材料力学 6弯曲应力
材料力学弯曲应力_图文

§5-3 横力弯曲时的正应力
例题6-1
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
1.C 截面上K点正应力 2.C 截面上最大正应力
B
x
180
K
30 3.全梁上最大正应力 z 4.已知E=200GPa,
FBY
C 截面的曲率半径ρ y
解:1. 求支反力
x 90kN M
x
(压应力)
目录
目录
§5-2 纯弯曲时的正应力
正应力分布
z
M
C
zzy
x
dA σ
y
目录
§5-2 纯弯曲时的正应力
常见截面的 IZ 和 WZ
圆截面 空心圆截面
矩形截面 空心矩形截面
目录
§5-3 横力弯曲时的正应力
横力弯曲
6-2
目录
§5-3 横力弯曲时的正应力
横力弯曲正应力公式
弹性力学精确分析表明 ,当跨度 l 与横截面高度 h 之比 l / h > 5 (细长梁)时 ,纯弯曲正应力公式对于横 力弯曲近似成立。 横力弯曲最大正应力
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
2. C 截面最大正应力
B
x
180
K
30 C 截面弯矩 z
FBY
y
C 截面惯性矩
x 90kN M
x
目录
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m
材料力学弯曲应力原创教案

弯曲应力我们开始弯曲这一章,我们讲了拉压、扭转、剪切,现在我们要讲弯曲。
弯曲的情况要比拉压和扭转更加复杂一些,它所涉及的问题更多一些,它和工程实际联系的更加紧密一些。
因此,这一章和下一章都是特别重要的章节。
在这一章中,我们首先要讨论弯曲正应力,横截面上有弯矩,那它就有了正应力,同时还要考虑弯曲切应力的问题,横截面上有剪力,说明它有切应力存在。
了解了正应力和切应力的情况,我们要讨论梁的强度和破坏,这个思路和前面几章是一样的。
特别的,要强调薄壁杆件中弯曲切应力的处理,最后呢,我们要讲组合变形的应用。
不仅仅是弯曲,而是弯曲和拉压,弯曲和扭转组合在一起的时候,如何来处理它的应力问题。
因此,这章的内容是比较多的。
工程实际例子我们来看看弯曲在工程中的应用。
这是一个厂房,这是一个大梁,这个吊车可以在这个大梁上运动。
对于这样一个问题,我们可以把它简化成一个简支梁,这个吊车的移动呢可以处理成一个移动荷载。
那么对于这个移动荷载而言,它所导致的应力如何计算?行车移动时,它的应力如何变化?这就是本章的内容之一。
我们再看看这个图片,这是我们拍摄的汽车的下部分,大家注意一些这个部分,这是就是汽车的板簧,它的模型就是这个样子,可以看成好几个钢板的组合,那么,为什么要设计成这个样子呢?它有什么优点呢?这也是本章要解决的问题。
这是一个运动员,撑杆跳,对吧。
大家常常见到,利用这个杆的助力,人可以跳的更高。
我们可以处理成这样一个模型。
她在跳高的过程中,杆就发生了弯曲。
那么,这个时候,跳杆横截面上的应力和杆曲率半径有什么关系?这个杆在什么情况下才满足强度要求?大家看看这个场面,对于这个场面,我们截面几何性质那章提到过,都是薄壁杆件,那么薄壁杆件有弯曲正应力和弯曲切应力,专门有一小节来讲解它的弯曲切应力,看看这些切应力有什么特点?如何避免薄壁杆件的强度失效?这也是本章的问题这个大家都熟悉,著名的比萨斜塔。
对于这个结构,初步计算,我们可以简化成这样一个均质圆筒,那么它有哪些变形效应?它的危险截面、危险点在哪儿?如何计算其应力?这也是本章可以解决的问题。
材料力学——弯曲应力

公式推导
线应变的变化规律 与纤维到中性层的距离成正比。
从横截面上看: 点离开中性轴越远,该点的线应变越大。
2、物理关系
当σ<σP时 虎克定律
E
E
y
y
弯曲正应力的分布规律 a、与点到中性轴的距离成正比; 沿截面高度 线性分布; b、沿截面宽度 均匀分布; c、正弯矩作用下, 上压下拉; d、危险点的位置, 离开中性轴最远处.
