材料力学 6弯曲应力
材料力学弯曲应力_图文
§5-3 横力弯曲时的正应力
例题6-1
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
1.C 截面上K点正应力 2.C 截面上最大正应力
B
x
180
K
30 3.全梁上最大正应力 z 4.已知E=200GPa,
FBY
C 截面的曲率半径ρ y
解:1. 求支反力
x 90kN M
x
(压应力)
目录
目录
§5-2 纯弯曲时的正应力
正应力分布
z
M
C
zzy
x
dA σ
y
目录
§5-2 纯弯曲时的正应力
常见截面的 IZ 和 WZ
圆截面 空心圆截面
矩形截面 空心矩形截面
目录
§5-3 横力弯曲时的正应力
横力弯曲
6-2
目录
§5-3 横力弯曲时的正应力
横力弯曲正应力公式
弹性力学精确分析表明 ,当跨度 l 与横截面高度 h 之比 l / h > 5 (细长梁)时 ,纯弯曲正应力公式对于横 力弯曲近似成立。 横力弯曲最大正应力
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
2. C 截面最大正应力
B
x
180
K
30 C 截面弯矩 z
FBY
y
C 截面惯性矩
x 90kN M
x
目录
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m
材料力学弯曲应力原创教案
弯曲应力我们开始弯曲这一章,我们讲了拉压、扭转、剪切,现在我们要讲弯曲。
弯曲的情况要比拉压和扭转更加复杂一些,它所涉及的问题更多一些,它和工程实际联系的更加紧密一些。
因此,这一章和下一章都是特别重要的章节。
在这一章中,我们首先要讨论弯曲正应力,横截面上有弯矩,那它就有了正应力,同时还要考虑弯曲切应力的问题,横截面上有剪力,说明它有切应力存在。
了解了正应力和切应力的情况,我们要讨论梁的强度和破坏,这个思路和前面几章是一样的。
特别的,要强调薄壁杆件中弯曲切应力的处理,最后呢,我们要讲组合变形的应用。
不仅仅是弯曲,而是弯曲和拉压,弯曲和扭转组合在一起的时候,如何来处理它的应力问题。
因此,这章的内容是比较多的。
工程实际例子我们来看看弯曲在工程中的应用。
这是一个厂房,这是一个大梁,这个吊车可以在这个大梁上运动。
对于这样一个问题,我们可以把它简化成一个简支梁,这个吊车的移动呢可以处理成一个移动荷载。
那么对于这个移动荷载而言,它所导致的应力如何计算?行车移动时,它的应力如何变化?这就是本章的内容之一。
我们再看看这个图片,这是我们拍摄的汽车的下部分,大家注意一些这个部分,这是就是汽车的板簧,它的模型就是这个样子,可以看成好几个钢板的组合,那么,为什么要设计成这个样子呢?它有什么优点呢?这也是本章要解决的问题。
这是一个运动员,撑杆跳,对吧。
大家常常见到,利用这个杆的助力,人可以跳的更高。
我们可以处理成这样一个模型。
她在跳高的过程中,杆就发生了弯曲。
那么,这个时候,跳杆横截面上的应力和杆曲率半径有什么关系?这个杆在什么情况下才满足强度要求?大家看看这个场面,对于这个场面,我们截面几何性质那章提到过,都是薄壁杆件,那么薄壁杆件有弯曲正应力和弯曲切应力,专门有一小节来讲解它的弯曲切应力,看看这些切应力有什么特点?如何避免薄壁杆件的强度失效?这也是本章的问题这个大家都熟悉,著名的比萨斜塔。
对于这个结构,初步计算,我们可以简化成这样一个均质圆筒,那么它有哪些变形效应?它的危险截面、危险点在哪儿?如何计算其应力?这也是本章可以解决的问题。
材料力学——弯曲应力
公式推导
线应变的变化规律 与纤维到中性层的距离成正比。
从横截面上看: 点离开中性轴越远,该点的线应变越大。
2、物理关系
当σ<σP时 虎克定律
E
E
y
y
弯曲正应力的分布规律 a、与点到中性轴的距离成正比; 沿截面高度 线性分布; b、沿截面宽度 均匀分布; c、正弯矩作用下, 上压下拉; d、危险点的位置, 离开中性轴最远处.
