三角形中线的巧用

三角形中线的巧用
三角形中线的巧用

三角形中线的巧用

边的知识:

三角形任意两边之和大于第三边

三角形任意两边之差小于第三边

角的知识:

三角形三个内角的和等于180°

三角形的一个外角等于和它不相邻的两个内角的和。

三角形的任何一个外角大于和它不相邻的一个内角。

三角形线的知识:

三角形的中线、高、角平分线都是线段。

锐角三角形的三条高都在三角形的内部。

直角三角形的三条高,一条在三角形的内部,其他两条是直角边。

钝角三角形的三条高,一条在三角形的内部,其他两条在三角形的外部。

垂直平分线的性质:线段的垂直平分线上的点到线段两端点的距离相等。

角平分线性质:角平分线上的点到角的两边的距离相等。

三角形全等的知识:

全等三角形的性质:全等三角形的对应边相等,对应角相等.

全等三角形的判断:SSS、SAS、ASA、AAS这四种。

三角形的中线是与三角形有关线段的重要线段。三角形的中线在解决和三角形面积有关的问题中常常发挥重要作用。

如图1,连接三角形ABC的顶点A和它所对的边BC的中点D,所得线段AD叫△ABC

的边BC上的中线。∴BD=CD=BC . A E⊥BC于E,即AE是△ABC的边BC上的高。同时AE也是△AB D、△ACD的高。

根据三角形的面积公式,三角形ABC的面积为,即.

△AB D、△ACD的面积可表示为:

所以△AB D、△ACD的面积相等,都等于△ABC面积的一半。

结论一:三角形的一边的中线把这个三角形分成面积相等的两部分。

例1如图2,AD、BE是△ABC的两条中线。AD、BE交于G,试比较△BG D和△AGE 面积的大小。

析解:因为AD、BE是△ABC的两条中线,根据结论一,三角形ADC的面积等于三角形ABC的面积的一半,三角形BCE的面积也等于三角形ABC的面积的一半。所以

=,所以,即.所以△BG D和△AGE的面积相等。

引申:连接GC,则GD是三角形GBC的中线,GE是三角形AGC的中线,根据上面结论一,有,,而,

所以,

,所以

结论二:连接三角形的中线的交点和这个三角形任意两个顶点所组成的三角形的面积

等于这个三角形面积的.

例2 (2009贺州)如图3-1,正方形ABCD的边长为1,E、F分别是AB、BC边上的中点,求图中阴影部分的面积。

分析:图中阴影部分是不规则四边形,须作辅助线转化为规则四边形或三角形。更重要的是要考虑中点的运用。

解:如图3-2,连接BD,则三角形BCD的面积= ,

根据上述结论二,△BOD的面积等于△BCD的面积的,

即,

∴阴影部分的面积=.

点评:求不规则图形的面积往往是作辅助线转化为三角形加以分析。图中三角形BDO 的面积是和三角形BDC的中线有关的,记住上面的两个结论,能够迅速巧妙的求解此题。

三角形中线运用提高题

B 一、填空题 1.如果三角形的一个角等于其它两个角的差,则这个三角形是______三角形. 2.已知△ABC 中,AD ⊥BC 于D ,AE 为∠A 的平分线,且∠B =35°,∠C =65°,则∠DAE 的度数为_____ . 3.三角形中最大的内角不能小于_____,两个外角的和必大于_____ . 4.三角形ABC 中,∠A =40°,顶点C 处的外角为110°,那么∠B =_____ . 5.锐角三角形任意两锐角的和必大于_____. 6.三角形的三个外角都大于和它相邻的内角,则这个三角形为 _____ 三角形. 7.在三角形ABC 中,已知∠A =80°,∠B =50°,那么∠C 的度数是. 8.已知∠A =1 2∠B =3∠C ,则∠A =. 9.已知,如图7-1,∠ACD =130°,∠A =∠B ,那么∠A 的度数是. 二、1.已知三角形ABC 的三个内角满足关系∠B +∠C =3∠A ,则此三角形( ). A .一定有一个内角为45° B . B 一定有一个内角为60° C .一定是直角三角形 D .一定是钝角三角形 2.如果一个三角形的三个外角之比为2:3:4,则与之对应的三个内角度数之比为( ). A .4:3:2 B .3:2:4 C .5:3:1 D .3:1:5 3.三角形中至少有一个内角大于或等于( ). A .45° B .55° C .60° D .65° 4.如图7-6,下列说法中错误的是( ). A .∠1不是三角形ABC 的外角 B .∠B <∠1+∠2 C .∠AC D 是三角形ABC 的外角 D .∠ACD >∠A +∠B 5.如图7-7,C 在AB 的延长线上,CE ⊥AF 于E ,交FB 于D ,若∠F =40°, ∠C =20°,则∠FBA 的度数为( ). A .50° B .60° C .70° D .80° 6.下列叙述中错误的一项是( ). A .三角形的中线、角平分线、高都是线段. B .三角形的三条高线中至少存在一条在三角形内部. C .只有一条高在三角形内部的三角形一定是钝角三角形. D .三角形的三条角平分线都在三角形内部. 7.下列长度的三条线段中,能组成三角形的是( ). A .1,5,7 B .3,4,7 C .7,4,1 D .5,5,5 8.三条线段a =5,b =3,c 的值为整数,由a 、b 、c 为边可组成三角形( ). A .1个 B .3个 C .5个 D .无数个 三计算题 1、在等腰三角形ABC 中,一腰上的中线 BD 将ABC 的周长分为 三角形的腰长及底边长。

