Lecture 8 Sequential LogicPPT课件
合集下载
chapter5 sequential logic circuitsPPT课件

=1
┌ 1J
=1
X
Z 1
CP
Solution: it is the synchronous sequential logical circuit, its clock equation isn’t needed to write out.
(1) Write out its output equation: Z(XQ1n)Q0n
…
Z1 output Zj signal
Flip-flop Output signal
…
Q1 Flip-flop circuit
…
D1
Flip-flop
Input signal
Qm
Dm
CP
5.2 The analysis method of sequential circuit
Ⅰ.The universal steps of analysising sequential circuit 1.Wirte out the following equations according to logical map
1.The characteristics of sequential logical circuit (1) memory unit (flip-flops used usually) (2)feedback parts
input X1 signal Xi
…
Combinational circuit
① When X=0, we can simplify the flip-flops’ next state
equation as
Qn1 0
Q1nQ0n
Qn1 1
Q0nQ1n
Logic课件.ppt

Soundness of modus ponens
A
True True False False
B
True False True False
A→B
True False True True
OK?
Soundness of the resolution inference rule
Proving Things
• A valid sentence or tautology is a sentence that is True under all interpretations, no matter what the world is actually like or what the semantics is. Example: “It’s raining or it’s not raining.”
• P entails Q, written P |= Q, means that whenever P is True, so is Q. In other words, all models of P are also models of Q.
Truth tables
A bit more about =>
Connectives: and
or
not
implies
equivalent
(X (Y Z)) ((X Y) (X Z)) “X implies Y and Z is the same as X implies Y and X implies Z”
Propositional Logic
• Propositional Logic is declarative, pieces of syntax correspond to facts
logicppt第二章 概念要明确

23
二、概念的种类
3.正概念与负概念 •正概念:又称肯定概念,是反映对象
具有某种属性的概念。
•负概念:又称否定概念,是反映对象
不具有某种属性的概念。语言形式是在 正概念前加否定词。
24
思考:
非洲 不管部部长 非无产阶级思想 不正当行为 非常时期
25
三、概念间的关系
相容关系 (外延重合)
例如:商品、艺术家。
定义
Ds 是 Dp
被定义项 定义联项 定义项
Ds
“是”
Dp
38
常用方法:
公式表示为: 三步骤:
被定义概念=属概念 + 种差
找出被定义项的 邻近的属概念
类型:
找出种差,也就是 找出它的特有属性
用“DS是DP” 形式表示
性质定义 发生定义 关系定义
功用定义
39
5.划分
划分就是通过把一个 属概念分为若干种概 念,从而明确概念外 延的逻辑方法 。
65
非集合概念:不反映 事物集合体的概念。
我们班的同学 来自全国各地。
我们班的同学 都是中国人。
22
案例:客人的反驳
前不久,有客人来杭旅游。主人对客人介绍说: “杭州的最大特色是秀气。山秀水秀人亦秀。”
客人反驳道:“那不见得,我看有些杭州人并不 秀。”
你认为客人的反驳能成立吗?请说明你的理由。
纪律的提法是这样的:“不拿工人农民一点东 西。”后来修改为“不拿群众一针一线”。 另外一条纪律是:“打土豪要归公。”后来改为“筹 款要归公”,后来又进一步改为“一切缴获要归 公”。
文字的逻辑推敲对我们文件编写的启发?
37
4.定义
定义是揭示概念内涵 的逻辑方法。为了与 语词定义相区别,人 们也把这种定义叫做 真实定义。
二、概念的种类
3.正概念与负概念 •正概念:又称肯定概念,是反映对象
具有某种属性的概念。
•负概念:又称否定概念,是反映对象
不具有某种属性的概念。语言形式是在 正概念前加否定词。
24
思考:
非洲 不管部部长 非无产阶级思想 不正当行为 非常时期
25
三、概念间的关系
相容关系 (外延重合)
例如:商品、艺术家。
定义
Ds 是 Dp
被定义项 定义联项 定义项
Ds
“是”
Dp
38
常用方法:
公式表示为: 三步骤:
被定义概念=属概念 + 种差
找出被定义项的 邻近的属概念
类型:
找出种差,也就是 找出它的特有属性
用“DS是DP” 形式表示
性质定义 发生定义 关系定义
功用定义
39
5.划分
划分就是通过把一个 属概念分为若干种概 念,从而明确概念外 延的逻辑方法 。
65
非集合概念:不反映 事物集合体的概念。
我们班的同学 来自全国各地。
我们班的同学 都是中国人。
22
案例:客人的反驳
前不久,有客人来杭旅游。主人对客人介绍说: “杭州的最大特色是秀气。山秀水秀人亦秀。”
客人反驳道:“那不见得,我看有些杭州人并不 秀。”
你认为客人的反驳能成立吗?请说明你的理由。
纪律的提法是这样的:“不拿工人农民一点东 西。”后来修改为“不拿群众一针一线”。 另外一条纪律是:“打土豪要归公。”后来改为“筹 款要归公”,后来又进一步改为“一切缴获要归 公”。
文字的逻辑推敲对我们文件编写的启发?
37
4.定义
定义是揭示概念内涵 的逻辑方法。为了与 语词定义相区别,人 们也把这种定义叫做 真实定义。
英语词汇学教程课件第8章English Lexicology 8上