M max ymax IZ
x
67.5 103 90 103 5.832 105
104.17MPa
6、已知E=200GPa,C 截面的曲率半径ρ q=60KN/m A FAY B 1m C 3m FBY
M C 60kN m
I z 5.832 105 m 4
M EI
4 103 88 103 46.1MPa 6 7.64 10
9KN
4KN
C截面应力计算
A FA
M 1m
C 1m
B
1m FB
C截面应力分布 应用公式
t ,max
My Iz
2.5KNm
2.5 103 88 103 28.8MPa 6 7.64 10
Fb Fa
C截面: max M C Fb3 62.5 160 32 46.4MPa d W 3
zC
2
0.13
32
(5)结论 轮轴满足强度条件
一简支梁受力如图所示。已知 [ ] 12MPa ,空心圆截面 的内外径之比 一倍,比值不变,则载荷 q 可增加到多大? q=0.5KN/m A B
反映了截面的几何形状、尺寸对强度的影响
最大弯曲正应力计算公式
材料力学第6章弯曲应力
图6.5
页 退出
材料力学
出版社 理工分社
例6.1如图6.6所示,矩形截面悬臂梁受集中力和集中力偶作用。试求Ⅰ—Ⅰ 截面和固定端Ⅱ—Ⅱ截面上A,B,C,D 4点处的正应力。
图6.6
页 退出
材料力学
出版社 理工分社
解矩形截面对中性轴的惯性矩为 对于Ⅰ—Ⅰ截面,弯矩MⅠ=20 kN·m,根据式(6.2),各点正应力分别为
页 退出
材料力学
出版社 理工分社
(1)变形几何关系 弯曲变形前和变形后的梁段分别表示于图6.4(a)和(b)。以梁横截面的对称 轴为y轴且向下为正(见图6.4(c))。以中性轴为z轴,但中性轴的位置尚待确 定。在中性轴尚未确定之前,x轴只能暂时认为是通过原点的横截面的法 线。根据弯曲平面假设,变形前相距为dx的两个横截面,变形后各自绕中性 轴相对旋转了一个角度dθ ,且仍然保持为平面。这就使得距中性层为y的纵 向纤维bb的长度变为
式中积分
是横截面对y轴和z轴的惯性积。由于y轴是横截面的对
称轴,必然有Iyz=0(见附录)。所以式(g)是自然满足的。 将式(b)代入式(e),得
式中积分∫Ay2dA=Iz是横截面对z轴(中性轴)的惯性矩。于是式(h)改写为 式中 ——梁轴线变形后的曲率。
页 退出
材料力学
出版社 理工分社
式(6.1)表明,EIz越大,则曲率 越小,故EIz称为梁的抗弯刚度。从式 (6.1)和式(b)中消去 ,得
而对于变截面梁,虽然是等截面梁但中性轴不是横截面对称轴的梁,在计算 最大弯曲正应力时不能只注意弯矩数值最大的截面,应综合考虑My/Iz的值 (参看例6.5和例6.8)。
页 退出
材料力学
出版社 理工分社
引用记号
弯曲应力-材料力学
弯曲应力的计算方法
根据材料力学的基本原理,弯曲应力 的计算公式为:σ=M/Wz,其中σ为 弯曲应力,M为弯曲力矩,Wz为截面 对中性轴的抗弯截面系数。
另外,根据不同的弯曲形式和受力情 况,还可以采用其他计算公式来求解 弯曲应力,如均布载荷下的简支梁、 集中载荷下的悬臂梁等。
弯曲应力的计算方法
根据材料力学的基本原理,弯曲应力 的计算公式为:σ=M/Wz,其中σ为 弯曲应力,M为弯曲力矩,Wz为截面 对中性轴的抗弯截面系数。
弯曲应力可能导致材料发生弯曲变形,影响结构的稳定性和精度。
弯曲应力对材料刚度的影响
弯曲应力对材料的刚度有影响,材料的刚度随着弯曲应力的增大而 减小。
弯曲应力与剪切应力的关系
1 2
剪切应力在弯曲应力中的作用
在弯曲过程中,剪切应力会在材料截面的边缘产 生,它与弯曲应力相互作用,影响梁的承载能力 和稳定性。
弯曲应力
材料的韧性和强度都会影响其弯曲应力的大小和分布。韧性好的材料能够更好地分散和 吸收弯曲应力,而高强度的材料则能够承受更大的弯曲应力而不发生断裂。
材料韧性、强度与弯曲应力的关系
韧性
是指材料在受到外力作用时吸收能量的能力。韧性好的材料能够吸收更多的能量,从而 减少因弯曲应力而产生的脆性断裂。
强度
剪切应力的分布
剪切应力在材料截面的边缘最大,向中性轴方向 逐渐减小。
3
剪切应力和弯曲应力的关系
剪切应力和弯曲应力共同作用,影响梁的承载能 力和稳定性,在设计时需要考虑两者的相互作用。
弯曲应力与剪切应力的关系
1 2
剪切应力在弯曲应力中的作用
在弯曲过程中,剪切应力会在材料截面的边缘产 生,它与弯曲应力相互作用,影响梁的承载能力 和稳定性。
材料力学第五章-弯曲应力知识分享
材料力学第五章-弯曲应力注:由于本书没有标准答案,这些都是我和同学一起做的答案,其中可能会存在一些错误,仅供参考。
