恒成立 ??????≤-0)(2 m f m a b 或??????-o n a b m 2或?????≥-0)(2 n f n a b ??????≤-0)(2 m f m a b 或△<0或?????≥-0 )(2 n f n a b . ② f(x) <0在x ∈[]n m ,上恒成立?? ??0)(0)( n f m f . (2) 当a <0时 ① f(x) >0在x ∈[]n m ,上恒成立? ? ? ?0)(0)( n f m f ② f(x) <0在x ∈[]n m ,上恒成立 ??????≤-0)(2 m f m a b 或??????-o n a b m 2或?????≥-0)(2 n f n a b ??????≤-0)(2 m f m a b 或△<0或?????≥-0 )(2 n f n a b . 说明:只适用于一元二次不等式. 类型4:a >f(x) 恒成立对x ∈D 恒成立?a >f(x)m ax , a <f(x)对x ∈D 恒成立? a <f(x)m in . 说明:①. f(x) 可以是任意函数 ②.这种思路是:首先是---分离变量,其次用---极端值原理。把问题转化为求函数的最值,若f(x)不存 在最值,可求出f(x)的范围,问题同样可以解出。 例4.(2000.上海)已知f(x)=x a x x ++22 >0在x ∈[)+∞,1上恒成立,求实数a 的取值范围。

导数在处理不等式的恒成立问题(一轮复习教案)

学习过程 一、复习预习 考纲要求: 1.理解导数和切线方程的概念。 2.能在具体的数学环境中,会求导,会求切线方程。 3.特别是没有具体点处的切线方程,如何去设点,如何利用点线式建立直线方程。4.灵活应用建立切线方程与其它数学知识之间的内在联系。

5. 灵活应用导数研究函数的单调性问题 二、知识讲解 1.导数的计算公式和运算法则 几种常见函数的导数:0'=C (C 为常数);1 )'(-=n n nx x (Q n ∈); x x cos )'(sin =; x x sin )'(cos -=;1(ln )x x '= ; 1(log )log a a x e x '=, ()x x e e '= ; ()ln x x a a a '= 求导法则:法则1 [()()]()()u x v x u x v x ±'='±'.

法则2 [()()]()()()()u x v x u x v x u x v x '='+', [()]'()Cu x Cu x '= 法则3: ' 2 '' (0)u u v uv v v v -??=≠ ??? 复合函数的导数:设函数()u x ?=在点x 处有导数()x u x ?'=',函数()y f u =在点x 的对应点u 处有导 数()u y f u '=',则复合函数(())y f x ?=在点x 处也有导数,且x u x u y y '''?= 或(())()()x f x f u x ??'='?' 2.求直线斜率的方法(高中范围内三种) (1) tan k α=(α为倾斜角); (2) 1212 ()() f x f x k x x -= -,两点1122(,()),(,())x f x x f x ; (3)0()k f x '= (在0x x =处的切线的斜率); 3.求切线的方程的步骤:(三步走) (1)求函数()f x 的导函数()f x '; (2)0()k f x '= (在0x x =处的切线的斜率); (3)点斜式求切线方程00()()y f x k x x -=-; 4.用导数求函数的单调性: (1)求函数()f x 的导函数()f x '; (2)()0f x '>,求单调递增区间; (3)()0f x '<,求单调递减区间; (4)()0f x '=,是极值点。 考点一 函数的在区间上的最值 【例题1】:求曲线29623-+-=x x x y 在)5,2(上的最值 。 【答案】:最大值为18,最小值为-2. 【解析】:∵根据题意09123'2=+-=x x y ,∴3,121==x x ,由函数的单调性,当11=x ,2=y , 取得极大值;当32=x ,2-=y ,取得极小值;当5=x ,18=y 。所以最大值为18,最小值为-2.