人教版八年级数学上册三角形

第十一章三角形全章教案 教材内容 本章主要内容有三角形的有关线段、角,多边形及内角和,镶嵌等。 三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于1800的基础上,进行推理论证,从而得出三角形外角的性质。接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。这些知识加深了学生对三角形的认识,既是学习特殊三角形的基础,也是研究其它图形的基础。最后结合实例研究了镶嵌的有关问题,体现了多边形内角和公式在实际生活中的应用. 教学目标 〔知识与技能〕 1、理解三角形及有关概念,会画任意三角形的高、中线、角平分线; 2、了解三角形的稳定性,理解三角形两边的和大于第三边,会根据三条线段的长度判断它们能否构成三角形; 3、会证明三角形内角和等于1800,了解三角形外角的性质。 4、了解多边形的有关概念,会运用多边形的内角和与外角和公式解决问题。 5、理解平面镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用它们进行简单的平面镶嵌设计。 〔过程与方法〕 1、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯; 2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。 〔情感、态度与价值观〕 1、体会数学与现实生活的联系,增强克服困难的勇气和信心; 2、会应用数学知识解决一些简单的实际问题,增强应用意识; 3、使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点。 重点难点 三角形三边关系、内角和,多边形的外角和与内角和公式,镶嵌是重点;三角形内角和等于1800的证明,根据三条线段的长度判断它们能否构成三角形及简单的平面镶嵌设计是难点。 课时分配 7.1与三角形有关的线段……………………………………… 2课时 7.2 与三角形有关的角………………………………………… 2课时 7.3多边形及其内角和………………………………………… 2课时 7.4课题学习镶嵌…………………………………………… 1课时 本章小结………………………………………………………… 2课时 11.1.1三角形的边 【教学目标】 1、知识与技能、理解三角形的表示法,分类法以及三边存在的关系,发展空间观念。 2、过程与方法: ⑴经历探索三角形中三边关系的过程,认识三角形这个最简单,最基本的几何图形,提高推理能力。 ⑵培养学生数学分类讨论的思想。 3、情感态度与价值观: ⑴培养学生的推理能力,运用几何语言有条理的表达能力,体会三角形知识的应用价

解三角形应用举例练习高考试题练习

解三角形应用举例练习 班级 姓名 学号 得分 一、选择题 1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α、β的关系为…………………( ) A.α>β B.α=β C.α+β=90° D.α+β=180° 2.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为…..( ) A. 3 400 B. 33400米 C. 2003米 D. 200米 3.在?ABC 中, 已知sinA = 2 sinBcosC, 则?ABC 一定是…………………………………….( ) A. 直角三角形; B. 等腰三角形; C.等边三角形; D.等腰直角三角形. 4.如图,△ABC 是简易遮阳棚,A 、B 是南北方向上两个定点,正东方向射出的太阳光线与地面 成40°角,为了使遮阴影面ABD 面积最大,遮阳棚ABC 与地面所成的角为……………….( ) A C D B 阳光地面 A.75° B.60° C.50° D.45° 5.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 的正东40 km 处,B 城市处于危险区内的时间为…………………………………..( ) A.0.5 h B.1 h C.1.5 h D.2 h 6.在△ABC 中,已知b = 6,c = 10,B = 30°,则解此三角形的结果是 …………………( ) A 、无解 B 、一解 C 、两解 D 、解的个数不能确定 二、填空题 7. 甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是 8.我舰在敌岛A 南50°西相距12nmile 的B 处,发现敌舰正由岛沿北10°西的方向以10nmile/h 的速度航行,我舰要用2小时追上敌舰,则需要速度的大小为 9.有一两岸平行的河流,水速为1,小船的速度为2,为使所走路程最短,小船应朝_______方 向行驶. C D 12 A B D 6045 0 m o o 10..在一座20 m 高的观测台顶测得地面一水塔塔顶仰角为60°,塔底俯角为45°,那么这座塔的 高为_______.