English Lexicology
Lecture Eight
Idioms, Multiword Verbs and Proverbs
Idioms, multiword verbs and proverbs constitute an important part of the English language. They are very common in spoken and written English. The general tendency of present-day English is towards more idiomatic usage.
noun and noun (e.g. bread and butter, part and parcel),
noun + prepositional phrase (e.g. a snake in the grass, a bull in a china shop),
as + as construction (e.g. as clear as crystal, as like as two peas),
Nautical life and military life are the source of when one's ship comes home, to be in the same boat as someone, to be in deep waters, to sail under false colors, to cross swords with someone, to fight a pitched battle, to fight a losing/winning battle.
Lecture Eight
Idioms, Multiword Verbs and Proverbs
Idioms, multiword verbs and proverbs constitute an important part of the English language. They are very common in spoken and written English. The general tendency of present-day English is towards more idiomatic usage.
noun and noun (e.g. bread and butter, part and parcel),
noun + prepositional phrase (e.g. a snake in the grass, a bull in a china shop),
as + as construction (e.g. as clear as crystal, as like as two peas),
Nautical life and military life are the source of when one's ship comes home, to be in the same boat as someone, to be in deep waters, to sail under false colors, to cross swords with someone, to fight a pitched battle, to fight a losing/winning battle.
自然演绎逻辑导论PPT资料优秀版