恒成立问题----不等式恒成立、能成立、恰成立问题分析及应用(例题+练习+答案)

不等式恒成立、能成立、恰成立问题分析及应用 一、不等式恒成立问题的处理方法 1、转换求函数的最值: (1)若不等式A x f >)(在区间D 上恒成立,则等价于在区间D 上A x f >min )(,即)(x f 的下界大于A (2)若不等式B x f <)(在区间D 上恒成立,则等价于在区间D 上B x f --++m f m f θθ恒成立,求实数m 的取值范围. 例4.已知函数)0(ln )(4 4>-+=x c bx x ax x f 在1=x 处取得极值c --3,其中b a 、为 常数. (1)试确定b a 、的值; (2)讨论函数)(x f 的单调区间; (3)若对任意0>x ,不等式2 2-)(c x f ≥恒成立,求c 的取值范围.

2、主参换位法 例5.若不等式01<-ax 对[]2,1∈x 恒成立,求实数a 的取值范围. 例6.若对于任意1≤a ,不等式024)4(2>-+-+a x a x 恒成立,求实数x 的取值范围. 例7.已知函数1)1(2 33)(2 3+++-= x a x x a x f ,其中a 为实数.若不等式1)('2+-->a x x x f 对任意),0(+∞∈a 都成立,求实数x 的取值范围. 3、分离参数法 (1)将参数与变量分离,即化为)()(x f g ≥λ(或)()(x f g ≤λ)恒成立的形式; (2)求)(x f 在D x ∈上的最大(或最小)值; (3)解不等式max )()(x f g ≥λ(或min )()(x f g ≤λ),得λ的取值范围. 适用题型:(1)参数与变量能分离;(2)函数的最值易求出。 例8.当)2,1(∈x 时,不等式042 <++mx x 恒成立,求m 的取值范围.

不等式恒成立问题

不等式中恒成立问题的解法 一、判别式法 若所求问题可转化为二次不等式,则可考虑应用判别式法解题。一般地,对于二次函数 ),0()(2R x a c bx ax x f ∈≠++=,有 1)0)(>x f 对R x ∈恒成立? ???00 a ; 2)0)(+-+-x m x m 的解集是R ,求m 的范围。 解析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m ,所以要讨论m-1是否是0。 (1)当m-1=0时,元不等式化为2>0恒成立,满足题意; (2)01≠-m 时,只需???<---=?>-0 )1(8)1(0 12 m m m ,所以,)9,1[∈m 二、最值法 将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有: 1)a x f >)(恒成立min )(x f a ? 例2、若[]2,2x ∈-时,不等式23x ax a ++≥恒成立,求a 的取值范围。 解:设()2 3f x x ax a =++-,则问题转化为当[]2,2x ∈-时,()f x 的最小值非负。 (1) 当22a - <-即:4a >时,()()min 2730f x f a =-=-≥ 7 3 a ∴≤又4a >所以a 不存在; (2) 当222a -≤≤即:44a -≤≤时,()2min 3024a a f x f a ?? =-=--≥ ??? 62a ∴-≤≤ 又44a -≤≤ 42a ∴-≤≤ (3) 当22 a -> 即:4a <-时,()()min 270f x f a ==+≥ 7a ∴≥-又 4a <-74a ∴-≤<- 综上所得:72a -≤≤