三角形中线等分面积的应用

第5讲 例说三角形中线等分面积的应用 如图1,线段AD 是△ABC 的中线,过点A 作AE ⊥BC ,垂足为E ,则S △ABD = 1 2 BD·AE,S △ADC = 1 2 DC·AE,因为BD =DC ,所以S △ABD =S △ADC 。因此,三角形的中线把△ABC 分成两个面积相等的三角形.利用这一性质,可以解决许多有关面积的问题。 一、求图形的面积 例1、如图2,长方形ABCD 的长为a ,宽为b ,E 、F 分别是BC 和CD 的中点,DE 、BF 交于点G ,求四边形ABGD 的面积. 分析:因为E 、F 分别是BC 和CD 的中点,则连接CG 后,可知GF 、GE 分别是△DGC 、△BGC 的中线,而由S △BCF=S △DCE= 4 ab ,可得S △BEG=S △DFG,所以△DGF 、△CFG 、△CEG 、△BEG 的面积相等,问题得解。 解:连接CG ,由E 、F 分别是BC 和CD 的中点,所以S △BCF=S △DCE= 4 ab ,从而得S △BEG=S △DFG,可得△DGF 、△CFG 、△CEG 、△BEG 的面积相等且等于 31×4ab =12 ab ,因此S 四边形ABGD =ab -4× 12ab =3 2ab 。 例2、在如图3至图5中,△ABC 的面积为a . (1)如图2, 延长△ABC 的边BC 到点D ,使CD =BC ,连结DA .若△ACD 的面积为S 1, 则S 1=________(用含a 的代数式表示); (2)如图3,延长△ABC 的边BC 到点D ,延长边CA 到点E ,使CD =BC ,AE =CA ,连结 DE .若△DEC 的面积为S 2,则S 2=__________(用含a 的代数式表示),并写出理由; (3)在图4的基础上延长AB 到点F ,使BF =AB ,连结FD ,FE ,得到△DEF (如图6).若阴影部分的面积为S 3,则S 3=__________(用含a 的代数式表示). 发现:像上面那样,将△ABC 各边均顺次延长一倍,连结所得端点,得到△DEF (如图6),此时,我们称△ABC 向外扩展了一次.可以发现,扩展一次后得到的△DEF 的面积是原来△ABC 面积的_______倍. 图1 图2 A B E 图4 D A B C F 图5 图3 A B

三角形各性质总结

在同一三角形中,有两条边相等的三角形是等腰三角形(定义)。 在同一三角形中,有两个底角(底角指三角形最下面的两个角)相等的三角形是等腰三角形(简称:等角对等边)。 在同一三角形中,三角形的顶角平分线,底边上的中线,底边上的高相互重合的三角形是等腰三角形。(简称:三线合一)。 主要特点 1.等腰三角形的两个底角相等(简写成“等边对等角”)。 2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(三线合一”)。 3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。 4.等腰三角形底边上的垂直平分线到两条腰的距离相等。 5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。 6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。 7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。

1、定义 2、三条边都相等的三角形叫做等边三角形,又叫做正三角形,等边三角形是特殊的等腰三角形。 (注意:若三角形三条边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。 2、性质 1.等边三角形的内角都相等,且均为60度。 2.等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。 3.等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。 4.等腰三角形的两个底角相等(简称“等边对等角”) 3、判定 ⑴三边相等的三角形是等边三角形(定义)。 ⑵三个内角都相等的三角形是等边三角形。 ⑶有一个角是60度的等腰三角形是等边三角形。 ⑷有两个角等于60度的三角形是等边三角形。

三角形中线的阿波罗尼斯定理及其应用

三角形中线的阿波罗尼斯定理及其应用 阿波罗尼斯定理 三角形两边平方的和,等于所夹中线及第三边之半的平方和的2倍. 具体地说,就是:设AD 是△ABC 的中线,则)(22222BD AD AC AB +=+. 证明 如图1,作BC 边上的高AH . 由勾股定理,得 222DH AH AD +=,2 2 2BH AH AB +=, 2 2 2 CH AH AC +=. 所以222222CH BH AH AC AB ++=+. 由 CD BD =, 可 得 )(2)()(2 2 2 2 2 2 DH BD DH BD DH BD CH BH +=-++=+. 所以)(2)(22222222BD AD BD DH AH AC AB +=++=+. 该定理应用广泛,不但可以用来计算三角形中线的长度,而且对于多线段的平方和问题,尝试构造三角形的中线后运用它往往也能凑效.下面举例说明此定理的应用. 1.直接使用 当题设条件中出现三角形的中线时,可考虑使用阿波罗尼斯定理建立相关线段的联系,以助解题. 例 1 AD 、BE 、CF 是△ABC 的三条中线.若a BC =,b CA =,c AB =,则 = ++2 2 2 CF BE AD ______. (2005年山东省初中数学竞赛) 分析 AD 、BE 、CF 是△ABC 的三条中线,故可直接使用三角形中线的阿波罗尼斯定理进行计算. 解 如图2, AD 是BC 边上的中线,由阿波罗尼斯定理得 ?? ? ??+=+222 2 412BC AD AC AB . 代入已知数据,变形得2 2 2 24 12 121a b c AD - + =. 同 理 2 2 2 2 4 12 12 1b a c BE - + = ,2 2 2 2 4 12 12 1c b a CF - + = . 故()2 2 2 2 224 3c b a CF BE AD ++= ++. 例2 如图3,△ABC 的内切圆⊙O 与边CA 上的中线BM 交于点G 、H ,并且 点G 在点B 和点H 之间.已知HM BG =,2=AB ,2>BC .那么,当BC 、CA 为何值 D C B E A 图2 F A B 图1

“直角三角形斜边上的中线”的性质及其应用

“直角三角形斜边上的中线”的性质及其应用 “直角三角形斜边上的中线等于斜边的一半”是直角三角形的重要性质之一,而且斜边上的中线将直角三角形分割成两个顶角互补、底角互余的两个等腰三角形,如能善于把握图形特征,恰当地构造并借助直角三角形斜边上的中线,往往能帮助我们迅速打开解题思路,从而顺利地解决问题,下面举例说明. 一、有直角、有中点,利用垂直平分线性质 【例1】如图,BD 、CE 是△ABC 的两条高,M 是BC 的中点,N 是DE 的中点.求证:MN 垂直平分DE . 二、有直角、无中点,取中点,连线出中线 【例2】如图,在Rt △ABC 中,∠C=90°,AD ∥BC ,∠CBE=2 1∠ABE ,求证:DE=2AB . 三、有中点、无直角,造直角 【例3】如图,梯形ABCD 中,AB ∥CD ,M 、N 是AB 、CD 的中点,∠ADC+∠BCD=270°, 求证:MN= 2 1(AB -CD ).