M max ymax IZ
x
67.5 103 90 103 5.832 105
104.17MPa
6、已知E=200GPa,C 截面的曲率半径ρ q=60KN/m A FAY B 1m C 3m FBY
M C 60kN m
I z 5.832 105 m 4
M EI
4 103 88 103 46.1MPa 6 7.64 10
9KN
4KN
C截面应力计算
A FA
M 1m
C 1m
B
1m FB
C截面应力分布 应用公式
t ,max
My Iz
2.5KNm
2.5 103 88 103 28.8MPa 6 7.64 10
Fb Fa
C截面: max M C Fb3 62.5 160 32 46.4MPa d W 3
zC
2
0.13
32
(5)结论 轮轴满足强度条件
一简支梁受力如图所示。已知 [ ] 12MPa ,空心圆截面 的内外径之比 一倍,比值不变,则载荷 q 可增加到多大? q=0.5KN/m A B
反映了截面的几何形状、尺寸对强度的影响
最大弯曲正应力计算公式
材料力学第6章弯曲应力

图6.5
页 退出
材料力学
出版社 理工分社
例6.1如图6.6所示,矩形截面悬臂梁受集中力和集中力偶作用。试求Ⅰ—Ⅰ 截面和固定端Ⅱ—Ⅱ截面上A,B,C,D 4点处的正应力。
图6.6
页 退出
材料力学
出版社 理工分社
解矩形截面对中性轴的惯性矩为 对于Ⅰ—Ⅰ截面,弯矩MⅠ=20 kN·m,根据式(6.2),各点正应力分别为
页 退出
材料力学
出版社 理工分社
(1)变形几何关系 弯曲变形前和变形后的梁段分别表示于图6.4(a)和(b)。以梁横截面的对称 轴为y轴且向下为正(见图6.4(c))。以中性轴为z轴,但中性轴的位置尚待确 定。在中性轴尚未确定之前,x轴只能暂时认为是通过原点的横截面的法 线。根据弯曲平面假设,变形前相距为dx的两个横截面,变形后各自绕中性 轴相对旋转了一个角度dθ ,且仍然保持为平面。这就使得距中性层为y的纵 向纤维bb的长度变为
式中积分
是横截面对y轴和z轴的惯性积。由于y轴是横截面的对
称轴,必然有Iyz=0(见附录)。所以式(g)是自然满足的。 将式(b)代入式(e),得
式中积分∫Ay2dA=Iz是横截面对z轴(中性轴)的惯性矩。于是式(h)改写为 式中 ——梁轴线变形后的曲率。
页 退出
材料力学
出版社 理工分社
式(6.1)表明,EIz越大,则曲率 越小,故EIz称为梁的抗弯刚度。从式 (6.1)和式(b)中消去 ,得
而对于变截面梁,虽然是等截面梁但中性轴不是横截面对称轴的梁,在计算 最大弯曲正应力时不能只注意弯矩数值最大的截面,应综合考虑My/Iz的值 (参看例6.5和例6.8)。
页 退出
材料力学
出版社 理工分社
引用记号
弯曲应力-材料力学

弯曲应力的计算方法
根据材料力学的基本原理,弯曲应力 的计算公式为:σ=M/Wz,其中σ为 弯曲应力,M为弯曲力矩,Wz为截面 对中性轴的抗弯截面系数。
另外,根据不同的弯曲形式和受力情 况,还可以采用其他计算公式来求解 弯曲应力,如均布载荷下的简支梁、 集中载荷下的悬臂梁等。
弯曲应力的计算方法
根据材料力学的基本原理,弯曲应力 的计算公式为:σ=M/Wz,其中σ为 弯曲应力,M为弯曲力矩,Wz为截面 对中性轴的抗弯截面系数。
弯曲应力可能导致材料发生弯曲变形,影响结构的稳定性和精度。
弯曲应力对材料刚度的影响
弯曲应力对材料的刚度有影响,材料的刚度随着弯曲应力的增大而 减小。
弯曲应力与剪切应力的关系
1 2
剪切应力在弯曲应力中的作用
在弯曲过程中,剪切应力会在材料截面的边缘产 生,它与弯曲应力相互作用,影响梁的承载能力 和稳定性。
弯曲应力
材料的韧性和强度都会影响其弯曲应力的大小和分布。韧性好的材料能够更好地分散和 吸收弯曲应力,而高强度的材料则能够承受更大的弯曲应力而不发生断裂。
材料韧性、强度与弯曲应力的关系
韧性
是指材料在受到外力作用时吸收能量的能力。韧性好的材料能够吸收更多的能量,从而 减少因弯曲应力而产生的脆性断裂。
强度
剪切应力的分布
剪切应力在材料截面的边缘最大,向中性轴方向 逐渐减小。
3
剪切应力和弯曲应力的关系
剪切应力和弯曲应力共同作用,影响梁的承载能 力和稳定性,在设计时需要考虑两者的相互作用。
弯曲应力与剪切应力的关系
1 2