高中数学不等式的恒成立问题

高中数学不等式的恒成立问题 高三数学备课组 肖英文 2011-11-23 不等式恒成立的问题既含参数又含变量,往往与函数、数列、方程、几何有机结合起来,具有形式灵活、思维性强、不同知识交汇等特点. 考题通常有两种设计方式:一是证明某个不等式恒成立,二是已知某个不等式恒成立,求其中的参数的取值范围.解决这类问题的方法关键是转化化归,通过等价转化可以把问题顺利解决,下面我就结合自己教学谈谈不等式的恒成立问题的处理方法。 题型一:构造函数法(利用一次函数的性质) 在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,即构造函数法,然后利用相关函数的图象和性质解决问题,同时注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更加面目更加清晰明了,一般来说,已知存在范围的量视为变量,而待求范围的量视为参数.例如; 类型1:对于一次函数],[,)(n m x b kx x f ∈+=有: ()0f x >?恒成立(ⅰ)???>>0)(0m f a ,或(ⅱ)???><0)(0n f a ;亦可合并定成???>>0)(0 )(n f m f ; ()0 ()0()0f m f x f n 2a+x 恒成立的x 的取值范围。 分析:在不等式中出现了两个字母:x 及a,关键在于该把哪个字母看成是一个变量,另一个作为常数。显然可将a 视作自变量,则上述问题即可转化为在[-2,2]内关于a 的一次函数大于0恒成立的问题。 解:原不等式转化为(x-1)a+x 2 -2x+1>0, 设f(a)= (x-1)a+x 2 -2x+1,则f(a)在[-2,2]上恒大于0,故有: ?? ?>>-)2(0)2(f f 即?????>->+-0 10 3422 x x x 解得:???-<><>1113x x x x 或或 ∴x<-1或x>3. 引申:在不等式中出现3个字母:m 、x 、a 已知函数()f x 是定义在[]1,1-上的奇函数,且(1)1f =,若[],1,1a b ∈-,0a b +≠,有 ()()0f a f b a b +>+, (1)证明()f x 在[]1,1-上的单调性;(2)若2 ()21f x m am ≤-+对所有[]1,1a ∈-恒成立,求m 的取值范围。 分析:第一问是利用定义来证明函数的单调性,第二问中出现了3个字母,最终求的是m 的范围,所以根据上式将m 当作变量,a 作为常量,而x 则根据函数的单调性求出()f x 的最大值 即可。 (1) 简证:任取[]12,1,1x x ∈-且12x x <,则[]21,1x -∈- 1212 ()() 0f x f x x x +>- ()()1212()()0x x f x f x ∴-+-> 又 ()f x 是奇函数 ()()1212()()0x x f x f x ∴--> ()f x ∴在[]1,1-上单调递增。 (2) 解: 2()21f x m am ≤-+对所有[]1,1x ∈-,[]1,1a ∈-恒成立,即 2max 21m am f -+≥, max (1)1f f == 22211 20m am m am ∴-+≥∴-≥ 即2 ()20g a am m =-+≥在[]1,1-上恒成立。(1)120(1)120g a g a -=+≥?∴?=-≥? 1212 a a ?≤-??∴??≤?? 1122 a ∴-≤≤。 例2.已知不等式 对任意的都成立,求的取值范围. 解:由移项得: .不等式左侧与二次函数非常相 似,于是我们可以设 则不等式 对满足 的一切实数 恒成立 对 恒成立.当 时, 即 解得故的取值范围是. 评注:此类问题常因思维定势,学生易把它看成关于的不等式讨论,从而因计算繁琐出错或者中途夭折;若转换一下思路,把待求的x 为参数,以为变量,令 则问题转化为求一次函数(或常数函数)的值在内恒 为负的问题,再来求解参数应满足的条件这样问题就轻而易举的得到解决了。 题型二:分离参数法 类型1:αα>?∈>min )()(x f I x x f 恒成立对一切()f x x I α<∈对一切恒成立. max ()f x α?< 类型2:)()(x g x f >对于任意的],[b a x ∈恒成立?min max ()()f x g x >,或)(x f 在

高考数学:不等式恒成立、能成立、恰成立问题

不等式恒成立、能成立、恰成立问题 一、不等式恒成立问题的处理方法 1、转换求函数的最值: (1)若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >,?() f x 的下界大于A (2)若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <,()f x 的上界小于A 例1、设f(x)=x2-2ax+2,当x ∈[-1,+∞]时,都有f(x)≥a 恒成立,求a 的取值范围。 例2、已知(), 22x a x x x f ++=对任意[)()0,,1≥+∞∈x f x 恒成立,试求实数a 的取值范围; 例3、R 上的函数()x f 既是奇函数,又是减函数,且当? ?? ? ?∈2,0πθ时,有()()022sin 2cos 2>--++m f m f θθ恒 成立,求实数m 的取值范围. 例4、已知函数 )0(ln )(4 4>-+=x c bx x ax x f 在1=x 处取得极值3c --,其中a 、b 为常数.(1)试确定a 、b 的值; (2)讨论函数)(x f 的单调区间; (3)若对任意0>x ,不等式2 2)(c x f -≥恒成立,求c 的取值范围。 2、主参换位法 例5、若不等式a 10x -<对[] 1,2x ∈恒成立,求实数a 的取值范围 例6、若对于任意 1 a ≤,不等式2 (4)420x a x a +-+->恒成立,求实数x 的取值范围 例7、已知函数 32 3()(1)132a f x x x a x = -+++,其中a 为实数.若不等式 2 ()1f x x x a '--+>对任意(0)a ∈+∞,都成立,求实数x 的取值范围. 3、分离参数法 (1) 将参数与变量分离,即化为()() g f x λ≥(或 ()() g f x λ≤)恒成立的形式; (2) 求 () f x 在x D ∈上的最大(或最小)值; (3) 解不等式 ()max ()g f x λ≥(或 ()()min g f x λ≤) ,得λ的取值范围。 适用题型:(1) 参数与变量能分离;(2) 函数的最值易求出。 例8、当(1,2)x ∈时,不等式2 40x mx ++<恒成立,则m 的取值范围是 . 例9、已知函数321 ()3 3f x ax bx x =+++,其中0a ≠(1)当b a ,满足什么条件时,)(x f 取得极值?(2)已知0>a , 且)(x f 在区间(0,1]上单调递增,试用a 表示出b 的取值范围.