四、逆用性质解题 【例4】如图,延长矩形ABCD 的边CB 至E ,使CE=CA ,P 是AE 的中点.求证:BP ⊥DP . 【习题练习】 1、如图,△ABC 中,AB=AC ,∠ABD=∠CBD ,BD ⊥DE 于D ,DE 交BC 于E ,求证:CD=21BE . 2、如图,△ABC 中,∠B=2∠C ,AD ⊥BC 于D ,M 是BC 的中点,求证:AB=2DM . 3、如图,在四边形ABCD 中,∠DAB=∠DCB=90°,点M 、N 分别是BD 、AC 的中点.确定MN 、AC 的位置关系.

直角三角形斜边上中线性质的应用 一、直角三角形斜边上中线的性质 1、性质:直角三角形斜边上的中线等于斜边的一半.如图,在Rt △BAC 中,∠BAC=90°,D 为BC 的中点,则BC 2 1AD =. 2、性质的拓展: 如图:因为D 为BC 中点, 所以BC 2 1DC BD = =, 所以AD=BD=DC=BC 21, 所以∠1=∠2,∠3=∠4, 因此∠ADB=2∠1=2∠2, ∠ADC=2∠3=2∠4. 因而可得如下几个结论: ①直角三角形斜边上的中线将直角三角形分成两个等腰三角形; ②分成的两个等腰三角形的腰相等,两个顶角互补、底角互余,并且其中一个等腰三角形的顶角等于另一个等腰三角形底角的2倍. 二、性质的应用 1、2 1倍关系求值 例1、如图,CD 是Rt △ABC 斜边AB 上的中线,若CD=4,则AB= . 2、证明线段相等 例2、如图,在△ABC 中,∠BAC=90°,延长BA 到D 点,使AB 2 1AD =,点E 、F 分别为边BC 、AC 的中点.(1)求证:DF=BE ;(2)过点A 作AG ∥BC ,交DF 于G .求证:AG=DG .

八年级上册三角形知识点总结

三角形的初步知识 一、三角形及其有关概念 1、三角形: 由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的 线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形 的内角,简称三角形的角。 2、三角形的表示: 三角形用符号“”表示,顶点是 A 、 B、 C 的三角形记作“ABC ”,读作“三角形ABC ”。 3、三角形的三边关系: (1)三角形的两边之和大于第三边。( 2)三角形的两边之差小于第三边。 (3)作用: ①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。③证 明线段不等关系。 4、三角形的内角的关系: ( 1)三角形三个内角和等于180°。( 2)直角三角形的两个锐角互余。 5、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。 6、三角形的面积 1 三角形的面积=×底×高 二、线段垂直平分线,角的平分线,垂线 1、线段垂直平分线的性质定理及逆定理 垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。 线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 2、角的平分线及其性质 一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。 角的平分线有下面的性质定理: (1)角平分线上的点到这个角的两边的距离相等。 (2)到一个角的两边距离相等的点在这个角的平分线上。 3垂线的性质: 性质 1:过一点有且只有一条直线与已知直线垂直。 性质 2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。三、平行线 1、平行线的概念 在同一个平面内,不相交的两条直线叫做平行线。同一平面内,两条直线的位置关系 只有两种:相交或平行。 4、平行线的性质 ( 1)两直线平行,同位角相等;(2)两直线平行,内错角相等;( 3)两直线平行,同旁内角互补。 四、定义与命题 1、定义:一般地,能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义。

三角形中线和角平分线在解题中的应用(整理八种方法)

解三角形题目的思考 文科:在△ABC 中,D 是BC 的中点,若AB=4,AC=1,∠BAC=60°,则AD=_______; 理科:在△ABC 中,D 在BC 上,AD 平分∠BAC ,若AB=3,AC=1,∠BAC=60°,则AD=_______; 常规解法及题根: (15年新课标2理科)?ABC 中,D 是BC 上的点,AD 平分∠BAC ,?ABD 是?ADC 面积的2倍。 (Ⅰ)求C B ∠∠sin sin ; (Ⅱ) 若AD =1,D C = 22求BD 和AC 的长. (15年新课标2文科)△ABC 中D 是BC 上的点,AD 平分∠BAC ,BD =2DC . (I )求sin sin B C ∠∠ ; (II )若60BAC ∠=o ,求B ∠. 重点结论:角平分线性质: (1)平分角 (2)到角两边距离相等 (3)线段成比率 中点性质与结论: (1)平分线段; (2)向量结论; (3)两个小三角形面积相等。 题目解法搜集: 解法1(方程思想):两边及夹角,利用余弦定理求第三边,然后在小三角形中求解; 在△ABC 中,D 在BC 上,AD 平分∠BAC ,若AB=3,AC=1,∠BAC=60°,则AD=_______; 解:在△ABC 中,222BC =AB +AC -2AB AC cos BAC=7∠g g ,则7 因为AD 平分∠BAC ,则AB BD AC DC = ,所以BD=37,DC=7; 在△ABD 中,设AD=x ,利用cos ∠BAD=cos30°=222 2AB AD BD AB AD +-g 即2 22373323x x +-??=?,解得x= 933344。 若在△ADC 中,设AC=m ,则273=1216x x +-,解得x=333。