含有联结词“”“”“”。 如果SL中含有联结词的K或少于K个出现的每一命题P满足元命题,那么SL中含有联结词的K+1个出现的每一命题P也满足元命题。
根据归纳假设,Q和R满足元命题。 证明奠基命题:SL的每一个只含联结词的0个出现的命题只有命题常项,而命题常项的左括号和右括号的数目都为0,故满足元命题。 5:如果命题集Γ是SC不一致的,那么,至少有一Γ的有限子集是SC不一致的。 语法只涉及符号语言的纯粹形式,而不涉及它的内容; §8∶2·2 一些语法元定理及其证明 1:如果Γ⊨ P,那么,在SC中Γ⊢ P 3:SL的一个命题P是偶然式,当且仅当,{P}和{ P}都是真值函项地一致的。
:对于SL的一个命题集Γ和一个命题P,如果 Γ{P }是真值函项地不一致的,那么Γ⊨ P。
元定理8.3.7:SL的一个命题P是重言式,当且 仅当, ⊨ P。
第四节 数学归纳法
§8∶4·1 什么是数学归纳法 数学归纳法的基本原理是:为证明某一定理对
于某一领域的所有对象都成立,把该类对象以 某种方式进行排序,然后分两步进行证明:一、 证明定理对该序列的第一项成立;二、证明如 果定理对第K项成立,那么它对K+1项也成立。
(一致性引理):每一个SC最大一致性集合 都是真值函项地一致的。
元定理8.7.6:如果在SC中Γ⊢ P并且Γ*是Γ的 最大一致性母集,那么P是Γ*的成员。
自然演绎系统SC对于基于真值函项的命题逻 辑来说是完全恰当的。
定义:SL的一个命题集Γ重言蕴涵一个命题P, 当且仅当,没有一个真值指派使得,Γ的每一 成员为真而P为假。
重言有效也叫做“真值函项地有效”。
§8∶3·2 一些语义元定理及其证明
元定理8.3.1:SL的一个命题P是矛盾式,当且仅当, {P}是真值函项地不一致的。
根据归纳假设,Q和R满足元命题。 证明奠基命题:SL的每一个只含联结词的0个出现的命题只有命题常项,而命题常项的左括号和右括号的数目都为0,故满足元命题。 5:如果命题集Γ是SC不一致的,那么,至少有一Γ的有限子集是SC不一致的。 语法只涉及符号语言的纯粹形式,而不涉及它的内容; §8∶2·2 一些语法元定理及其证明 1:如果Γ⊨ P,那么,在SC中Γ⊢ P 3:SL的一个命题P是偶然式,当且仅当,{P}和{ P}都是真值函项地一致的。
:对于SL的一个命题集Γ和一个命题P,如果 Γ{P }是真值函项地不一致的,那么Γ⊨ P。
元定理8.3.7:SL的一个命题P是重言式,当且 仅当, ⊨ P。
第四节 数学归纳法
§8∶4·1 什么是数学归纳法 数学归纳法的基本原理是:为证明某一定理对
于某一领域的所有对象都成立,把该类对象以 某种方式进行排序,然后分两步进行证明:一、 证明定理对该序列的第一项成立;二、证明如 果定理对第K项成立,那么它对K+1项也成立。
(一致性引理):每一个SC最大一致性集合 都是真值函项地一致的。
元定理8.7.6:如果在SC中Γ⊢ P并且Γ*是Γ的 最大一致性母集,那么P是Γ*的成员。
自然演绎系统SC对于基于真值函项的命题逻 辑来说是完全恰当的。
定义:SL的一个命题集Γ重言蕴涵一个命题P, 当且仅当,没有一个真值指派使得,Γ的每一 成员为真而P为假。
重言有效也叫做“真值函项地有效”。
§8∶3·2 一些语义元定理及其证明
元定理8.3.1:SL的一个命题P是矛盾式,当且仅当, {P}是真值函项地不一致的。
lect8_华科并行编程课件

What if consumer was much slower than producer?
11
Buffered Blocking Message Passing Operations
Deadlocks are still possible with buffering since receive operations block
receive
? This class of non-blocking protocols returns from the send or
receive operation before it is semantically safe to do so
? Non-blocking operations are generally accompanied by a
check-status operation
? When used correctly, these primitives are capable of
overlapping communication overheads with useful computations
? Message passing libraries typically provide both blocking and non-blocking primitives
13
Non-Blocking Message Passing Operations
Non-blocking non-buffered send and receive operations (a) in absence of communication hardware (b) in presence of communication hardware
人教课标版高中英语选修8unit1 predicative clause (共24张ppt)

2020/5/21
9
ቤተ መጻሕፍቲ ባይዱ
My life is _t_ha_t__ I must work hard and graduate from university. 填出关系词
2020/5/21
10
When Kevin studies in university , he has new concerns.
填出关系词
2020/5/21
6
Before Kevin went to school, he had some problems.
1.I have no friends in my new school. 2.How can I get used to the new environment?
His problems were __t_h__a__t__h__e___h__a__d____n__o___f_r_i_e__n___d__s___i_n___m___y___n__e__w____s__c__h__o__o__l__a__n__d_________ __h__o__w____h__e___c__o__u__l_d___g__e__t___u__s__e__d___t_o___t_h___e__n___e__w___e__n___v_ironment.
Can I graduate from the university smoothly and find a
good job?
His concern is __w__h___e__t_h__e__r__h__e___c__a__n___g___r_a__d__u__a__t_e___f__r_o__m____t__h__e___u__n__i_v__e__r_s__i_t_y_________ __s__m___o__o__t_h__l_y___a__n___d___f_i_n__d___a___g__o__o___d___j_o__b___._____________
逻辑智能体分析幻灯片PPT