一元二次不等式恒成立问题专项练习

一元二次不等式恒成立问题专项练习 例题:设函数f (x )=mx 2-mx -1. (1)若对于一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围. (3)对于任意m ∈[1,3],f (x )<-m +5恒成立,求实数x 的取值范围. 解: (1)要使mx 2-mx -1<0恒成立, 若m =0,显然-1<0,满足题意; 若m ≠0,则??? m <0, Δ=m 2+4m <0,即-40时,g (x )在[1,3]上是增函数, ∴g (x )max =g (3)=7m -6<0,∴00, 又m (x 2-x +1)-6<0,∴m <6 x 2-x +1. ∵函数y =6x 2-x +1=6? ????x -122+34 在[1,3]上的最小值为67 ,∴只需 m <67即可.

不等式恒成立问题的大全

不等式恒成立问题 “含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。本文就结合实例谈谈这类问题的一般求解策略。 一、判别式法 若所求问题可转化为二次不等式,则可考虑应用判别式法解题。一般地,对于二次函数),0()(2R x a c bx ax x f ∈≠++=,有 1)0)(>x f 对R x ∈恒成立? ???00a ; 2)0)(+-+a x a x 对R x ∈恒成立,即有 04)1(22<--=?a a 解得3 11>-x F 显然成立; 当0≥?时,如图,0)(≥x F 恒成立的充要条件为: ??? ????-≤--≥-≥?1220)1(0m F 解得23-≤≤-m 。 综上可得实数m 的取值范围为)1,3[-。 二、最值法 将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有: 1)a x f >)(恒成立min )(x f a ? 1.已知两个函数2()816f x x x k =+-, 32()254g x x x x =++,其中k 为实数. O x y x -1

不等式有解和恒成立问题

不等式有解和恒成立问题 Prepared on 24 November 2020

不等式有解和恒成立问题 知识点的罗列,文字不宜太多,简洁明了最好) ? 知识点一:不等式恒成立问题 ? 知识点二:不等式有解问题 分析该知识点在中高考中的体现,包含但不仅限于:考察分值、考察题型(单选、填空、解答题)、考察方式:考场难度、和哪些知识点在一起考察,参考中高考真题) 含参不等式的恒成立与有解问题是高考与会考考察不等式的一个重点内容,也是常考的内容,难度中等偏上,考察综合性较强,该知识点在填空选择解答题里都有涉及,经常和函数的最值问题在一起考察,需要同学对典型函数的值域求法有熟悉的掌握。 注意题目的答案,不要展示给学生看,这里答案和解析是帮助老师自己分析的) 一、不等式有解问题 例题:当m 为何值时,2211223 x mx x x +-<-+对任意的x ∈R 都成立 解法1:二次函数法: 移项、通分得: 又22230x x -+>恒成立,故知:2(2)40x m x -++>恒成立。 所以:2(2)160m ?=+-<,得到62m -<< 解法2:分离参数法: 注意到2(2)40x m x -++>恒成立,从而有:224mx x x <-+恒成立,那么: 注意到,在上式中我们用到了这样一个性质: 总结:解决恒成立问题的方法:二次函数法和分离参数法 变式练习:(初三或者高三学生必须选取学生错题或者学生所在地区的中高考真题或者当地的统考题目) 【试题来源】(上海2016杨浦二模卷) 【题目】设函数x x g 3)(=,x x h 9)(=,若b x g a x g x f +++=)()1()(是实数集R 上的奇函数,且0))(2()1)((>?-+-x g k f x h f 对任意实数x 恒成立,求实数k 的取值范围. 【答案】:因为b x g a x g x f +++= )()1()(是实数集上的奇函数,所以1,3=-=b a . )1 321(3)(+-=x x f ,)(x f 在实数集上单调递增.