知识点二:直角三角形的中线性质(较难)

1.2 直角三角形之斜边中线性质 1、直角三角形两直角边长分别是3cm 和4cm ,则斜边上的中线长等于( ) A.2.5cm B.2.4cm C.5cm D.3cm 2、直角三角形斜边上的中线长是6.5,一条直角边是5,则另一直角边长等于( ) A.13 B.12 C.10 D.5 3、直角三角形中有两条边的长分别为4,8,则此直角三角形斜边上的中线长等于( ) A.4 B.54 C.4或54 D.4或52 4、(2004年江苏省苏州市中考)如图2,CD 是Rt △ABC 斜边AB 上的中线,若CD=4,则AB= . 5、(2004年上海市中考)如图4,在△ABC 中,∠BAC=90°,延长BA 到D 点,使AB AD 2 1 ,点E 、F 分别为边BC 、AC 的中点。 (1)求证:DF=BE ; (2)过点A 作AG ∥BC ,交DF 于G 。求证:AG=DG 。

6、已知,如图5,在△ABC中,∠BAC>90°,BD、CE分别为AC、AB上的高,F为BC的中点,求证:∠FED=∠FDE。 7、(2003年上海市中考题)已知:如图6,在△ABC中,AD是高,CE是中线。DC=BE,DG⊥CE,G为垂足。 求证:(1)G是CE的中点;(2)∠B=2∠BCE。 8、(2007年呼和浩特市中考)如图7,在△ABC中,∠C=2∠B,D是BC上的一点,且AD⊥AB,点E是BD 的中点,连AE。求证:(1)∠AEC=∠C;(2)求证:BD=2AC。 9、如图9,在四边形ABCD中,AC⊥BC,BD⊥AD,且AC=BD,M、N分别是AB、DC边上的中点。

求证:MN ⊥DC 。 10、如图所示,BD 、CE 是三角形ABC 的两条高,M 、N 分别是BC 、DE 的中点 求证:MN ⊥DE N M E D C B A 11、已知梯形ABCD 中,∠B+∠C =90o ,EF 是两底中点的连线,试说明AB -AD =2EF F E D C B A

人教版八年级上册数学三角形教案

(此文档为word格式,下载后您可任意编辑修改!) 第十一章三角形全章教案 教材内容 本章主要内容有三角形的有关线段、角,多边形及内角和,镶嵌等。 三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于1800的基础上,进行推理论证,从而得出三角形外角的性质。接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。这些知识加深了学生对三角形的认识,既是学习特殊三角形的基础,也是研究其它图形的基础。最后结合实例研究了镶嵌的有关问题,体现了多边形内角和公式在实际生活中的应用. 教学目标 〔知识与技能〕 1、理解三角形及有关概念,会画任意三角形的高、中线、角平分线; 2、了解三角形的稳定性,理解三角形两边的和大于第三边,会根据三条线段的长度判断它们能否构成三角形; 3、会证明三角形内角和等于1800,了解三角形外角的性质。 4、了解多边形的有关概念,会运用多边形的内角和与外角和公式解决问题。 5、理解平面镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用它们进行简单的平面镶嵌设计。 〔过程与方法〕 1、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯; 2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。 〔情感、态度与价值观〕 1、体会数学与现实生活的联系,增强克服困难的勇气和信心; 2、会应用数学知识解决一些简单的实际问题,增强应用意识; 3、使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点。 重点难点 三角形三边关系、内角和,多边形的外角和与内角和公式,镶嵌是重点;三角形内角和等于1800的证明,根据三条线段的长度判断它们能否构成三角形及简单的平面镶嵌设计

解三角形-解三角形的应用

解三角形的实际应用 知识点 仰角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线____方;俯角:目标视线在水平线____方时叫俯角.(如图所示) 正余弦定理应用类型 已知条件定理选用一般解法三边(,, a b c) 两边和夹角 (如,, a b C) 两边和其中一边的对角 正弦定理 (如,, a b A) 两边和其中一边的对角 余弦定理 (如,, a b A) 一边和二角 (如,, a B C) 总结:单角用余弦,两角用正弦

题型一 测量距离的问题 【例1】. 某地出土一块类似三角形刀状的古代玉佩如图,其一角已破损,现测得如下数据:BC=2.57cm ,CE=3.57cm ,BD=4.38cm ,B=45°,C=120°.为了复原,请计算原玉佩两边的长(结果精确到0.01cm). 【例2】. 在某次军事演习中,红方为了准确分析战场形势,在两个相距为 2 3a 的军事基地C 和D 测得蓝方两支精锐部队分别在A 处和B 处,且∠ADB=30°,∠BDC=30°,∠DCA=60°,∠ACB=45°,如图所示,求蓝方这两支精锐部队的距离. 【巩固练习】 1.一蜘蛛向北爬行xcm 捕捉到一只小虫,然后向右转105?,爬行10cm 捕捉到另一只小虫,这时它向右转135?爬行回它的出发点,那么x = . 2.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15?的方向上,且此时货轮与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后到达N 处,又测得灯塔S 在货轮的东北方向,则货轮的速度为 ( ). A .()2062+海里/小时 B.()2062-海里/小时 C.()2063+海里/小时 D.()2063-海里/小时