剪切应力在弯曲应力中的作用
在弯曲过程中,剪切应力会在材料截面的边缘产 生,它与弯曲应力相互作用,影响梁的承载能力 和稳定性。
材料力学第五章-弯曲应力知识分享

材料力学第五章-弯曲应力注:由于本书没有标准答案,这些都是我和同学一起做的答案,其中可能会存在一些错误,仅供参考。
习 题6-1厚度mm h 5.1=的钢带,卷成直径 D=3m 的圆环,若钢带的弹性模量E=210GPa ,试求钢带横截面上的最大正应力。
解: 根据弯曲正应力公式的推导: Dy E yE 2..==ρσ MPa D h E 1053105.110210.39max =⨯⨯⨯==-σ 6—2直径为d 的钢丝,弹性模量为E ,现将它弯曲成直径为D 的圆弧。
试求钢丝中的最大应力与d /D 的关系。
并分析钢丝绳为何要用许多高强度的细钢丝组成。
解: ρσyE .= Dd E ED d .22max ==σ max σ与Dd成正比,钢丝绳易存放,而引起的最大引力很小.6—3 截面形状及尺寸完全相同的一根钢梁和一根木梁,如果所受的外力也相同,则内力是否相同?横截面上正应力的变化规律是否相同?对应点处的正应力与纵向线应变是否相同? 解: 面上的内力相同,正应力变化规律相同。
处的正应力相同,线应变不同6—4 图示截面各梁在外载作用下发生平面弯曲,试画出横截面上正应力沿高度的分布图.6—5 一矩形截面梁如图所示,已知F=1.5kN 。
试求(1) I —I 截面上A 、B 、C 、D 各点处的正应力; (2) 梁上的最大正应力,并指明其位置。
解:(1)m N F M .3002.0*10*5.12.0*3===MPa M I y M z A 11110*30*1812*10*15*.1233===--σ A B σσ-= 0=C σMPa M D 1.7410*30*1812*10*)5.15(*1233==--σ MPa W Fl z 5.16610*30*186*10*300*10*5.19233max ===--σ 位置在:固定端截面上下边缘处。
6—6 图示矩形截面简支梁,受均布载荷作用。
已知载荷集度q=20kN /m ,跨长l =3,截面高度=h 24cm ,宽度=b 8cm 。
材料力学06弯曲应力_3切应力_机

5
三、圆形截面梁
最大弯曲切应力发生于中性轴上各点处, 计算公式为
max
4FS 3A
式中,A 为圆形截面的面积
四、薄壁圆环形截面梁
薄壁圆环:壁厚 t 远小于平均半径 R
最大弯曲切应力发生于中性轴上各点
max
处,计算公式为
max
2
FS A
式中,A 为薄壁圆环形截面的面积
FS
max
z
x
14
FS max 9.75kN
M 26kN m max
2)校核弯曲正应力强度
由型钢表中查得 No. 18 工字钢截面的几何参数:d = 6.5 mm,Wz = 185 mm3 ,Iz : Sz = 15.4 cm
max
M max Wz
26 185
103 106
140.6 MPa < 170 MPa
y
FS R
max
z
t
y
6
五、弯曲切应力强度条件
其中
max ≤
max
3 FS max 2A
4 FS max 3A
2 FS max A
FS max
d
(Iz
:
S z max
)
矩形截面 圆形截面 薄壁圆环形截面 工字形截面
7
[例1] 图示矩形截面简支梁受均布载荷作用,试求梁的最大弯曲正 应力和最大弯曲切应力,并比较其大小。
b
FS
max h
z
缘各点处,弯曲切应力为
材料力学知识点

第六章弯曲变形知识要点1、弯曲变形的概念1)、挠曲线弯曲变形后梁的轴线变为挠曲线。
平面弯曲时,挠曲线为外力作用平面内的平面曲线。
2)、平面弯曲时的变形在小变形情况下,梁的任意二横截面绕各自的中性轴作相对转动,杆件的轴线变为平面曲线,其变形程度以挠曲线的曲率来度量。
1》纯弯曲时,弯矩—曲率的关系(由上式看出,若弯曲刚度EI为常数则曲率为常数,即挠曲线为圆弧线)2》横力弯曲时,弯矩—曲率的关系3)、平面弯曲时的位移1》挠度——横截面形心在垂直于梁轴线方向上的线位移,以表示。
2》转角——横截面绕其中性轴旋转的角位移,以表示。
挠度和转角的正负号由所选坐标系的正方向来确定。
沿y轴正方向的挠度为正。
转角的正负号判定规则为,将x轴绕原点旋转90°而与y轴重合,若转角与它的转向相同,则为正,反之为负。