含参数的一元二次不等式的解法与恒成立问题

} 11 |{1)5(1)4(} 1 1|{10)3(} 1|{0)2(}1,1 |{0)1(<<>Φ =<<<<>=>< a a a ; 例1 解不等式:()0122>+++x a ax 分析:本题二次项系数含有参数,()044222 >+=-+=?a a a ,故只需对二次项 系数进行分类讨论。 解:∵()044222 >+=-+=?a a a 解得方程 ()0122 =+++x a ax 两根,24221a a a x +---=a a a x 24 222++--= ∴当0>a 时,解集为?? ????????+---<++-->a a a x a a a x x 242242|22或 当0=a 时,不等式为012>+x ,解集为? ?????> 21|x x 当0+-a a ax ax 分析 因为0≠a ,0>?,所以我们只要讨论二次项系数的正负。 解 ()()032)65(2>--=+-x x a x x a ∴当0>a 时,解集为{}32|>--ax x ; 3、ax 2 -(a +1)x +1<0(a ∈R) }2,2 |{,1)5(}2|{,1)4(}2 ,2|{,10)3(} 2|{,0)2(} 22 |{,0)1(>< >≠=><<<<=<<?; 例3 解不等式042 >++ax x

不等式恒成立问题及能成立问题

例谈不等式恒成立问题和能成立问题的解题策略 ——谈2008年江苏高考数学试卷第14题 摘要:所有问题均可分成三类:恒成立问题、能成立问题和不成立问题。《例谈不等式恒成立问题和能成立问题》介绍了解决不等式恒成立问题和不等式能成立问题常用的直接法、分离参数法、分类讨论法、数形结合法等,采用了等价转化的处理策略。 关键词:分离参数、分类讨论、数形结合、等价转化,换元,求最值。 2008年江苏高考数学试卷第14题是一道很好的恒成立问题:设函数3()31()f x ax x x R =-+∈若对于任意[]1,1x ∈-都有()0f x ≥成立,则实数a 的值为 。解析如下: 析:将()0f x ≥中的,a x 分离,然后求函数的最值。 解:函数3()31()f x ax x x R =-+∈若对于任意[]1,1x ∈-都有()0f x ≥成立,函数3()31()f x ax x x R =-+∈对于任意[)(]1,0,0,10x x x ∈-∈=及其有()0f x ≥都成立。 若[)1,0x ∈-,33213()310f x ax x a x x =-+≥?≤- +,设1t x =则1t ≤- 3232133(1)t t t x x ∴-+=-+≤-,令323(1)y t t t =-+≤-,则'2360y t t =-+< 323(1)y t t t ∴=-+≤-单调递减,32min 1(1)3(1)4t y y =-==--+-=,4a ∴≤(1) 若(]0,1x ∈,33213()310f x ax x a x x =-+≥?≥- +,设1t x =,则1t ≥ 3232133(1)t t t x x ∴-+=-+≥,令323(1)y t t t =-+≥,则'2363(2)y t t t t =-+=--,当12t ≤≤时'0y ≥,323(1)y t t t =-+≥单调递增;当2t >时'0y <,323(1)y t t t =-+≥单调递减,32max 22324t y y ===-+?=,4a ∴≥(2) 若0x =则a R ∈,()0f x ≥成立(3) 由题意知(1)(2)(3)应同时成立4a ∴= 解题中采取了不等式恒成立问题的处理策略: 1、若f(x)≥a 对x ∈D 恒成立,只须f(x)min (x ∈D)≥a 即可。 2、若f(x)≤a 对x ∈D 恒成立,只须f(x)max (x ∈D)≤a 即可。