习 题6-1厚度mm h 5.1=的钢带,卷成直径 D=3m 的圆环,若钢带的弹性模量E=210GPa ,试求钢带横截面上的最大正应力。
解: 根据弯曲正应力公式的推导: Dy E yE 2..==ρσ MPa D h E 1053105.110210.39max =⨯⨯⨯==-σ 6—2直径为d 的钢丝,弹性模量为E ,现将它弯曲成直径为D 的圆弧。
试求钢丝中的最大应力与d /D 的关系。
并分析钢丝绳为何要用许多高强度的细钢丝组成。
解: ρσyE .= Dd E ED d .22max ==σ max σ与Dd成正比,钢丝绳易存放,而引起的最大引力很小.6—3 截面形状及尺寸完全相同的一根钢梁和一根木梁,如果所受的外力也相同,则内力是否相同?横截面上正应力的变化规律是否相同?对应点处的正应力与纵向线应变是否相同? 解: 面上的内力相同,正应力变化规律相同。
处的正应力相同,线应变不同6—4 图示截面各梁在外载作用下发生平面弯曲,试画出横截面上正应力沿高度的分布图.6—5 一矩形截面梁如图所示,已知F=1.5kN 。
试求(1) I —I 截面上A 、B 、C 、D 各点处的正应力; (2) 梁上的最大正应力,并指明其位置。
解:(1)m N F M .3002.0*10*5.12.0*3===MPa M I y M z A 11110*30*1812*10*15*.1233===--σ A B σσ-= 0=C σMPa M D 1.7410*30*1812*10*)5.15(*1233==--σ MPa W Fl z 5.16610*30*186*10*300*10*5.19233max ===--σ 位置在:固定端截面上下边缘处。
6—6 图示矩形截面简支梁,受均布载荷作用。
已知载荷集度q=20kN /m ,跨长l =3,截面高度=h 24cm ,宽度=b 8cm 。
材料力学06弯曲应力_3切应力_机
5
三、圆形截面梁
最大弯曲切应力发生于中性轴上各点处, 计算公式为
max
4FS 3A
式中,A 为圆形截面的面积
四、薄壁圆环形截面梁
薄壁圆环:壁厚 t 远小于平均半径 R
最大弯曲切应力发生于中性轴上各点
max
处,计算公式为
max
2
FS A
式中,A 为薄壁圆环形截面的面积
FS
max
z
x
14
FS max 9.75kN
M 26kN m max
2)校核弯曲正应力强度
由型钢表中查得 No. 18 工字钢截面的几何参数:d = 6.5 mm,Wz = 185 mm3 ,Iz : Sz = 15.4 cm
max
M max Wz
26 185
103 106
140.6 MPa < 170 MPa
y
FS R
max
z
t
y
6
五、弯曲切应力强度条件
其中
max ≤
max
3 FS max 2A
4 FS max 3A
2 FS max A
FS max
d
(Iz
:
S z max
)
矩形截面 圆形截面 薄壁圆环形截面 工字形截面
7
[例1] 图示矩形截面简支梁受均布载荷作用,试求梁的最大弯曲正 应力和最大弯曲切应力,并比较其大小。
b
FS
max h
z
缘各点处,弯曲切应力为
材料力学知识点
第六章弯曲变形知识要点1、弯曲变形的概念1)、挠曲线弯曲变形后梁的轴线变为挠曲线。
平面弯曲时,挠曲线为外力作用平面内的平面曲线。
2)、平面弯曲时的变形在小变形情况下,梁的任意二横截面绕各自的中性轴作相对转动,杆件的轴线变为平面曲线,其变形程度以挠曲线的曲率来度量。
1》纯弯曲时,弯矩—曲率的关系(由上式看出,若弯曲刚度EI为常数则曲率为常数,即挠曲线为圆弧线)2》横力弯曲时,弯矩—曲率的关系3)、平面弯曲时的位移1》挠度——横截面形心在垂直于梁轴线方向上的线位移,以表示。
2》转角——横截面绕其中性轴旋转的角位移,以表示。
挠度和转角的正负号由所选坐标系的正方向来确定。
沿y轴正方向的挠度为正。
转角的正负号判定规则为,将x轴绕原点旋转90°而与y轴重合,若转角与它的转向相同,则为正,反之为负。
4)、挠曲线近似微分方程5)、受弯曲构件的刚度条件,2、积分法求梁的挠度和转角由积分常数C、D由边界条件和连续性条件确定。
对于梁上有突变载荷(集中力、集中力偶、间断性分布力)的情况,梁的弯矩M(x)不是光滑连续函数,应用上式时,应分段积分,每分一段就多出现两个积分常数。
因此除了用边界条件外,还要用连续性条件确定所有的积分常数。
边界条件:支座对梁的位移(挠度和转角)的约束条件。
连续条件:挠曲线的光滑连续条件。