4)、挠曲线近似微分方程5)、受弯曲构件的刚度条件,2、积分法求梁的挠度和转角由积分常数C、D由边界条件和连续性条件确定。
对于梁上有突变载荷(集中力、集中力偶、间断性分布力)的情况,梁的弯矩M(x)不是光滑连续函数,应用上式时,应分段积分,每分一段就多出现两个积分常数。
因此除了用边界条件外,还要用连续性条件确定所有的积分常数。
边界条件:支座对梁的位移(挠度和转角)的约束条件。
连续条件:挠曲线的光滑连续条件。
悬臂梁边界条件:固定端挠度为0,转角为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等简支梁边界条件:固定绞支座或滑动绞支座处挠度为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等连接铰链处,左右两端挠度相等,转角不等3、叠加原理求梁的挠度和转角1)、叠加原理各载荷同时作用下梁任一截面的挠度和转角等于各个载荷单独作用时同一截面挠度和转角的代数和。
2)、叠加原理的限制叠加原理要求梁某个截面的挠度和转角与该截面的弯矩成线性关系,因此要求:1》弯矩M和曲率成线性关系,这就要求材料是线弹性材料2》曲率与挠度成线性关系,这就要求梁变形为小变形4、弯曲时的超静定问题——超静定梁1)、超静定梁约束反力数目多于可应用的独立的静力平衡方程数的梁称为超静定梁,它的未知力不能用静力平衡方程完全确定,必须由变形相容条件和力与变形间的物理关系建立补充方程,然后联立静力平衡方程与补充方程,求解所有的未知数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
横力弯曲正应力公式
§5-3
横力弯曲正应力
弯曲正应力公式适用范围
My 弯曲正应力公式 IZ
•细长梁的纯弯曲或横力弯曲 •横截面惯性积 IYZ=0 •弹性变形阶段
21
目录
方法总结
(1)理想模型法:纯弯曲(剪力为零,弯矩为常数) 横力弯曲 (2)“实验—观察—假设”法:梁弯曲假设 (3) 外力 (4)三关系法 (5)数学方法 积分 应力合成内力
(3)抗弯截面系数 Wz 最
小的截面
31
目录
解: (1)计算简图 (2)绘弯矩图 (3)B截面,C截面需校核 (4)强度校核 B截面:
Fa 62.5 267 32 max 3 WzB d1 0.163 32 41.5 106 Pa 41.5MPa MB
Fa
y
36
目录
(3)作弯矩图
(4)B截面校核
2 .5kN.m
4 103 52103 t ,max 7.64106 27.2 106 Pa 27.2MPa t
4kN.m
4 103 88103 c,max 7.64106 46 .1106 Pa 46 .1MPa c
c,max
4 103 88 103 46.1MPa 6 7.64 10
28
目录
C截面应力分布
t ,max
2 .5kN.m
2.5 103 88 103 28.8MPa 6 7.64 10
(3)结论
4kN.m
c,max 46.1MPa
t ,max 28.8MPa
3. 全梁最大正应力
30
A
1m
FAY
B C
l = 3m
最大弯矩
x
K
z y
M max 67.5kN m
截面惯性矩
I z 5.832 105 m 4
FBY
FS 90kN
max
x 90kN
M max ymax IZ 67.5 103 180 10 3 2 5.832 10 5
y
a1 n1
dx
y
O曲率中心
M m1
d m2 d a2' a2 n dl 2 O2 M e2
y
m2
2.物理条件(虎克定律)
x
L
y y
n1 O1 a1 dx e1 n2
E y
E E
y
13
3、静力学条件
Sz 0
M y z dA 0
A
M z y dA M
30
目录
图示为机车轮轴的简图。试校核轮轴的强度。已知
d1 160mm d2 130mm, a 0.267m,b 0.16m, F 62.5kN, 材料的许用应力 60MPa.
分析(1)
max
max
M
max
ymax
? M max Wz
Iz
(2)弯矩 M 最大的截面
第五章 弯曲应力
1
目录
回顾与比较 内力 应力
F A
T IP
M
FAy
FS
目录
? ?