三角形中线的巧用

三角形中线的巧用-CAL-FENGHAI.-(YICAI)-Company One1

三角形中线的巧用 边的知识: 三角形任意两边之和大于第三边 三角形任意两边之差小于第三边 角的知识: 三角形三个内角的和等于180° 三角形的一个外角等于和它不相邻的两个内角的和。 三角形的任何一个外角大于和它不相邻的一个内角。 三角形线的知识: 三角形的中线、高、角平分线都是线段。 锐角三角形的三条高都在三角形的内部。 直角三角形的三条高,一条在三角形的内部,其他两条是直角边。 钝角三角形的三条高,一条在三角形的内部,其他两条在三角形的外部。 垂直平分线的性质:线段的垂直平分线上的点到线段两端点的距离相等。 角平分线性质:角平分线上的点到角的两边的距离相等。 三角形全等的知识: 全等三角形的性质:全等三角形的对应边相等,对应角相等. 全等三角形的判断:SSS、SAS、ASA、AAS这四种。 三角形的中线是与三角形有关线段的重要线段。三角形的中线在解决和三角形面积有关的问题中常常发挥重要作用。 如图1,连接三角形ABC的顶点A和它所对的边BC的中点D,所得线段 AD叫△ABC的边BC上的中线。∴BD=CD=BC . AE⊥BC于E,即AE是△ABC 的边BC上的高。同时AE也是△ABD、△ACD的高。

根据三角形的面积公式,三角形ABC的面积为,即 . △ABD、△ACD的面积可表示为: , , 所以△ABD、△ACD的面积相等,都等于△ABC面积的一半。 结论一:三角形的一边的中线把这个三角形分成面积相等的两部分。 例1 如图2,AD、BE是△ABC的两条中线。AD、BE交于G,试比较△BGD 和△AGE面积的大小。 析解:因为AD、BE是△ABC的两条中线,根据结论一,三角形ADC的面积等于三角形ABC的面积的一半,三角形BCE的面积也等于三角形ABC的面积 的一半。所以=,所以, 即.所以△BGD和△AGE的面积相等。 引申:连接GC,则GD是三角形GBC的中线,GE是三角形AGC的中线,根据上面结论一,有,,而, 所以, ,所以 结论二:连接三角形的中线的交点和这个三角形任意两个顶点所组成的三 角形的面积等于这个三角形面积的.

人教版必修五“解三角形”精选难题及其答案

人教版必修五“解三角形”精选难题及其答案 一、选择题(本大题共12小题,共60.0分) 1.锐角中,已知,,则的取值范围是 A. , B. , C. , D. , 2.在中,角,,的对边分别为,,,且满足,则 的形状为 A. 等腰三角形 B. 直角三角形 C. 等边三角形 D. 等腰直角三角形 3.在中,,,,则的值等于 A. B. C. D. 4.在中,有正弦定理:定值,这个定值就是的外接圆 的直径如图2所示,中,已知,点M在直线EF上从左到右运动点M不与E、F重合,对于M的每一个位置,记的外接圆面积与的外接圆面积的比值为,那么 A. 先变小再变大 B. 仅当M为线段EF的中点时,取得最大值 C. 先变大再变小 D. 是一个定值 5.已知三角形ABC中,,边上的中线长为3,当三角形ABC的面积最大 时,AB的长为 A. B. C. D. 6.在中,,,分别为内角,,所对的边,,且满足若 点O是外一点,,,平面四边形OACB 面积的最大值是 A. B. C. 3 D. 7.在中,,, ,则使有两解的x的范围是 A. , B. , C. , D. , 8.的外接圆的圆心为O,半径为1,若,且,则 的面积为 A. B. C. D. 1 9.在中,若,则是

A. 等边三角形 B. 等腰三角形 C. 直角三角形 D. 等腰直角三角形 10.在中,已知,,分别为, , 的对边,则为 A. B. 1 C. 或1 D. 11.设锐角的三内角A、B、C所对边的边长分别为a、b、c,且,,则b 的取值范围为 A. , B. , C. , D. , 12.在中,内角,,所对边的长分别为,,,且满足 ,若,则的最大值为 A. B. 3 C. D. 9 二、填空题(本大题共7小题,共35.0分) 13.设的内角,,所对的边分别为,,且,则角A的大 小为______ ;若,则的周长l的取值范围为______ . 14.在中,, , 所对边的长分别为,,已知 ,,则______ . 15.已知中,角A、B、C的对边分别是a、b、c,若,则 的形状是______ . 16.在中,若,则的形状为______ . 17.在中,角,,的对边分别为,,,若, 且,则______ .18.如果满足,,的三角形恰有一个,那么k的取值范围 是______ . 19.已知的三个内角,,的对边依次为,,,外接圆半径为1,且满足 ,则面积的最大值为______ . 三、解答题(本大题共11小题,共132.0分) 20.在锐角中,,,是角,,的对边,且. 求角C的大小; 若,且的面积为,求c的值. 21.在中,角,,的对边分别为,,已知. 求角A的大小; 若,,求的面积.