微专题不等式恒成立问题常见类型及解法

恒成立问题常见类型及解法 恒成立问题在解题过程中大致可分为以下几种类型:(1)一次函数型;(2)二次函数型;(3)变量分离型;(4)利用函数的性质求解;(5)直接根据函数的图象求解;(6)反证法求解。 一、一次函数型 给定一次函数()==+y f x kx b (k ≠0),若()=y f x 在[m,n]内恒有()f x >0,则根据函数的 图象(线段)可得①0()0>??>?k f m 或②0()0?k f n ,也可合并成f (m)0f (n)0>??>?, 同理,若在[,]m n 内恒有()0() 2 1-m x 对一切[]2,2∈-m 都成立,求实数x 的取值范围。 【解析】令f (m)=(21-x )m -2x +1,则上述问题即可转化为关于m 的一次函数 =y ()f m 在区间[-2,2]内函数值小于0恒成立的问题。考察区间端点,只 要(2)(2)-?? ? <0,<0f x f 即x 的取值范围是(12 ,1 2). 二、二次函数型 若二次函数2 (0,)=++≠∈y ax bx c a x R 的函数值大于(或小于)0恒成立,则有 a 00>???

及二次函数的图象求解。 典例2关于x 的方程9x +(4+a )3x +4=0恒有解,求a 的取值范围。 【解析】方法1(利用韦达定理) 设3x =t,则t>0.那么原方程有解即方程t 2 +(4+a )t+4=0有正根。 1212 Δ0 (4)040 ≥?? ∴+=-+>??=>?g x x a x x ,即2(4a)160a 4?+-≥?<-?,a 0a 8a 4≥≤-?∴?<-?或,解得a ≤-8. 方法2(利用根与系数的分布知识) 即要求t 2 +(4+a )t+4=0有正根。设f(t)= t 2 +(4+a )t+4. 当?=0时,即(4+a )2 -16=0,∴a =0或a =-8. 当a =0时,f(t)=(t+2)2=0,得t=-2<0,不合题意; 当a =-8时,f(t)=(t-2)2 =0,得t=2>0,符合题意。∴a =-8。 当?>0,即a <-8或a >0时, ∵f(0)=4>0,故只需对称轴4a 02 +->,即a <-4.∴a <-8. 综上可得a ≤-8. 三、变量分离型 若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解。 典例3设函数2 ()1f x x =-,对任意2,3x ??∈+∞????,2 4()(1)4()x f m f x f x f m m ??-≤-+ ??? 恒成立,则实数m 的取值范围是 【解析】依据题意得2 2222214(1)(1)14(1)---≤--+-x m x x m m 在3[,)2∈+∞x 上恒定成 立,即2 2213241-≤--+m m x x 在3[,)2∈+∞x 上恒成立。 当32=x 时函数2321=--+y x x 取得最小值53 -, 所以 221543-≤-m m ,即22(31)(43)0+-≥m m ,解得2≤-m 或2 ≥m 。 四、利用函数的性质解决恒成立问题 若函数f(x)是奇(偶)函数,则对一切定义域中的x,f(-x)= -f(x),(f(-x)=f(x))恒成立;若函数y=f(x)的周期为T ,则对一切定义域中的x,有f(x)=f(x+T)恒成立;若函数