2
第五章
弯曲应力
§5-1 纯弯曲时梁的正应力
§5-2 横力弯曲时的正应力 强度条件 §5-3 横力弯曲时的切应力 §5-4 提高梁强度的主要措施
目
3
目录
§5-1 纯弯曲
一、基本概念:
梁段CD上,只有弯矩,没有剪力 --纯弯曲 梁段AC和BD上,既有弯矩,又有剪力 --横力弯曲
max
M WZ
17
目录
6、常见图形的惯性矩及抗弯截面系数:
z h b d z
1 3 I z bh , Wz 1 bh 2 12 6
Iz
64
d 4,
Wz
32
d 3,
D d z
Iz
( D4 d 4 ) D4 (1 4 ) 64 64
Wz
32
D3 (1 4 )
A
目录
M EI Z
14
1
4、正应力公式
变形几何关系
y
E
y
物理关系
E
M EI Z 1
静力学关系 正应力公式
My IZ
目录
15
正应力分布
My IZ
16
目录
5、横截面上最大正应力
max
Mymax M Iz I z / ymax
Iz ——截面的抗弯截面系数,反映了截面 Wz ymax 的几何形状、尺寸对强度的影响。
962106 m3 962cm3
(4)选择工字钢型号
3 36c工字钢 Wz 962cm
(5)讨论
q 67.6kg/m
34
目录
T型截面铸铁梁,截面尺寸如图示。 t 30MPa, c 60MPa, 试校核梁的强度。
分析: 非对称截面,要寻找中性轴位置 作弯矩图,寻找需要校核的截面 要同时满足 t ,max t , c,max c
61.7 106 Pa 61.7MPa (压应力)
23
目录
§5-3
q=60kN/m
横力弯曲正应力
120
180
2. C 截面最大正应力
30
A
1m
FAY
B C
l = 3m
C 截面弯矩
M C 60kN m
x
K
z y
FBY
C 截面惯性矩
FS 90kN
I Z 5.832 105 m4
C截面:
max
MC WzC
Fb
(5)结论
Fb 62.5 160 32 46.4 106 P a 46.4MPa 3 d 2 0.133 32
32
目录
某车间欲安装简易吊车,大梁选用工字钢。已知电葫芦 自重 F1 6.7kN,起重量 F2 50kN, 跨度 l 9.5m, 材料的许用应力 140MPa, 试选择工字钢的型号。
22
目录
内力 几何关系 物理关系 平衡关系
应力法
q=60kN/m
180
120
A
1m
FAY
B C
l = 3m
x
K
FBY
FS 90kN
y 解:1. 求支反力 FAy 90kN FBy 90kN
M C 90 1 60 1 0.5 60kN m
1.C 截面上K点正应力 2.C 截面上最大正应力 30 3.全梁上最大正应力 z 4.已知E=200GPa, C 截面的曲率半径ρ
FS 90kN
x 90kN
I Z 5.832 105 m4 1 M EI
M
ql 2 / 8 67.5kN m
EI Z 200 109 5.832 10 5 C MC 60 103 194.4m
x
26
目录
I z 7.64 106 m4 例 T型截面铸铁梁,截面尺寸如图。 yc 52mm
3 Fs 1.5 2 A
max
方向:与横截面上剪力方向相同; 大小:沿截面宽度均匀分布,沿高度h分布为抛物线。
最大剪应力为平均剪应力的1.5倍。
49
§5-3弯曲时梁的切应力
3 FS 2 A
6-
50
目录
二、其它截面梁横截面上的剪应力
11
目录
横截面的 对称轴 横截面
C
d
o1
中性层
中性轴
dx
o2
(f)
(c)
12
(三)理论分析:
m1 O1
中性层
弯曲应力
对称轴
m2
1.几何条件
dl yd a1a2 a1a2 dl d d y y y dx dx d a1a2
e O2 2 a2 n2
e1
x
y
o
z
中性轴
分析
(1)确定危险截面 (2) max M max Wz (3)计算 M max (4)计算 Wz ,选择工 字钢型号
33
目录
解:(1)计算简图 (2)绘弯矩图
(3)根据 max
M max
M max 计算 Wz
Wz
(6.7 50) 103 9.5 4 140106
18
目录
§5-3
横力弯曲
横力弯曲正应力
19
目录
§5-3
横力弯曲正应力
My 弯曲正应力公式 IZ
弹性力学精确分析表明, 当跨度 l 与横截面高度 h 之 比 l / h > 5 (细长梁)时, 纯弯曲正应力公式对于横力 弯曲近似成立。 横力弯曲最大正应力
max
M max ymax IZ
35
目录
解:(1)求截面形心
z1 52 z
yc 80 20 10 120 20 80 52 mm 80 20 120 20
(2)求截面对中性轴z的惯性矩
80 203 Iz 80 20 422 12 201203 20120 282 12 7.64106 m 4
25
目录
M
ql 2 / 8 67.5kN m
x