悬臂梁边界条件:固定端挠度为0,转角为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等简支梁边界条件:固定绞支座或滑动绞支座处挠度为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等连接铰链处,左右两端挠度相等,转角不等3、叠加原理求梁的挠度和转角1)、叠加原理各载荷同时作用下梁任一截面的挠度和转角等于各个载荷单独作用时同一截面挠度和转角的代数和。
2)、叠加原理的限制叠加原理要求梁某个截面的挠度和转角与该截面的弯矩成线性关系,因此要求:1》弯矩M和曲率成线性关系,这就要求材料是线弹性材料2》曲率与挠度成线性关系,这就要求梁变形为小变形4、弯曲时的超静定问题——超静定梁1)、超静定梁约束反力数目多于可应用的独立的静力平衡方程数的梁称为超静定梁,它的未知力不能用静力平衡方程完全确定,必须由变形相容条件和力与变形间的物理关系建立补充方程,然后联立静力平衡方程与补充方程,求解所有的未知数。
材料力学第6章弯曲应力习题答案
工程力学中的弯曲应力和弯曲变形问题的探究与解决方案
工程力学中的弯曲应力和弯曲变形问题的探究与解决方案引言:工程力学是研究物体受力和变形规律的学科,其中弯曲应力和弯曲变形问题是工程力学中的重要内容。
本文将探讨弯曲应力和弯曲变形问题的原因、计算方法以及解决方案,旨在帮助读者更好地理解和应对这一问题。
一、弯曲应力的原因在工程实践中,当梁、梁柱等结构承受外力作用时,由于结构的几何形状和材料的力学性质不同,会导致结构发生弯曲变形。
弯曲应力的产生主要有以下几个原因:1. 外力作用:外力作用是导致结构弯曲的主要原因之一。
例如,悬臂梁受到集中力的作用,会导致梁的一侧拉伸,另一侧压缩,从而产生弯曲应力。
2. 结构几何形状:结构的几何形状对弯曲应力有直接影响。
例如,梁的截面形状不均匀或不对称,会导致弯曲应力的分布不均匀,从而引起结构的弯曲变形。
3. 材料力学性质:材料的力学性质也是导致弯曲应力的重要因素。
不同材料的弹性模量、屈服强度等参数不同,会导致结构在受力时产生不同的弯曲应力。
二、弯曲应力的计算方法为了准确计算弯曲应力,工程力学中提出了一系列的计算方法。
其中最常用的方法是梁的弯曲方程和梁的截面应力分析。
1. 梁的弯曲方程:梁的弯曲方程是描述梁在弯曲过程中受力和变形的重要方程。
根据梁的几何形状和受力情况,可以得到梁的弯曲方程,并通过求解该方程,计算出梁在不同位置的弯曲应力。
2. 梁的截面应力分析:梁的截面应力分析是通过分析梁截面上的应力分布情况,计算出梁在不同位置的弯曲应力。
该方法根据梁的几何形状和材料的力学性质,采用静力学平衡和弹性力学理论,计算出梁截面上的应力分布,并进一步得到梁的弯曲应力。
三、弯曲变形问题的解决方案针对弯曲变形问题,工程力学提出了一系列的解决方案,包括结构改进、材料选择和加固措施等。
1. 结构改进:对于存在弯曲变形问题的结构,可以通过改进结构的几何形状,增加结构的刚度,从而减小结构的弯曲变形。
例如,在梁的设计中,可以增加梁的截面尺寸或改变梁的截面形状,以增加梁的抗弯刚度。
6.材料力学——弯曲应力
y2 20
120
20
RA A
F1=9kN
RB
F2=4kN
解
RA = 2.5kN RB = 10.5kN 最大正弯矩在截面 C 上
C 1m 1m
B 1m
D
MC = 2.5kN ⋅ m
最大负弯矩在 截面 B 上
2.5kN 80 y1
M( x) ⋅ y σ= Iz
M( x) — 横截面上的弯矩
18
强度条件: 二. 强度条件:
σmax
Mmax ⋅ ymax = ≤ [σ ] Iz
σmax
拉压强度相等材料: 拉压强度相等材料: 拉压强度不等材料: 拉压强度不等材料: 强度计算: 强度计算: a. 强度校核 强度校核: b. 截面设计 截面设计:
σ = Eε
=E
ρ
y
对称轴
o
z
y
正应力与它到中性层的距离成正比, 正应力与它到中性层的距离成正比, 中性层上的正应力为零 上式只能用于定性分析, 上式只能用于定性分析, 而不能用于定量计算: 而不能用于定量计算: 的位置未确定, (1)由于中性轴 z 的位置未确定, ) 无法标定; 故 y 无法标定;
中性轴 中性层
y
z
对称轴
ρ
M
中性层
y
图6-4
m ∆θ n z o a′ 中性轴 a′ o′ o′ b′ y b关系
o
o
y 轴 — 截面的对称轴 Z 轴 — 截面的中性轴 —距中性层为 b′b′ 距中性层为 y 处的纤维变形后的长度
y
dϕ 的线应变: 纤维 bb 的线应变: γ p = ρ dx M (ρ + y)dθ − ρ ⋅ dθ = y ε= ρ ⋅ dθ ρ