八年级上册三角形-专题复习

八年级上册三角形专题复习 基础知识回顾: 1、三角形的内角和等于,三角形的外角等于与它的两个内角的和。 2、三角形的任意两边之和第三边,任意两边之差第三边。 3、全等三角形的对应边,对应角.证明两个三角形全等的方法有:SSS,,,AAS,(只适用于直角三角形)。 4、角平分线上的点到角两边的距离;到角两边距离的点在角的平分线上。 5、线段垂直平分线上的点到线段两个端点的距离;到线段两个端点距离相等的点,在这条线段的。 6、等腰三角形性质: ] (1)等腰三角形两腰;(2)等边对; (3)三线合一:顶角平分线,底边上的中线,底边上的高互相。 7、等腰三角形判定: (1)有两条边的三角形是等腰三角形; (2)有两个角的三角形是等腰三角形,简称“等角对等边”。 8、等边三角形的判定方法是:有一个角是60°的三角形是等边三角形;有两个角是的三角形是等边三角形;三边的三角形是等边三角形。 达标练习: 1、如图,∠1=100°,∠C=70°,则∠A的大小是() * °°°° 2、如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是() °°°° 3、三角形的下列线段中一定能将三角形的面积分成相等两部分的是() { A.中线 B.角平分线 C.高 D.中位线 4、下列各组数可能是一个三角形的边长的是() ,2,4 ,5,9 ,6,8 ,5,11 5、等腰三角形两边长分别为4和8,则这个等腰三角形的周长为() 或20 6、如图,AB∥CD,∠A+∠E=75°,则∠C为() °°°° 7、如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF的面积为S2,若 ABC S =6,则S1-S2=。 ( 第2题 第1题第6题

解三角形应用举例最新衡水中学自用精品教学设计

解三角形应用举例 主标题:解三角形应用举例 副标题:为学生详细的分析解三角形应用举例的高考考点、命题方向以及规律总结。 关键词:距离测量,高度测量,仰角,俯角,方位角,方向角 难度:3 重要程度:5 考点剖析: 能够运用正弦定理、余弦定理等知识解决一些与测量和几何计算有关的实际问题. 命题方向: 1.测量距离问题是高考的常考内容,既有选择、填空题,也有解答题,难度适中,属中档题. 2.高考对此类问题的考查常有以下两个命题角度: (1)测量问题; (2)行程问题. 规律总结: 1个步骤——解三角形应用题的一般步骤 2种情形——解三角形应用题的两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 2个注意点——解三角形应用题应注意的问题 (1)画出示意图后要注意寻找一些特殊三角形,如等边三角形、直角三角形、等腰三角形等,这样可以优化解题过程. (2)解三角形时,为避免误差的积累,应尽可能用已知的数据(原始数据),少用间接求出的量.

知识梳理 1.距离的测量 背景可测元素图形目标及解法 两点均可到达a,b,α 求AB:AB= a2+b2-2ab cos α 只有一点可到达b,α,β 求AB:(1)α+β+B=π; (2) AB sin β= b sin B 两点都不可到达a,α,β, γ,θ 求AB:(1)△ACD中,用 正弦定理求AC; (2)△BCD中,用正弦定理 求BC; (3)△ABC中,用余弦定理 求AB 2.高度的测量 背景可测元素图形目标及解法 底部可 到达 a,α求AB:AB=a tan_α 底部不可到达a,α,β 求AB:(1)在△ACD中用正弦 定理求AD;(2)AB=AD sin_β 3.实际问题中常见的角 (1)仰角和俯角 在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角(如图1).

三角形中线的应用例谈

三角形中线的应用例谈 三角形的中线是与三角形有关线段的重要线段。三角形的中线在解决和三角形面积有关的问题中常常发挥重要作用。 如图1,连接三角形ABC的顶点A和它所对的边BC的中点D,所得线段AD叫△ABC的边BC上的中线。∴BD=CD=BC . A E⊥BC 于E,即AE是△ABC的边BC上的高。同时AE也是△AB D、△ACD 的高。 根据三角形的面积公式,三角形ABC的面积为,即 . △AB D、△ACD的面积可表示为: , , 所以△AB D、△ACD的面积相等,都等于△ABC面积的一半。 结论一:三角形的一边的中线把这个三角形分成面积相等的两部分。

例1如图2,AD、BE是△ABC的两条中线。AD、BE交于G,试比较△BG D和△AGE面积的大小。 析解:因为AD、BE是△ABC的两条中线,根据结论一,三角形ADC的面积等于三角形ABC的面积的一半,三角形BCE的面积也 等于三角形ABC的面积的一半。所以=,所以 ,即.所以△BG D和△AGE 的面积相等。 引申:连接GC,则GD是三角形GBC的中线,GE是三角形AGC 的中线,根据上面结论一,有,,而, 所以, ,所以 结论二:连接三角形的中线的交点和这个三角形任意两个顶点所组成的三角形的面积等于这个三角形面积的. 例2 (2009贺州)如图3-1,正方形ABCD的边长为1,E、F 分别是AB、BC边上的中点,求图中阴影部分的面积。