(完整word)高中数学恒成立问题.doc

高中数学不等式的恒成立问题 不等式恒成立的问题既含参数又含变量,往往与函数、数列、方程、几何有机结 合起来,具有形式灵活、思维性强、不同知识交汇等特点 . 考题通常有两种设计方式: 一是证明某个不等式恒成立,二是已知某个不等式恒成立,求其中的参数的取 值范围 . 解决这类问题的方法关键是转化化归,通过等价转化可以把问题顺利解 决,下面我就结合自己记得教学经验谈谈不等式的恒成立问题的处理方法。一、构 造函数法 在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,即构 造函数法,然后利用相关函数的图象和性质解决问题,同时注意在一个含多个变量 的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更加面目 更加清晰明了,一般来说,已知存在范围的量视为变量,而待求范围的量视为参数. 例 1已知不等式对任意的都成立,求的取值范围. 解:由移项得 :. 不等式左侧与二次函数非常相 的似,于是我们可以设则不等式对满足 一切实数恒成立对恒成立.当时, 即 解得故的取值范围是. 注:此类问题常因思维定势,学生易把它看成关于的不等式讨论,从而因计算繁琐出错或者中途夭折;若转换一下思路,把待求的x 为参数,以为变量,令 则问题转化为求一次函数(或常数函数)的值在内恒为负的问题,再来求解参数应满足的条件这样问题就轻而易举的得到解决了。

二、分离参数法 在不等式中求含参数范围过程中,当不等式中的参数(或关于参数的代数式) 能够与其它变量完全分离出来并,且分离后不等式其中一边的函数(或代数式)的 最值或范围可求时,常用分离参数法. 例2已知函数(为常数)是实数集上的奇函数,函数在区间上是减函数 . 都有在上恒成立,求实数的(Ⅰ)若对(Ⅰ)中的任意实数 取值范围 . 解:由题意知,函数在区间上是减函数. 在上恒成立 注:此类问题可把要求的参变量分离出来,单独放在不等式的一侧,将另一侧 看成新函数,于是将问题转化成新函数的最值问题:若对于取值范围内的任一个数都有恒成立,则;若对于取值范围内的任一个数都有恒成立,则. 三、数形结合法 如果不等式中涉及的函数、代数式对应的图象、图形较易画出时,可通过图象、 图形的位置关系建立不等式求得参数范围 . 例 3已知函数若不等式恒成立,则实数的取值范围是.

常见不等式恒成立问题的几种求解策略

常见不等式恒成立问题的几种求解策略

————————————————————————————————作者:————————————————————————————————日期:

常见不等式恒成立问题的几种求解策略 不等式恒成立问题是近几年高考以及各种考试中经常出现,它综合考查函数、方程和不等式的主要内容,并且与函数的最值、方程的解和参数的取值范围紧密相连,本文结合解题教学实践举例说明几种常见不等式恒成立问题的求解策略,以抛砖引玉。 1 变量转换策略 例1 已知对于任意的a ∈[-1,1],函数f (x )=ax 2+(2a -4)x +3-a >0 恒成立,求x 的取值范围. 解析 本题按常规思路是分a =0时f (x )是一次函数,a ≠0时是二次函数两种情况讨论,不容易求x 的取值范围。因此,我们不能总是把x 看成是变量,把a 看成常参数,我们可以通过变量转换,把a 看成变量,x 看成常参数,这就转化一次函数问题,问题就变得容易求解。令g (a )=(x 2+2x -1)a -4x+3在a ∈[-1,1]时,g (a )>0恒成立,则? ??>>-0)1(0)1(g g ,得133133+-<<--x . 点评 对于含有两个参数,且已知一参数的取值范围,可以通过变量转换,构造以该参数为自变量的函数,利用函数图象求另一参数的取值范围。 2 零点分布策略 例2 已知a ax x x f -++=3)(2,若0)(],2,2[≥-∈x f x 恒成立,求a 的取值范围. 解析 本题可以考虑f (x )的零点分布情况进行分类讨论,分无零点、零点在区间的左侧、零点在区间 的右侧三种情况,即Δ≤0或?????????≥≥--≤->?0)2(0)2(220f f a 或?????????≥≥-≥->?0 )2(0)2(220f f a ,即a 的取值范围为[-7,2]. 点评 对于含参数的函数在闭区间上函数值恒大于等于零的问题,可以考虑函数的零点分布情况,要求对应闭区间上函数图象在x 轴的上方或在x 轴上就行了. 3 函数最值策略 例3 已知a ax x x f -++=3)(2,若2)(],2,2[≥-∈x f x 恒成立,求a 的取值范围. 解析 本题可以化归为求函数f (x )在闭区间上的最值问题,只要对于任意2)(],2,2[m in ≥-∈x f x .若

相关文档
最新文档