材料力学刘鸿文第六版最新课件第五章 弯曲应力
:
FN2
M
dM Iz
A1 y1dA
pp1 : dFs' 'bdx
§5-4 弯曲切应力
X方向合力为0
X 0, M dM
Iz
M A1 y1dA Iz
A1 y1dA 'bdx 0
m m1
FN1
p p1
n
τ’ q τ
z
y q1 y1
dx n1
σdA
y FN2
' dM ( 1 )
dx Izb
腹板上的剪力FS1=(0.95~0.97)FS
§5-4 弯曲切应力
三、圆形截面* Izb
在中性轴上,切应力最大,此时b=2R,
max
4Fs
3 R2
IZ
d 4
64
§5-4 弯曲切应力
细长梁的控制因素通常是弯曲正应力,但是有些情况必须 考虑弯曲切应力
梁的跨度较短(l / h < 5); 在支座附近作用较大载荷(载荷靠近支座); 铆接或焊接的工字形或箱形等截面梁(腹板、焊缝、
M
max
Mymax IZ
WZ
IZ ymax
抗弯截面系数
max
M WZ
*******注意拉应力和压应力的区分。
§5-2 纯弯曲时的正应力
常见截面的 IZ 和 WZ ※ IZ y2dA A
Wz
IZ ymax
圆截面
IZ
d 4
64
Wz
d3
32
矩形截面
IZ
bh3 12
Wz
bh2 6
空心圆截面
空心矩形截面
§5-4 弯曲切应力
q=3.6kN/m
A
(整理)材料力学试题库题解题6_弯曲应力
弯曲应力1.圆形截面简支梁A,B套成,A,B层间不计摩擦,材料的弹性模量E B=2E A求在外力偶矩M e作用下,A,B中最大正应力的比值^max有4个答案:Bmin1(A)-;61 (C)1;81(D)丄10答: B2.矩形截面纯弯梁,材料的抗拉弹性模量E t大于材料的抗压弹性模量E c,则正应力在截面上的分布图有以下4种答案:(A) (B) (C) (D) 答: C3.将厚度为2 mm的钢板尺与一曲面密实接触,已知测得钢尺点A处的应变为—,则该曲面在点A1000处的曲率半径为_________ m m。
答:999 mmP4.边长为a的正方形截面梁,按图示两种不同形式放置,在相同弯矩作用下,两者最大正应力之比匕丛= ___________(%x)bO(b)答:1/ , 25. 一工字截面梁,截面尺寸如图,h二b, b =10t。
试证明,此梁上,下翼缘承担的弯矩约为截面上总弯矩的88%证: — My M12MA y(ybdy) =1 820 罟3Iz4 l z=690tM1 Mt4 1勺8207 6904”88%I yh/2—- 丄h/2zt其中:积分限Bt? , A弓为翼缘弯矩6. 直径d =20 mm 的圆截面钢梁受力如图,已知弹性模量E = 200 GPa , a =200 mm ,欲将其中段AB 弯成 f m 的圆弧,试求所需载荷,并计算最大7. 钢筋横截面积为A ,密度为「,放在刚性平面上,一端加力F ,提起钢筋离 开地面长度-。
试问F 应多大?3解:截面C 曲率为零2Fl gA(l /3) 3 28. 矩形截面钢条长l ,总重为F ,放在刚性水平面上,在钢条A 端作用|向上的拉力时,试求钢条内最大正应力。
解:在截面C 处,有―罟丸弯曲正应力。
解:1 = M 而 M 二 Fa P EI Fmax64 =0.785 10 岀 m 4, 「旦 Pa = 0.654 kN21 Fad 21 3 3 0.654 1 03 0.2 20 10 2 0.785 10 出 = 167 MPa即M C =F Is3 l AC F (I AC )2 l 2 2l AC AC 段可视为受均布载荷q 作用的简支梁 max max 2q(U c ) /8 _ Fl bt 2/6 3bt 2iF/3 C9.图示组合梁由正方形的铝管和正方形钢杆套成,在两端用刚性平板牢固联接。
第六周 材料力学A_(弯曲变形的基本概念和分类, 正应力公式)
M ( x)
从梁中切出小分离体: x方向平衡: FN 2 FN 1 FS 0 M
y
M+dM
FN 2 dA
A1
A1
M dM ydA Iz
A1
dx FS
z b
y
假设: 横截面上各点切应力方向平行 于剪力的方向 横截面上切应力沿z方向均布
M dM 其中 S Sz z Iz M 同理 FN1 Sz
M=Fl/4
max
(5.7)
C
max
31
M=Fl/4
C
如T形、槽形截面等
32
2.弯曲切应力强度条件 梁弯曲时,横截面上切应力的危险点: 剪力最大截面的中性轴上(此处正应力恰好为零), ——纯剪切应力状态 F
A F/2 (FS) F/2 F/2 C B