分析:图中阴影部分是不规则四边形,须作辅助线转化为规则四边形或三角形。更重要的是要考虑中点的运用。 解:如图3-2,连接BD,则三角形BCD的面积= , 根据上述结论二,△BOD的面积等于△BCD的面积的, 即, ∴阴影部分的面积=. 点评:求不规则图形的面积往往是作辅助线转化为三角形加以分析。图中三角形BDO的面积是和三角形BDC的中线有关的,记住上面的两个结论,能够迅速巧妙的求解此题。

三角形中位线性质的应用

三角形中位线性质的应用 三角形中位线平行于第三边,并且等于第三边的一半.三角形中位线性质,兼有位置和大小关系,可以用它判定平行,计算线段的长度. 例1如图1,已知:△ABC 中,分别以AB 、AC 为斜边作等腰直角三角形ABM 和CAN ,P 是BC 的中点.求证:PM =PN 证明:作ME ⊥AB ,NF ⊥AC ,垂足E ,F 因为△ABM 、△CAN 是等腰直角三角形 所以AE =EB =ME ,AF =FC =NF , 根据三角形中位线性质,可知, PE = 2 1AC =NF ,PF =2 1AB =ME PE ∥AC ,PF ∥AB 所以∠PEB =∠BAC =∠PFC 所以∠PEB+ ∠MEB =∠PFC+ ∠NFC 即∠PEM =∠PFN 所以△PEM ≌△PFN 所以PM =PN . 例2如图2,已知:△ABC 中,AD 是角平分线,BE =CF ,M 、N 分别是BC 和EF 的中点.求证:MN ∥AD . 证明:连结EC ,取EC 的中点P ,连结PM 、PN 根据三角形中位线性质,可知, MP ∥AB ,MP = 2 1BE ,NP ∥AC ,NP =2 1CF 因为BE =CF ,所以MP =NP , 所以∠3=∠4= 1802 M PN -∠ , ∠MPN +∠BAC =180 (两边分平行的两个角相等或互补) 所以∠1=∠2=1802 M PN -∠ , 所以∠2=∠3. 因为NP ∥AC , 所以MN ∥AD . 练一练: 1.如图3,已知E 、F 、G 、H 是四边形ABCD 各边的中点. 则①四边形EFGH 是 形; ②当AC =BD 时,四边形EFGH 是 形; ③当AC ⊥BD 时,四边形EFGH 是 形; ④当AC 和BD 时,四边形EFGH 是正方形形. 2.如图4,已知△ABC 中,AB =10,AC =7,AD 是角平分线,CM ⊥AD 于M ,且N 是BC N P 图1 C M 图 2 图3

解三角形应用

解三角形应用举例(1)教学目标 (a)知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语 (b)过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题。对于例2这样的开放性题目要鼓励学生讨论,开放多种思路,引导学生发现问题并进行适当的指点和矫正 (c)情感与价值:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力 (2)教学重点、难点 教学重点:由实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解 教学难点:根据题意建立数学模型,画出示意图 (3)学法与教学用具 让学生回忆正弦定理、余弦定理以及它们可以解决哪些类型

的三角形,让学生尝试绘制知识纲目图。生活中错综复杂的问题本源仍然是我们学过的定理,因此系统掌握前一节内容是学好本节课的基础。解有关三角形的应用题有固定的解题思路,引导学生寻求实际问题的本质和规律,从一般规律到生活的具体运用,这方面需要多琢磨和多体会。 直角板、投影仪(多媒体教室) (4)教学设想 1、复习旧知 复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形? 2、设置情境 请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。于是上面介绍的问题是用以前的方法所不能解决的。今天我们开始学习正弦定理、余弦定理在科学实

三角形中线段的相关应用专题练习

1 / 3 《小专题1 三角形中线段的相关应用》 1.已知一个三边都不相等的三角形的一边等于5,另一边等于3,若第三边长为奇数,则周长等于___________ 2.在等腰三角形ABC 中,AB=AC ,其周长为20,则AB 边的取值范围为__________. 3.已知AD 是△ABC 的高,∠BAD=70°,∠CAD=20°,则∠BAC 的度数为__________. 4.如图,在Rt △ABC 中,∠ABC=90°,点D 沿BC 自B 向C 运动(点D 与点B ,C 不重合),作BE ⊥AD 于点E ,CF ⊥AD 于点F ,在D 点的运动过程中,试判断BE+CF 的值是否发生改变? 5.如图,已知BE=CE ,ED 为△EBC 的中线,BD=8,△AEC 的周长为24,则△ABC 的周长为__________. 6.(广东中考改编)如图,△ABC 的三边的中线AD ,BE ,CF 的公共点为G ,且AG:GD=2:1.若S △ABC =12,则图中阴影部分的面积是___________. 7.在△ABC 中,已知点D ,E ,F 分别为BC ,AD ,CE 的中点 (1)如图1,若S △ABC =1,则△BEF 的面积为____________; (2)如图2,若S △BFC =1,则S △ABC =__________。 8.(1)如图,在△ABC 中,D ,E ,F 是边BC 上的三点,且∠1=∠2=∠3=∠4,以AE 为角平分线的三角形有____________. (2)如图,若已知AE 平分∠BAC ,且∠1=∠2=∠4=15°,计算∠3的度数,并说明AE 是△DAF 的角平分线

相关文档
最新文档