that is based on semantics
16
Models
• Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated
–
17
Entailment in the wumpus world
Situation after detecting nothing in [1,1], moving right, breeze in [2,1]
Consider possible models for KB
assuming only pits
•
– x+2 ≥ y is a sentence; x2+y > {} is not a sentence
15
–
Entailment
• Entailment means that one thing follows from another: •
KB ╞ α
• Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true
– E.g., the KB containing “the Giants won” and “the Reds won” entails “Either the Giants won or the Reds won”
–
– E.g., x+y = 4 entails 4 = x+y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X
Awake in bed
yes
Awake in bed
Off
Yes
Awake and up
No
Awake in bed
Off
Awake and up
X
No
Asleep
No
X
Awake and up
No
State Diagram for The Alarm Clock (b)
Alarm / 1
Alarm’ / 0
The Alarm Clock
Present state Asleep
Awake in bed Awake in bed
Alarm On Off Off
Weekday X
Yes No
Next state Awake in bed Awake and up
Asleep
Turn off alarm Yes No No
Lecture 8 Sequential Logic
Prof. Sin-Min Lee Department of Computer Science
Q
D
0
1
0
0
0
1
1
1
T = D Q’ + D’ Q D
D’
Implement D Flip-flop by T Flip-flop
Q
0
1
T
0
0
1
1
1
0
State Diagram for The Alarm Clock (a)
Alarm’
Alarm
Turn off Alarm = Yes
Asleep
Alarm’ /\ Weekday’
Awake in bed
Alarm
Alarm’ /\ Weekday
Awake and up
1 (Always) (a)
T
Q JK 00 01 11 10
0
1
0
1
0
0
1
0
21 1
Implement JK Flip-flop by D Flip-flop
Q JK 00 01 11 10
0
1
0
1
0
0
1
0
21 1
D = J Q’ + K’ Q
D
Q+
0
0
1
1
Q J
D
K Q’
Q JK 00 01 11 10
0
1
0
1
0
0
1
0
21 1
Implement JK Flip-flop by T Flip-flop
Q+ Q
JK 00 01 11 10
0
1
0
0
0
1
1
1
21 0
JK
Q+
00
Q
01
0
10
1
11
Q’
T = J Q’ + K Q
J T
K
T
Q+
0Q 1 Q’
Q Q’
Implement T Flip-flop by JK Flip-flop
• A clock is a circuit that outputs 0’s and 1’s at specific frequencies
Real World Application
• The RAM discussed is a model for a chip that can actually be found in a computer
The alarm clock problem with
Present state Asleep
inaction states Alarm
Weekday
Next state
Off
X
Asleep
Turn off alarm No
Asleep
On
Awake in bed
On
X
Awake in bed
Yes
Asleep
Awake in bed
Alarm / 1
Alarm’ /\ Weekday’ / 0
Alarm’ /\ Weekday / 0
Awake and up
1 = yes turn off alarm (output) 0 – no turn off alarm (output)
1 (Always) / 0 (b)
arc
Important Rule for State Diagram
• State diagram has same situation as state table. Their conditions should be mutually exclusive, no input values should meet the condition of more than one arc.
Clocks and Sequencers
• To perform operations a CPU often requires a specific sequence of sub operations
• A sequencer is used to make sure operations happen in correct order
Q
T
01
0
01
1 10
Q
T
01
0
0X
1
1X
J=T
Q
T
01
0
X0
1 X1
K=T
Q Q+
00 01 10 11
J
K
0
X
1
X
X
1
X
0
Random-Access Memory
• Can read and write at any point in memory • Implemented using D Flip-Flops • Each row contains 16 Flip-Flops • A Decoder
State Tables for The JK Flip-Flop
Present State
J
K
Next State
Binary Counter
• Holds each pulse in memory • Each pulse add another number • Binary format
Register
• Used to hold one item of information • CPU’s have many registers • AX is an example in Assembly
• The binary counter can be bought at for 45 cents each
• The Flip-Flop circuits are models of usable chips
State Diagrams
• A state diagram:
J’
– Each state is represented by a circled vertex – Each rowYof the state table is shown as directed