3.梁的弯曲强度计算 (1)一般的细长非薄壁梁(跨高比 l/h 较大),可只 校核正应力强度条件(此时切应力强度条件多自动 满足)。 F h
h 1 h b h2 矩形截面: Sz ( y) b ( y) ( y ( y)) ( y2 ) 2 2 2 2 4
max
max
min
H
M
( y )
FS h 2 ( y2 ) 2I z 4
FS h2 3 F 3 S 3 bh 4 2 A 2 2 12
z
M
y
ymax2 z ymax1
max
Wz1
M
应分别计算 max max
Iz ymax1
由梁所受外力(已知载荷) 图,求得各截面上的弯矩)
材料力学第六章弯曲应力1
d c
M
b
d
(1)弯曲平面假设:梁变形前原为平面的横截面变形后仍为平 面,且仍垂直于变形后的轴线,只是各横截面绕其上的某轴转 动了一个角度。
(2)纵向纤维假设:梁是由许多纵向纤维组成的,且各纵向纤维 之间无挤压。
凹入一侧纤维缩短 突出一侧纤维伸长
根据变形的连续性可知, 梁弯曲时从其凹入一侧的 纵向线缩短区到其凸出一 侧的纵向线伸长区,中间 必有一层纵向无长度改变 的过渡层--------称为中
q
y1 y2
y
z
b
解:1)画弯矩图
| M |max 0.5ql2 3 kNm
№10槽钢
2)查型钢表:
M
y1
y2
y
b 4.8cm, I z 25.6cm4 , y1 1.52cm y2 4.8 1.52 3.28cm
3)求应力:
M 3000 1.52 178 MPa t max y1 6 25 .6 10 Iz
中间层与横截面的交线 --中性轴
性层 。 梁的弯曲变形实际上是各截面绕各自的中性轴转 动了一个角度,等高度的一层纤维的变形完全相同。
4、线应变的变化规律:
A1 B1 AB AB
a
c
( y )d d d
A1 B1 OO1 OO1
y
y
...... (1)
Mycmax cmax Iz
几种简单截面的抗弯截面系数 b ⑴ 矩形截面
h
z
bh3 Iz 12 b3h Iy 12
⑵ 圆形截面
y d
Iz bh2 Wz h/2 6 Iy b2h Wy b/2 6
材料力学-弯曲应力
M max Wz
(3)计算 M max
(4)计算 Wz ,选择工 字钢型号
24
6-2 正应力公式的推广 强度条件
解:
(1)计算简图
(2)绘弯矩图
(3)根据
max
M max Wz
计算
(6.7 50) 103 9.5
Wz
M max
4 140106
962106 m3 962cm3
M max ymax IZ
15
6-2 正应力公式的推广 强度条件
弯曲正应力公式适用范围
弯曲正应力分布 My
IZ
•细长梁的纯弯曲或横力弯曲 •横截面惯性积 IYZ=0 •弹性变形阶段
16
6-2 正应力公式的推广 强度条件
弯曲正应力强度条件
σmax
M
y m a x m a x Iz
(5)C截面要不要校核?
t,max
2.5103 88103 7.64106
28.8106 Pa 28.8MPa t
29
6-2 正应力公式的推广 强度条件 例5
q
A x1 D
B
C
2m
x
155 200
Iz=3770×10-8 m4 [σ]t = 30MPa [σ]c = 60MPa 求BC 的长度及最大q。
6-2 正应力公式的推广 强度条件
y
q=60kN/m
120
4. C 截面曲率半径ρ
A
1m
FAY
C
l = 3m
B
x
180
K
30 C 截面弯矩
材料力学教案 第6章 弯曲应力
第6章弯曲应力教学目的:在本章的学习中要求熟练掌握梁纯弯曲时横截面上正应力计算公式的推导过程,理解推导过程中所作的假设。
掌握中性层、中性轴等基本概念和含义。
弯曲正应力和剪应力强度条件的建立和相应的计算。
理解横力弯曲正应力计算仍用纯弯曲公式的条件和近似程度。
从弯曲强度条件出发,掌握提高弯曲强度的若干措施。
教学重点:纯弯曲梁横截面上正应力公式的分析推导;横力弯曲横截面上正应力的计算,最大拉应力和最大压应力的计算;弯曲的强度计算;弯曲横截面上的剪应力。
教学难点:弯曲正应力、剪应力推导过程和结果以及弯曲中心的概念。
教具:多媒体。
教学方法:采用启发式教学,通过提问,引导学生思考,让学生回答问题。
教学内容:梁纯弯曲和横力弯曲时横截面上的正应力;梁横力弯曲时横截面上的切应力;提高弯曲强度的若干措施。
教学学时:6学时。
教学提纲:6.1 梁的纯弯曲1、几个基本概念(1)平面弯曲和弯曲中心变形后梁轴线的位移方向沿着加载方向的弯曲情况,称为平面弯曲。
怎样加载才能产生平面弯曲?若梁的横截面有对称平面时,载荷必须作用在对称平面内,才能发生平面弯曲。
若梁的横截面没有对称平面时,载荷的作用线必须通过截面的弯曲中心。
什么叫弯曲中心?当载荷的作用线通过横截面上某一点特定点时,杆件只产生弯曲而无扭转。
这样的特定点称为弯曲中心。
关于弯曲中心位置的确定及工程上常见图形的弯曲中心位置。
①具有两个对称轴或反对称的截面,如工字形、圆形、圆环形、空心矩形截面等,弯曲中心与形心(两对称轴的交点)重合,如图(a),(b),(c)所示。
②具有一个对称轴的截面,如槽形和T形截面,弯曲中心必在对称轴上,如图(d)、(e)所示。
③如果截面是由中线相交于一点的几个狭长矩形所组成,如L形或T形截面,则此交点就是弯曲中心,如图(e)、(f)所示。
④不对称实心截面的弯曲中心靠近形心。
这种截面在荷载作用线通过形心时也将引起扭转,但由于这种截面的抗扭刚度很大,弯曲中心与形心又非常靠近,故通常不考虑它的扭转影响。
弯曲应力实验
弯曲应力实验的步骤如下:
1. 准备工具和材料:16Mn钢、弯曲应力实验机、力传感器、位移传感器等。
2. 将试样放置在弯曲应力实验机上,并固定好。
3. 启动实验机,使试样受到弯曲应力作用。
4. 记录试样在受力过程中的应变数据,包括弯曲应变、纵向应变和横向应变等。
5. 根据实验数据计算出弯曲应力,并与理论值进行比较,验证公式的正确性。
6. 分析实验结果,评估试样的弯曲强度和塑性变形能力等。
在实验过程中需要注意以下几点:
1. 实验前需要对试样进行必要的处理,如表面处理、切割等,以确保实验结果的准确性。
2. 在实验过程中需要保持环境的温度和湿度等参数的稳定,以减小误差。
3. 在实验结束后需要对试样进行必要的处理,如清洗、保温等,以保护试样不受损坏。
弯曲应力实验是材料力学中常见的一种实验方法,通过对材料的弯曲
应力测试,可以了解材料的力学性能和结构特点,为工程实际应用提供重要的参考依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
横力弯曲正应力公式
§5-3
横力弯曲正应力
弯曲正应力公式适用范围
My 弯曲正应力公式 IZ
•细长梁的纯弯曲或横力弯曲 •横截面惯性积 IYZ=0 •弹性变形阶段
21
目录
方法总结
(1)理想模型法:纯弯曲(剪力为零,弯矩为常数) 横力弯曲 (2)“实验—观察—假设”法:梁弯曲假设 (3) 外力 (4)三关系法 (5)数学方法 积分 应力合成内力
(3)抗弯截面系数 Wz 最
小的截面
31
目录
解: (1)计算简图 (2)绘弯矩图 (3)B截面,C截面需校核 (4)强度校核 B截面:
Fa 62.5 267 32 max 3 WzB d1 0.163 32 41.5 106 Pa 41.5MPa MB
Fa
y
36
目录
(3)作弯矩图
(4)B截面校核
2 .5kN.m
4 103 52103 t ,max 7.64106 27.2 106 Pa 27.2MPa t
4kN.m
4 103 88103 c,max 7.64106 46 .1106 Pa 46 .1MPa c
c,max
4 103 88 103 46.1MPa 6 7.64 10
28
目录
C截面应力分布
t ,max
2 .5kN.m
2.5 103 88 103 28.8MPa 6 7.64 10
(3)结论
4kN.m
c,max 46.1MPa
t ,max 28.8MPa
3. 全梁最大正应力
30
A
1m
FAY
B C
l = 3m
最大弯矩
x
K
z y
M max 67.5kN m
截面惯性矩
I z 5.832 105 m 4
FBY
FS 90kN
max
x 90kN
M max ymax IZ 67.5 103 180 10 3 2 5.832 10 5
y
a1 n1
dx
y
O曲率中心
M m1
d m2 d a2' a2 n dl 2 O2 M e2
y
m2
2.物理条件(虎克定律)
x
L
y y
n1 O1 a1 dx e1 n2
E y
E E
y
13
3、静力学条件
Sz 0
M y z dA 0
A
M z y dA M
30
目录
图示为机车轮轴的简图。试校核轮轴的强度。已知
d1 160mm d2 130mm, a 0.267m,b 0.16m, F 62.5kN, 材料的许用应力 60MPa.
分析(1)
max
max
M
max
ymax
? M max Wz
Iz
(2)弯矩 M 最大的截面
第五章 弯曲应力
1
目录
回顾与比较 内力 应力
F A
T IP
M
FAy
FS
目录
? ?
2
第五章
弯曲应力
§5-1 纯弯曲时梁的正应力
§5-2 横力弯曲时的正应力 强度条件 §5-3 横力弯曲时的切应力 §5-4 提高梁强度的主要措施
目
3
目录
§5-1 纯弯曲
一、基本概念:
梁段CD上,只有弯矩,没有剪力 --纯弯曲 梁段AC和BD上,既有弯矩,又有剪力 --横力弯曲
max
M WZ
17
目录
6、常见图形的惯性矩及抗弯截面系数:
z h b d z
1 3 I z bh , Wz 1 bh 2 12 6
Iz
64
d 4,
Wz
32
d 3,
D d z
Iz
( D4 d 4 ) D4 (1 4 ) 64 64
Wz
32
D3 (1 4 )
A
目录
M EI Z
14
1
4、正应力公式
变形几何关系
y
E
y
物理关系
E
M EI Z 1
静力学关系 正应力公式
My IZ
目录
15
正应力分布
My IZ
16
目录
5、横截面上最大正应力
max
Mymax M Iz I z / ymax
Iz ——截面的抗弯截面系数,反映了截面 Wz ymax 的几何形状、尺寸对强度的影响。
962106 m3 962cm3
(4)选择工字钢型号
3 36c工字钢 Wz 962cm
(5)讨论
q 67.6kg/m
34
目录
T型截面铸铁梁,截面尺寸如图示。 t 30MPa, c 60MPa, 试校核梁的强度。
分析: 非对称截面,要寻找中性轴位置 作弯矩图,寻找需要校核的截面 要同时满足 t ,max t , c,max c
61.7 106 Pa 61.7MPa (压应力)
23
目录
§5-3
q=60kN/m
横力弯曲正应力
120
180
2. C 截面最大正应力
30
A
1m
FAY
B C
l = 3m
C 截面弯矩
M C 60kN m
x
K
z y
FBY
C 截面惯性矩
FS 90kN
I Z 5.832 105 m4
C截面:
max
MC WzC
Fb
(5)结论
Fb 62.5 160 32 46.4 106 P a 46.4MPa 3 d 2 0.133 32
32
目录
某车间欲安装简易吊车,大梁选用工字钢。已知电葫芦 自重 F1 6.7kN,起重量 F2 50kN, 跨度 l 9.5m, 材料的许用应力 140MPa, 试选择工字钢的型号。
22
目录
内力 几何关系 物理关系 平衡关系
应力法
q=60kN/m
180
120
A
1m
FAY
B C
l = 3m
x
K
FBY
FS 90kN
y 解:1. 求支反力 FAy 90kN FBy 90kN
M C 90 1 60 1 0.5 60kN m
1.C 截面上K点正应力 2.C 截面上最大正应力 30 3.全梁上最大正应力 z 4.已知E=200GPa, C 截面的曲率半径ρ
FS 90kN
x 90kN
I Z 5.832 105 m4 1 M EI
M
ql 2 / 8 67.5kN m
EI Z 200 109 5.832 10 5 C MC 60 103 194.4m
x
26
目录
I z 7.64 106 m4 例 T型截面铸铁梁,截面尺寸如图。 yc 52mm
3 Fs 1.5 2 A
max
方向:与横截面上剪力方向相同; 大小:沿截面宽度均匀分布,沿高度h分布为抛物线。
最大剪应力为平均剪应力的1.5倍。
49
§5-3弯曲时梁的切应力
3 FS 2 A
6-
50
目录
二、其它截面梁横截面上的剪应力
11
目录
横截面的 对称轴 横截面
C
d
o1
中性层
中性轴
dx
o2
(f)
(c)
12
(三)理论分析:
m1 O1
中性层
弯曲应力
对称轴
m2
1.几何条件
dl yd a1a2 a1a2 dl d d y y y dx dx d a1a2
e O2 2 a2 n2
e1
x
y
o
z
中性轴
分析
(1)确定危险截面 (2) max M max Wz (3)计算 M max (4)计算 Wz ,选择工 字钢型号
33
目录
解:(1)计算简图 (2)绘弯矩图
(3)根据 max
M max
M max 计算 Wz
Wz
(6.7 50) 103 9.5 4 140106
18
目录
§5-3
横力弯曲
横力弯曲正应力
19
目录
§5-3
横力弯曲正应力
My 弯曲正应力公式 IZ
弹性力学精确分析表明, 当跨度 l 与横截面高度 h 之 比 l / h > 5 (细长梁)时, 纯弯曲正应力公式对于横力 弯曲近似成立。 横力弯曲最大正应力
max
M max ymax IZ
35
目录
解:(1)求截面形心
z1 52 z
yc 80 20 10 120 20 80 52 mm 80 20 120 20
(2)求截面对中性轴z的惯性矩
80 203 Iz 80 20 422 12 201203 20120 282 12 7.64106 m 4
25
目录
M
ql 2 / 8 67.5kN m
x